1
|
Holyavka MG, Goncharova SS, Artyukhov VG. Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain. Int J Mol Sci 2025; 26:547. [PMID: 39859263 PMCID: PMC11764635 DOI: 10.3390/ijms26020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties. The objective of this study is to evaluate the impact of covalent immobilization under different conditions on the proteolytic activity of the enzymes. The most favorable results were achieved by immobilizing ficin and bromelain through covalent bonding to medium and high molecular weight chitosans, using 5 and 3.33% glutaraldehyde solutions, respectively. For papain, 5 and 6.67% glutaraldehyde solutions proved to be more effective as crosslinking agents. These findings indicate that covalent immobilization can enhance the performance of these enzymes as biocatalysts, with potential applications in various biotechnological fields.
Collapse
Affiliation(s)
- Marina G. Holyavka
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
- Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University, 33 Studencheskaya Street, 299053 Sevastopol, Russia
| | - Svetlana S. Goncharova
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
| | - Valeriy G. Artyukhov
- Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia (V.G.A.)
| |
Collapse
|
2
|
Kimmins SD, Henríquez A, Torres C, Wilson L, Flores M, Pio E, Jullian D, Urbano B, Braun-Galleani S, Ottone C, Muñoz L, Claros M, Urrutia P. Immobilization of Naringinase onto Polydopamine-Coated Magnetic Iron Oxide Nanoparticles for Juice Debittering Applications. Polymers (Basel) 2024; 16:3279. [PMID: 39684024 DOI: 10.3390/polym16233279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Chemical amination of the enzyme was demonstrated to favor immobilization onto polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the first time, to the best of the author's knowledge. MNPs prepared via hydrothermal synthesis were coated with PDA for the immobilization of naringinase. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy showed that the MNPs were composed mainly of Fe3O4 with an average size of 38.9 nm, and coated with a 15.1 nm PDA layer. Although the specific activities of α-L-rhamnosidase (RAM) and β-D-glucosidase (GLU) of free naringinase decreased with amination, the immobilization yields of the aminated enzyme increased by more than 40% for RAM and more than 10-fold for GLU. The immobilization improved the enzyme's thermal stability (at 50 °C), reaching a half-life of 40.7 and 23.1 h for RAM and GLU activities, respectively. The biocatalyst was successfully used for the debittering of grapefruit juice, detecting a reduction in naringin of 56% after 24 h. These results demonstrate that the enzyme amination is an effective strategy to enhance the immobilization on a PDA coating and could be applied to other enzymes in order to obtain an easily recoverable biocatalyst using a simple immobilization methodology.
Collapse
Affiliation(s)
- Scott D Kimmins
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Antonella Henríquez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Celia Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Marcos Flores
- Laboratory of Surface and Nanomaterials, Physics Department, Faculty of Mathematical and Physical Sciences, University of Chile, Santiago 8330111, Chile
| | - Edgar Pio
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua 2841959, Chile
| | - Domingo Jullian
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua 2841959, Chile
| | - Bruno Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 3349001, Chile
| | - Stephanie Braun-Galleani
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Lisa Muñoz
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Martha Claros
- Departamento de Ingeniería Metalúrgica y de Materiales, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Paulina Urrutia
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
3
|
Urrutia P, Arrieta R, Torres C, Guerrero C, Wilson L. Amination of naringinase to improve citrus juice debittering using a catalyst immobilized on glyoxyl-agarose. Food Chem 2024; 452:139600. [PMID: 38744138 DOI: 10.1016/j.foodchem.2024.139600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
A naringinase complex was chemically aminated prior to its immobilization on glyoxyl-agarose to develop a robust biocatalyst for juice debittering. The effects of amination on the optimal pH and temperature, thermal stability, and debittering performance were analyzed. Concentration of amino groups on catalysts surface increased in 36 %. Amination reduced the β-glucosidase activity of naringinase complex; however, did not affect optimal pH and temperature of the enzyme and it favored immobilization, obtaining α-l-rhamnosidase and β-d-glucosidase activities of 1.7 and 4.2 times the values obtained when the unmodified enzymes were immobilized. Amination favored the stability of the immobilized biocatalyst, retaining 100 % of both activities after 190 h at 30 °C and pH 3, while its non-aminated counterpart retained 80 and 52 % of α-rhamnosidase and β-glucosidase activities, respectively. The immobilized catalyst showed a better performance in grapefruit juice debittering, obtaining a naringin conversion of 7 times the value obtained with the non-aminated catalyst.
Collapse
Affiliation(s)
- Paulina Urrutia
- School of Biochemistry Engineering, Pontificia Universidad Católica de Valparaíso, Chile.
| | - Rosa Arrieta
- School of Biochemistry Engineering, Pontificia Universidad Católica de Valparaíso, Chile
| | - Celia Torres
- School of Biochemistry Engineering, Pontificia Universidad Católica de Valparaíso, Chile
| | - Cecilia Guerrero
- School of Biochemistry Engineering, Pontificia Universidad Católica de Valparaíso, Chile
| | - Lorena Wilson
- School of Biochemistry Engineering, Pontificia Universidad Católica de Valparaíso, Chile
| |
Collapse
|
4
|
Abellanas-Perez P, Carballares D, Rocha-Martin J, Fernandez-Lafuente R. The effects of the chemical modification on immobilized lipase features are affected by the enzyme crowding in the support. Biotechnol Prog 2024; 40:e3394. [PMID: 37828788 DOI: 10.1002/btpr.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
In this article, we have analyzed the interactions between enzyme crowding on a given support and its chemical modification (ethylenediamine modification via the carbodiimide route and picryl sulfonic (TNBS) modification of the primary amino groups) on the enzyme activity and stability. Lipase from Thermomyces lanuginosus (TLL) and lipase B from Candida antarctica (CALB) were immobilized on octyl-agarose beads at two very different enzyme loadings, one of them exceeding the capacity of the support, one well under this capacity. Chemical modifications of the highly loaded and lowly loaded biocatalysts gave very different results in terms of activity and stability, which could increase or decrease enzyme activity depending on the enzyme support loading. For example, both lowly loaded biocatalysts increased their activity after modification while the effect was the opposite for the highly loaded biocatalysts. Additionally, the modification with TNBS of highly loaded CALB biocatalyst increased its stability while decrease the activity.
Collapse
Affiliation(s)
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
5
|
Abellanas-Perez P, Carballares D, Fernandez-Lafuente R, Rocha-Martin J. Glutaraldehyde modification of lipases immobilized on octyl agarose beads: Roles of the support enzyme loading and chemical amination of the enzyme on the final enzyme features. Int J Biol Macromol 2023; 248:125853. [PMID: 37460068 DOI: 10.1016/j.ijbiomac.2023.125853] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl agarose at low loading and at a loading exceeding the maximum support capacity. Then, the enzymes have been treated with glutaraldehyde and inactivated at pH 7.0 in Tris-HCl, sodium phosphate and HEPES, giving different stabilities. Stabilization (depending on the buffer) of the highly loaded biocatalysts was found, very likely as a consequence of the detected intermolecular crosslinkings. This did not occur for the lowly loaded biocatalysts. Next, the enzymes were chemically aminated and then treated with glutaraldehyde. In the case of TLL, the intramolecular crosslinkings (visible by the apparent reduction of the protein size) increased enzyme stability of the lowly loaded biocatalysts, an effect that was further increased for the highly loaded biocatalysts due to intermolecular crosslinkings. Using CALB, the intramolecular crosslinkings were less intense, and the stabilization was lower, even though the intermolecular crosslinkings were quite intense for the highly loaded biocatalyst. The stabilization detected depended on the inactivation buffer. The interactions between enzyme loading and inactivating buffer on the effects of the chemical modifications suggest that the modification and inactivation studies must be performed under the target biocatalysts and conditions.
Collapse
Affiliation(s)
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid Spain.
| |
Collapse
|
6
|
Immobilization of an Industrial β-Glucosidase from Aspergillus fumigatus and Its Use for Cellobiose Hydrolysis. Processes (Basel) 2022. [DOI: 10.3390/pr10061225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, several covalent methods of immobilization based on acrylic supports, Schiff bases and epoxides have been applied to a commercial cocktail with a high β-glucosidase activity secreted by Aspergillus fumigatus. This cocktail was preliminary compared to a commercial secretome of Aspergillus niger, which was also subjected to the aforementioned immobilization methods. Due to its higher activity, the cocktail from A. fumigatus immobilized on ReliZyme™ HA403 activated with glutaraldehyde was employed for pNPG and cellobiose hydrolysis in diverse operational conditions and at diverse enzyme loadings, showing a very high activity at high enzyme load. A kinetic model based on the Michaelis–Menten hypothesis, in which double inhibition occurs due to glucose, has been selected upon fitting it to all experimentally retrieved data with the lowest-activity immobilized enzyme. This model was compared to the one previously established for the free form of the enzyme, observing that cellobiose acompetitive inhibition does not exist with the immobilized enzyme acting as the biocatalyst. In addition, stability studies indicated that the immobilized enzyme intrinsically behaves as the free enzyme, as expected for a one-bond low-interaction protein-support immobilization.
Collapse
|
7
|
Morellon-Sterling R, Tavano O, Bolivar JM, Berenguer-Murcia Á, Vela-Gutiérrez G, Sabir JSM, Tacias-Pascacio VG, Fernandez-Lafuente R. A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. Int J Biol Macromol 2022; 210:682-702. [PMID: 35508226 DOI: 10.1016/j.ijbiomac.2022.04.224] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Pepsin is a protease used in many different applications, and in many instances, it is utilized in an immobilized form to prevent contamination of the reaction product. This enzyme has two peculiarities that make its immobilization complex. The first one is related to the poor presence of primary amino groups on its surface (just one Lys and the terminal amino group). The second one is its poor stability at alkaline pH values. Both features make the immobilization of this enzyme to be considered a complicated goal, as most of the immobilization protocols utilize primary amino groups for immobilization. This review presents some of the attempts to get immobilized pepsin biocatalyst and their applications. The high density of anionic groups (Asp and Glu) make the anion exchange of the enzyme simpler, but this makes many of the strategies utilized to immobilize the enzyme (e.g., amino-glutaraldehyde supports) more related to a mixed ion exchange/hydrophobic adsorption than to real covalent immobilization. Finally, we propose some possibilities that can permit not only the covalent immobilization of this enzyme, but also their stabilization via multipoint covalent attachment.
Collapse
Affiliation(s)
- Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Juan M Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Gilber Vela-Gutiérrez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Wang Z, Liu Y, Li J, Meng G, Zhu D, Cui J, Jia S. Efficient Immobilization of Enzymes on Amino Functionalized MIL-125-NH2 Metal Organic Framework. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-020-0393-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lv C, Yang X, Wang Z, Ying M, Han Q, Li S. Enhanced Performance of Bioelectrodes Made with Amination-Modified Glucose Oxidase Immobilized on Carboxyl-Functionalized Ordered Mesoporous Carbon. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3086. [PMID: 34835850 PMCID: PMC8617758 DOI: 10.3390/nano11113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
This research reveals the improved performance of bioelectrodes made with amination-modified glucose oxidase (GOx-NH2) and carboxyl-functionalized mesoporous carbon (OMC-COOH). Results showed that when applied with 10 mM EDC amination, the functional groups of NH2 were successfully added to GOx, according to the analysis of 1H-NMR, elemental composition, and FTIR spectra. Moreover, after the aminated modification, increased enzyme immobilization (124.01 ± 1.49 mg GOx-NH2/g OMC-COOH; 2.77-fold increase) and enzyme activity (1.17-fold increase) were achieved, compared with those of non-modified GOx. Electrochemical analysis showed that aminated modification enhanced the peak current intensity of Nafion/GOx-NH2/OMC-COOH (1.32-fold increase), with increases in the charge transfer coefficient α (0.54), the apparent electron transfer rate constant ks (2.54 s-1), and the surface coverage Γ (2.91 × 10-9 mol·cm-2). Results showed that GOx-NH2/OMC-COOH exhibited impressive electro-activity and a favorable anodic reaction.
Collapse
Affiliation(s)
- Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| | - Zongkang Wang
- Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518055, China;
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| | - Qingguo Han
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| |
Collapse
|
10
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
11
|
Glutaraldehyde-crosslinked cells from Aspergillus oryzae IPT-301 for high transfructosylation activity: optimization of the immobilization variables, characterization and operational stability. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Braham SA, Morellon-Sterling R, de Andrades D, Rodrigues RC, Siar EH, Aksas A, Pedroche J, Millán MDC, Fernandez-Lafuente R. Effect of Tris Buffer in the Intensity of the Multipoint Covalent Immobilization of Enzymes in Glyoxyl-Agarose Beads. Appl Biochem Biotechnol 2021; 193:2843-2857. [PMID: 34019251 DOI: 10.1007/s12010-021-03570-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Tris is an extensively used buffer that presents a primary amine group on its structure. In the present work trypsin, chymotrypsin and penicillin G acylase (PGA) were immobilized/stabilized on glyoxyl agarose in presence of different concentrations of Tris (from 0 to 20 mM). The effects of the presence of Tris during immobilization were studied analyzing the thermal stability of the obtained immobilized biocatalysts. The results indicate a reduction of the enzyme stability when immobilized in the presence of Tris. This effect can be observed in inactivations carried out at pH 5, 7, and 9 with all the enzymes assayed. The reduction of enzyme stability increased with the Tris concentration. Another interesting result is that the stability reduction was more noticeable for immobilized PGA than in the other immobilized enzymes, the biocatalysts prepared in presence of 20 mM Tris lost totally the activity at pH 7 just after 1 h of inactivation, while the reference at this time still kept around 61 % of the residual activity. These differences are most likely due to the homogeneous distribution of the Lys groups in PGA compared to trypsin and chymotrypsin (where almost 50% of Lys group are in a small percentage of the protein surface). The results suggest that Tris could be affecting the multipoint covalent immobilization in two different ways, on one hand, reducing the number of available glyoxyl groups of the support during immobilization, and on the other hand, generating some steric hindrances that difficult the formation of covalent bonds.
Collapse
Affiliation(s)
- Sabrina Ait Braham
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain.,Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael C Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - El-Hocine Siar
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain.,Transformation and Food Product Elaboration Laboratory, Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Constantine, Algeria
| | - Ali Aksas
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Justo Pedroche
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Maria Del Carmen Millán
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
13
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
14
|
Ouyang J, Pu S, Wang J, Deng Y, Yang C, Naseer S, Li D. Enzymatic hydrolysate of geniposide directly acts as cross-linking agent for enzyme immobilization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Gennari A, Führ AJ, Volpato G, Volken de Souza CF. Magnetic cellulose: Versatile support for enzyme immobilization - A review. Carbohydr Polym 2020; 246:116646. [DOI: 10.1016/j.carbpol.2020.116646] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
|
16
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts 2020. [DOI: 10.3390/catal10050466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the performance of a commercial protease (Novo-Pro D (NPD)), both in soluble and immobilized forms, in the hydrolysis of proteins (using casein as model protein). Immobilization of the protease NPD on 6% agarose activated with glyoxyl groups for 24 h at 20 °C and pH 10.0 allowed preparing immobilized biocatalyst with around 90% immobilization yield, 92% recovered activity versus small substrate, and a thermal stability 5.3-fold higher than the dialyzed soluble enzyme at 50 °C and pH 8.0. Immobilization times longer than 24 h lead to a decrease in the recovered activity and did not improve the biocatalyst stability. At 50 °C and pH 6.5, the immobilized NPD was around 20-fold more stable than the dialyzed soluble protease. Versus casein, the immobilized NDP presented a 10% level of activity, but it allowed hydrolyzing casein (26 g/L) at 50 °C and pH 6.5 up to a 40% degree of hydrolysis (DH) after 2 h reaction, while under the same conditions, only a 34% DH was achieved with soluble NPD. In addition, the immobilized NPD showed good reusability, maintaining the DH of casein for at least ten 2h-reaction batches.
Collapse
|
18
|
Ashjari M, Garmroodi M, Amiri Asl F, Emampour M, Yousefi M, Pourmohammadi Lish M, Habibi Z, Mohammadi M. Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles; production of biodiesel from waste cooking oil. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
López-Gallego F, Fernandez-Lorente G, Rocha-Martín J, Bolivar JM, Mateo C, Guisan JM. Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Stabilization of Industrial Enzymes. Methods Mol Biol 2020; 2100:93-107. [PMID: 31939117 DOI: 10.1007/978-1-0716-0215-7_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stabilization of enzymes via immobilization techniques is a valuable approach in order to convert a necessary protocol (immobilization) into a very interesting tool to improve key enzyme properties (stabilization). Multipoint covalent attachment of each immobilized enzyme molecule may promote a very interesting stabilizing effect. The relative distances among all enzyme residues involved in immobilization have to remain unaltered during any conformational change induced by any distorting agent. Amino groups are very interesting nucleophiles placed on protein surfaces. The immobilization of enzyme through the region having the highest amount of amino groups (Lys residues) is key for a successful stabilization. Glyoxyl groups are small aliphatic aldehydes that form very unstable Schiff's bases with amino groups, and they do not seem to be useful for enzyme immobilization at neutral pH. However, under alkaline conditions, glyoxyl supports are able to immobilize enzymes via a first multipoint covalent immobilization through the region having the highest amount of lysine groups. Activation of supports with a high surface density of glyoxyl groups and the performance of very intense enzyme-support multipoint covalent attachments are here described.
Collapse
Affiliation(s)
- Fernando López-Gallego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain.,Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain.,Department of Biotechnology and Microbiology, Institute of Food Science Research (CIAL), CSIC-UAM, Campus UAM, Madrid, Spain
| | - Javier Rocha-Martín
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Juan M Bolivar
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Cesar Mateo
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain.
| |
Collapse
|
20
|
Genipin as An Emergent Tool in the Design of Biocatalysts: Mechanism of Reaction and Applications. Catalysts 2019. [DOI: 10.3390/catal9121035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genipin is a reagent isolated from the Gardenia jasminoides fruit extract, and whose low toxicity and good crosslinking properties have converted it into a reactive whose popularity is increasing by the day. These properties have made it widely used in many medical applications, mainly in the production of chitosan materials (crosslinked by this reactive), biological scaffolds for tissue engineering, and nanoparticles of chitosan and nanogels of proteins for controlled drug delivery, the genipin crosslinking being a key point to strengthen the stability of these materials. This review is focused on the mechanism of reaction of this reagent and its use in the design of biocatalysts, where genipin plays a double role, as a support activating agent and as inter- or intramolecular crosslinker. Its low toxicity makes this compound an ideal alterative to glutaraldehyde in these processes. Moreover, in some cases the features of the biocatalysts prepared using genipin surpassed those of the biocatalysts prepared using other standard crosslinkers, even disregarding toxicity. In this way, genipin is a very promising reagent in the design of biocatalysts.
Collapse
|
21
|
Rios NS, Morais EG, dos Santos Galvão W, Andrade Neto DM, dos Santos JCS, Bohn F, Correa MA, Fechine PBA, Fernandez-Lafuente R, Gonçalves LRB. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int J Biol Macromol 2019; 141:313-324. [DOI: 10.1016/j.ijbiomac.2019.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022]
|
22
|
Flores EEE, Cardoso FD, Siqueira LB, Ricardi NC, Costa TH, Rodrigues RC, Klein MP, Hertz PF. Influence of reaction parameters in the polymerization between genipin and chitosan for enzyme immobilization. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Siar EH, Morellon-Sterling R, Zidoune MN, Fernandez-Lafuente R. Amination of ficin extract to improve its immobilization on glyoxyl-agarose: Improved stability and activity versus casein. Int J Biol Macromol 2019; 133:412-419. [DOI: 10.1016/j.ijbiomac.2019.04.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/24/2023]
|
24
|
Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chem 2019; 288:102-107. [PMID: 30902269 DOI: 10.1016/j.foodchem.2019.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022]
Abstract
A new bi-enzymatic catalyst has been produced by precipitation and crosslinking (combi-CLEAs) of β-galactosidase and glucose isomerase for catalyzing the cascade reactions of lactose conversion into fructose, producing a lactose-fructose syrup (LFS). Glucose isomerase was chemically aminated to increase its reactive surface groups for favour the crosslinking step. The effect of β-galactosidase to glucose isomerase activity ratio and glutaraldehyde to protein mass ratio in combi-CLEAs production was evaluated. The selected combi-catalyst was successfully used in the production of fructose syrup from lactose in a single reaction vessel. The biocatalyst could be used at least in five sequential batches of LFS production, remaining fully stable after a total of 50 h of reaction, obtaining a product of constant quality. A robust bi-enzymatic catalyst was produced that can be repeatedly used in LFS production, an attractive mild sweetener for the dairy food industry.
Collapse
|
25
|
Influence of different immobilization techniques to improve the enantioselectivity of lipase from Geotrichum candidum applied on the resolution of mandelic acid. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Solid phase chemical modification of agarose glyoxyl-ficin: Improving activity and stability properties by amination and modification with glutaraldehyde. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Cui J, Ren S, Sun B, Jia S. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Co-immobilization of lipases and β- d -galactosidase onto magnetic nanoparticle supports: Biochemical characterization. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Méndez MB, Rivero CW, López-Gallego F, Guisán JM, Trelles JA. Development of a high efficient biocatalyst by oriented covalent immobilization of a novel recombinant 2′- N -deoxyribosyltransferase from Lactobacillus animalis. J Biotechnol 2018; 270:39-43. [DOI: 10.1016/j.jbiotec.2018.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/28/2017] [Accepted: 01/15/2018] [Indexed: 02/01/2023]
|
30
|
de Oliveira SM, Moreno-Perez S, Terrasan CRF, Romero-Fernández M, Vieira MF, Guisan JM, Rocha-Martin J. Covalent immobilization-stabilization of β-1,4-endoxylanases from Trichoderma reesei : Production of xylooligosaccharides. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
|
32
|
Pereira MG, Velasco-Lozano S, Moreno-Perez S, Polizeli AM, Heinen PR, Facchini FDA, Vici AC, Cereia M, Pessela BC, Fernandez-Lorente G, Guisan JM, Jorge JA, Polizeli MDLTM. Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii. Molecules 2017; 22:molecules22091448. [PMID: 28869529 PMCID: PMC6151390 DOI: 10.3390/molecules22091448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/29/2017] [Indexed: 01/23/2023] Open
Abstract
Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr), glyoxyl-agarose (GX), MANAE-agarose activated with glutaraldehyde (GA) and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr), at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold) in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea), cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) ratio) than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of their application at large scale processes.
Collapse
Affiliation(s)
- Marita G Pereira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Group, CIC Biomagune, Parque Tecnológico de San Sebastián Edificio Empresarial "C", Paseo Miramón 182, 20009 Donostia-San Sebastián Guipúzcoa, Spain.
| | - Sonia Moreno-Perez
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Ciências de la Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Aline M Polizeli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Paulo R Heinen
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP 14040-900, Brazil.
| | - Fernanda D A Facchini
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP 14040-900, Brazil.
| | - Ana C Vici
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Mariana Cereia
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Benevides C Pessela
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Ciências de la Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Ciências de la Alimentación, CIAL-CSIC, Calle Nicolás Cabrera 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Jose M Guisan
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - João A Jorge
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| | - Maria de Lourdes T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto-SP 14040-901, Brazil.
| |
Collapse
|
33
|
Aranaz I, Acosta N, Heras A. Enzymatic d-p-hydrophenyl glycine synthesis using chitin and chitosan as supports for biocatalyst immobilization. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1366991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- I. Aranaz
- Departamento de Química Física II, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, Spain
| | - N. Acosta
- Departamento de Química Física II, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, Spain
| | - A. Heras
- Departamento de Química Física II, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Guerrero C, Vera C, Serna N, Illanes A. Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. BIORESOURCE TECHNOLOGY 2017; 232:53-63. [PMID: 28214445 DOI: 10.1016/j.biortech.2017.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Aspergillus oryzae β-galactosidase was immobilized in monofunctional glyoxyl-agarose and heterofunctional supports (amino-glyoxyl, carboxy-glyoxyl and chelate-glyoxyl agarose), for obtaining highly active and stable catalysts for lactulose synthesis. Specific activities of the amino-glyoxyl agarose, carboxy-glyoxyl agarose and chelate-glyoxyl agarose derivatives were 3676, 430 and 454IU/g biocatalyst with half-life values at 50°C of 247, 100 and 100h respectively. Specific activities of 3490, 2559 and 1060IU/g were obtained for fine, standard and macro agarose respectively. High immobilization yield (39.4%) and specific activity of 7700IU/g was obtained with amino-glyoxyl-agarose as support. The highest yields of lactulose synthesis were obtained with monofunctional glyoxyl-agarose. Selectivity of lactulose synthesis was influenced by the support functionalization: glyoxyl-agarose and amino-glyoxyl-agarose derivatives retained the selectivity of the free enzyme, while selectivity with the carboxy-glyoxyl-agarose and chelate-glyoxyl-agarose derivatives was reduced, favoring the synthesis of transgalactosylated oligosaccharides over lactulose.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile.
| | - Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Nestor Serna
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| |
Collapse
|
35
|
Rivero CW, De Benedetti EC, Gallego FL, Pessela BC, Guisán JM, Trelles JA. Biosynthesis of an antiviral compound using a stabilized phosphopentomutase by multipoint covalent immobilization. J Biotechnol 2017; 249:34-41. [DOI: 10.1016/j.jbiotec.2017.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
36
|
Martins de Oliveira S, Moreno-Perez S, Romero-Fernández M, Fernandez-Lorente G, Rocha-Martin J, Guisan JM. Immobilization and stabilization of commercial β-1,4-endoxylanase Depol™ 333MDP by multipoint covalent attachment for xylan hydrolysis: Production of prebiotics (xylo-oligosaccharides). BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1308497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sandro Martins de Oliveira
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Sonia Moreno-Perez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, Madrid, Spain
| | - Maria Romero-Fernández
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
- Department of Biotechnology and Microbiology (MICRO-BIO), Institute of Food Science Research (CIAL) CSIC – Campus UAM, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| | - Jose M. Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Madrid, Spain
| |
Collapse
|
37
|
de Morais Júnior WG, Terrasan CRF, Fernández-Lorente G, Guisán JM, Ribeiro EJ, de Resende MM, Pessela BC. Solid-phase amination of Geotrichum candidum lipase: ionic immobilization, stabilization and fish oil hydrolysis for the production of Omega-3 polyunsaturated fatty acids. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2848-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives. Carbohydr Polym 2016; 152:726-733. [DOI: 10.1016/j.carbpol.2016.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022]
|
39
|
Pereira MG, Facchini FDA, Polizeli AM, Vici AC, Jorge JA, Pessela BC, Férnandez-Lorente G, Guisán JM, de Moraes Polizeli MDLT. Stabilization of the lipase of Hypocrea pseudokoningii by multipoint covalent immobilization after chemical modification and application of the biocatalyst in oil hydrolysis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Knežević-Jugović ZD, Žuža MG, Jakovetić SM, Stefanović AB, Džunuzović ES, Jeremić KB, Jovanović SM. An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst. Biotechnol Prog 2015; 32:43-53. [DOI: 10.1002/btpr.2181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/10/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Zorica D. Knežević-Jugović
- Dept. of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Serbia
| | - Milena G. Žuža
- Dept. of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Serbia
| | - Sonja M. Jakovetić
- Dept. of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Serbia
| | - Andrea B. Stefanović
- Dept. of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Serbia
| | - Enis S. Džunuzović
- Dept. of Physical Chemistry and Electrochemistry, Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Serbia
| | - Katarina B. Jeremić
- Dept. of Physical Chemistry and Electrochemistry, Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Serbia
| | - Slobodan M. Jovanović
- Dept. of Physical Chemistry and Electrochemistry, Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 Serbia
| |
Collapse
|
41
|
Guerrero C, Vera C, Araya E, Conejeros R, Illanes A. Repeated-batch operation for the synthesis of lactulose with β-galactosidase immobilized by aggregation and crosslinking. BIORESOURCE TECHNOLOGY 2015; 190:122-131. [PMID: 25935392 DOI: 10.1016/j.biortech.2015.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Synthesis of lactulose under repeated-batch operation was done with cross-linked aggregates of Aspergillus oryzae β-galactosidase (CLAGs). The effect of the crosslinking agent to enzyme mass ratio and cross-linking time were first evaluated. Best results were obtained at 5.5gdeglutaraldehyde/g enzyme at 5h of cross-linking, obtaining a specific activity of 15,000IUg(-1), with 30% immobilization yield. CLAG was more stable than the free enzyme under non-reactive conditions with a half-life of 123h at 50°C and when operated in repeated-batch mode, yield and productivity was 3.8 and 4.3 times higher. Maximum number of batches was determined considering biocatalyst replacement at 50% residual activity. 98 and 27 batches could be performed under such criterion at fructose/lactose molar ratio of 4 and 20 respectively, reflecting that enzyme stability is strongly affected by the sugars distribution in the reaction medium.
Collapse
Affiliation(s)
- Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile.
| | - Carlos Vera
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
| | - Erick Araya
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
| | - Raúl Conejeros
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
| |
Collapse
|
42
|
Ashjari M, Mohammadi M, Badri R. Chemical amination of Rhizopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports: Modulation of stability and selectivity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Bezerra TMDS, Bassan JC, Santos VTDO, Ferraz A, Monti R. Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Rueda N, dos Santos JCS, Torres R, Ortiz C, Barbosa O, Fernandez-Lafuente R. Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. RSC Adv 2015. [DOI: 10.1039/c4ra13338b] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A new heterofunctional support, octyl-glyoxyl agarose, is proposed in this study.
Collapse
Affiliation(s)
- Nazzoly Rueda
- Departamento de Biocatálisis. Instituto de Catálisis-CSIC
- Campus UAM-CSIC Madrid
- Spain
- Escuela de Química
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM)
| | - Jose C. S. dos Santos
- Departamento de Biocatálisis. Instituto de Catálisis-CSIC
- Campus UAM-CSIC Madrid
- Spain
- Departamento de Engenharia Química
- Universidade Federal Do Ceará
| | - Rodrigo Torres
- Escuela de Química
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM)
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias. Universidad del Tolima
- Ibagué
- Colombia
| | | |
Collapse
|
45
|
Mohammadi M, Ashjari M, Dezvarei S, Yousefi M, Babaki M, Mohammadi J. Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Adv 2015. [DOI: 10.1039/c5ra03299g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rapid and high capacity immobilization of Rhizomucor miehei lipase on aldehyde-functionalized supports was performed under mild condition via a multi component reaction. The mechanism of immobilization reaction was determined as the Ugi reaction.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Maryam Ashjari
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
- Department of Chemistry
- College of Science
| | - Shaghayegh Dezvarei
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
- Department of Chemistry
- Faculty of Science
| | - Maryam Yousefi
- Nanobiotechnology Research Center
- Avicenna Research Institute
- ACECR
- Tehran
- Iran
| | - Mohadese Babaki
- Department of Chemistry
- Faculty of Science
- Shahid Beheshti University
- G.C
- Tehran
| | - Javad Mohammadi
- Department of Environmental Health Engineering
- Zanjan University of Medical Sciences
- Zanjan
- Iran
| |
Collapse
|
46
|
Tang C, Saquing CD, Sarin PK, Kelly RM, Khan SA. Nanofibrous membranes for single-step immobilization of hyperthermophilic enzymes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.08.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Zucca P, Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 2014; 19:14139-94. [PMID: 25207718 PMCID: PMC6272024 DOI: 10.3390/molecules190914139] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/09/2014] [Accepted: 08/22/2014] [Indexed: 01/23/2023] Open
Abstract
Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides).
Collapse
Affiliation(s)
- Paolo Zucca
- Consorzio UNO, Consortium University of Oristano, Oristano 09170, Italy.
| | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università di Cagliari, Monserrato 09042, Italy.
| |
Collapse
|
48
|
da Costa JP, Oliveira-Silva R, Daniel-da-Silva AL, Vitorino R. Bionanoconjugation for Proteomics applications — An overview. Biotechnol Adv 2014; 32:952-70. [DOI: 10.1016/j.biotechadv.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/15/2014] [Accepted: 04/26/2014] [Indexed: 12/29/2022]
|
49
|
Saranya P, Ramani K, Sekaran G. Biocatalytic approach on the treatment of edible oil refinery wastewater. RSC Adv 2014. [DOI: 10.1039/c3ra43668c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
50
|
Rodrigues RC, Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Fernandez-Lafuente R. Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Adv 2014. [DOI: 10.1039/c4ra04625k] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts.
Collapse
Affiliation(s)
- Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Oveimar Barbosa
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Ap. 99-03080 Alicante, Spain
| | - Rodrigo Torres
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | | |
Collapse
|