1
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
iTRAQ-Based Quantitative Proteomic Analysis of Digestive Juice across the First 48 Hours of the Fifth Instar in Silkworm Larvae. Int J Mol Sci 2019; 20:ijms20246113. [PMID: 31817210 PMCID: PMC6940845 DOI: 10.3390/ijms20246113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023] Open
Abstract
The silkworm is an oligophagous insect for which mulberry leaves are the sole diet. The nutrients needed for vital activities of the egg, pupal, and adult stages, and the proteins formed in the cocoon, are all derived from the larval stages. The silkworm feeds and grows quickly during the larval stages. In particular, the amount of leaf ingested and digested quickly increases from the ecdysis to the gluttonous stage in the fifth instar period. In this study, we used the iTRAQ proteomic technique to identify and analyze silkworm larval digestive juice proteins during this period. A total of 227 proteins were successfully identified. These were primarily serine protease activity, esterase activity, binding, and serine protease inhibitors, which were mainly involved in the digestion and overcoming the detrimental effects of mulberry leaves. Moreover, 30 genes of the identified proteins were expressed specifically in the midgut. Temporal proteomic analysis of digestive juice revealed developmental dynamic features related to molecular mechanisms of the principal functions of digesting, resisting pathogens, and overruling the inhibitory effects of mulberry leaves protease inhibitors (PIs) with a dynamic strategy, although overruling the inhibitory effects has not yet been confirmed by previous study. These findings will help address the potential functions of digestive juice in silkworm larvae.
Collapse
|
3
|
Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment. PLoS One 2017; 12:e0171447. [PMID: 28199361 PMCID: PMC5310873 DOI: 10.1371/journal.pone.0171447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms.
Collapse
|
4
|
Swevers L, Ioannidis K, Kolovou M, Zografidis A, Labropoulou V, Santos D, Wynant N, Broeck JV, Wang L, Cappelle K, Smagghe G. Persistent RNA virus infection of lepidopteran cell lines: Interactions with the RNAi machinery. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:81-93. [PMID: 27595655 DOI: 10.1016/j.jinsphys.2016.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
RNAi is broadly used as a technique for specific gene silencing in insects but few studies have investigated the factors that can affect its efficiency. Viral infections have the potential to interfere with RNAi through their production of viral suppressors of RNAi (VSRs) and the production of viral small RNAs that can saturate and inactivate the RNAi machinery. In this study, the impact of persistent infection of the RNA viruses Flock house virus (FHV) and Macula-like virus (MLV) on RNAi efficiency was investigated in selected lepidopteran cell lines. Lepidopteran cell lines were found to be readily infected by both viruses without any apparent pathogenic effects, with the exception of Bombyx-derived Bm5 and BmN4 cells, which could not be infected by FHV. Because Sf21 cells were free from both FHV and MLV and Hi5-SF were free from FHV and only contained low levels of MLV, they were tested to evaluate the impact of the presence of the virus. Two types of RNAi reporter assays however did not detect a significant interference with gene silencing in infected Sf21 and Hi5-SF cells when compared to virus-free cells. In Hi5 cells, the presence of FHV could be easily cleared through the expression of an RNA hairpin that targets its VSR gene, confirming that the RNAi mechanism was not inhibited. Sequencing indicated that the B2 RNAi inhibitor gene of FHV and a putative VSR gene from MLV were intact in persistently infected cell lines, indicating that protection against RNAi remains essential for virus survival. It is proposed that infection levels of persistent viruses in the cell lines are too low to have an impact on RNAi efficiency in the lepidopteran cell lines and that encoded VSRs act locally at the sites of viral replication (mitochondrial membranes) without affecting the rest of the cytoplasm.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece.
| | - Konstantinos Ioannidis
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | - Marianna Kolovou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | - Aris Zografidis
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | - Dulce Santos
- Department of Animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Niels Wynant
- Department of Animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Luoluo Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kaat Cappelle
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Ioannidis K, Swevers L, Iatrou K. Bombyx mori nucleopolyhedrovirus lef8 gene: effects of deletion and implications for gene transduction applications. J Gen Virol 2015; 97:786-796. [PMID: 26701681 DOI: 10.1099/jgv.0.000383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we have deleted the lef8 gene of the baculovirus BmNPV, which encodes one of the viral RNA polymerase subunits, in order to create a knockout bacmid, Δlef8, directing cytopathology-free single-cell infections for gene transduction and recombinant protein production. However, while removal of the complete lef8 ORF produced the expected phenotype, it also affected the function of the closely linked essential gene orf40, thus hampering the mutant bacmid rescue in cultured Bombyx cells expressing recombinant LEF8. Subsequently, we determined that several diverse sequences can substitute for the orf40 5'-upstream sequences that were removed by the deletion of the lef8 gene and also showed that neither a physical linkage nor expression of the two relevant genes under native promoter control is a prerequisite for a fully functional virus. Based on these findings, we generated a rescue-competent lef8-null vector, which contained a heterologous promoter-driven orf40. This lef8-deficient vector, which produces productive infections and progeny virus lacking lef8 in deficiency-complementing cells expressing LEF8, could be used as the basis for an alternative to current silkmoth transduction systems.
Collapse
Affiliation(s)
- Konstantinos Ioannidis
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Athens, Greece
| | - Kostas Iatrou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', 15310 Aghia Paraskevi, Athens, Greece
| |
Collapse
|
6
|
Liu J, Swevers L, Iatrou K, Huvenne H, Smagghe G. Bombyx mori DNA/RNA non-specific nuclease: expression of isoforms in insect culture cells, subcellular localization and functional assays. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1166-1176. [PMID: 22709524 DOI: 10.1016/j.jinsphys.2012.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 05/28/2023]
Abstract
A DNA/RNA non-specific alkaline nuclease (BmdsRNase) was isolated from the digestive juice of Bombyx mori. While originally reported to be produced by the midgut only, in this project it was found that the mRNA of this enzyme was also expressed in the epidermis, fat body, gut, thoracic muscles, Malpighian tubules, brain, and silk glands of 5th instar larvae, indicating additional functions to its reported role in nucleic acid digestion in the midgut. In order to study the functional properties of BmdsRNase, three pEA-BmdsRNase expression constructs were generated, characterized by presence or absence of a signal peptide and a propeptide, and used for expression in lepidopteran Hi5 tissue culture cells. Western blot indicated that these different forms of BmdsRNase protein were not secreted into the growth medium, while they were detected in the pellets and supernatants of Hi5 cell extracts. Nucleic acids cleavage experiments indicated that full-length BmdsRNase could digest dsRNA and that the processed form (absence of signal peptide and propeptide) of BmdsRNase could degrade both DNA and dsRNA in Hi5 cell culture. Using a reporter assay targeted by transfected homologous dsRNA, it was shown that the digestive property of the processed form could interfere with the RNAi response. Immunostaining of processed BmdsRNase protein showed asymmetric localization in the cellular cytoplasm and co-localization with Flag-tagged Dicer-2 was also observed. In conclusion, our in vitro studies indicated that intracellular protein isoforms of BmdsRNase can be functional and involved in the regulation of nucleic acid metabolism in the cytoplasm. In particular, because of its propensity to degrade dsRNA, the enzyme might be involved in the innate immune response against invading nucleic acids such as RNA viruses.
Collapse
Affiliation(s)
- Jisheng Liu
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
7
|
Lavdas AA, Efrose R, Douris V, Gaitanou M, Papastefanaki F, Swevers L, Thomaidou D, Iatrou K, Matsas R. Soluble forms of the cell adhesion molecule L1 produced by insect and baculovirus-transduced mammalian cells enhance Schwann cell motility. J Neurochem 2010; 115:1137-1149. [PMID: 20846298 DOI: 10.1111/j.1471-4159.2010.07003.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For biotechnological applications, insect cell lines are primarily known as hosts for the baculovirus expression system that is capable to direct synthesis of high levels of recombinant proteins through use of powerful viral promoters. Here, we demonstrate the implementation of two alternative approaches based on the baculovirus system for production of a mammalian recombinant glycoprotein, comprising the extracellular part of the cell adhesion molecule L1, with potential important therapeutic applications in nervous system repair. In the first approach, the extracellular part of L1 bearing a myc tag is produced in permanently transformed insect cell lines and purified by affinity chromatography. In the second approach, recombinant baculoviruses that express L1-Fc chimeric protein, derived from fusion of the extracellular part of L1 with the Fc part of human IgG1, under the control of a mammalian promoter are used to infect mammalian HEK293 and primary Schwann cells. Both the extracellular part of L1 bearing a myc tag accumulating in the supernatants of insect cultures as well as L1-Fc secreted by transduced HEK293 or Schwann cells are capable of increasing the motility of Schwann cells with similar efficiency in a gap bridging bioassay. In addition, baculovirus-transduced Schwann cells show enhanced motility when grafted on organotypic cultures of neonatal brain slices while they retain their ability to myelinate CNS axons. This proof-of-concept that the migratory properties of myelin-forming cells can be modulated by recombinant protein produced in insect culture as well as by means of baculovirus-mediated adhesion molecule expression in mammalian cells may have beneficial applications in the field of CNS therapies.
Collapse
Affiliation(s)
- Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Baculoviruses deficient in ie1 gene function abrogate viral gene expression in transduced mammalian cells. Virology 2010; 406:293-301. [PMID: 20705310 DOI: 10.1016/j.virol.2010.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/04/2010] [Accepted: 07/13/2010] [Indexed: 11/21/2022]
Abstract
One of the newest niches for baculoviruses-based technologies is their use as vectors for mammalian cell transduction and gene therapy applications. However, an outstanding safety issue related to such use is the residual expression of viral genes in infected mammalian cells. Here we show that infectious baculoviruses lacking the major transcriptional regulator, IE1, can be produced in insect host cells stably transformed with IE1 expression constructs lacking targets of homologous recombination that could promote the generation of wt-like revertants. Such ie1-deficient baculoviruses are unable to direct viral gene transcription to any appreciable degree and do not replicate in normal insect host cells. Most importantly, the residual viral gene expression, which occurs in mammalian cells infected with wt baculoviruses is reduced 10 to 100 fold in cells infected with ie1-deficient baculoviruses. Thus, ie1-deficient baculoviruses offer enhanced safety features to baculovirus-based vector systems destined for use in gene therapy applications.
Collapse
|
9
|
Soin T, De Geyter E, Mosallanejad H, Iga M, Martín D, Ozaki S, Kitsuda S, Harada T, Miyagawa H, Stefanou D, Kotzia G, Efrose R, Labropoulou V, Geelen D, Iatrou K, Nakagawa Y, Janssen CR, Smagghe G, Swevers L. Assessment of species specificity of moulting accelerating compounds in Lepidoptera: comparison of activity between Bombyx mori and Spodoptera littoralis by in vitro reporter and in vivo toxicity assays. PEST MANAGEMENT SCIENCE 2010; 66:526-535. [PMID: 20069627 DOI: 10.1002/ps.1903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Dibenzoylhydrazine analogues have been developed successfully as a new group of insect growth regulators, called ecdysone agonists or moulting accelerating compounds. A notable feature is their high activity against lepidopteran insects, raising the question as to whether species-specific analogues can be isolated. In this study, the specificity of ecdysone agonists was addressed through a comparative analysis in two important lepidopterans, the silkworm Bombyx mori L. and the cotton leafworm Spodoptera littoralis (Boisd.). RESULTS When collections of non-steroidal ecdysone agonists containing different mother structures (dibenzoylhydrazine, acylaminoketone, tetrahydroquinoline) were tested, in vitro reporter assays showed minor differences using cell lines derived from both species. However, when compounds with high ecdysone agonist activity were examined in toxicity assays, larvicidal activity differed considerably. Of note was the identification of three dibenzoylhydrazine analogues with > 100-fold higher activity against Bombyx than against Spodoptera larvae. CONCLUSION The present study demonstrated that species-specific ecdysone-agonist-based insecticides can be developed, but their species specificity is not based on differences in the activation of the ecdysone receptor but rather on unidentified in vivo parameters such as permeability of the cuticle, uptake/excretion by the gut or metabolic detoxification.
Collapse
Affiliation(s)
- Thomas Soin
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bao YY, Tang XD, Lv ZY, Wang XY, Tian CH, Xu YP, Zhang CX. Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels. Genomics 2009; 94:138-45. [PMID: 19389468 DOI: 10.1016/j.ygeno.2009.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/28/2009] [Accepted: 04/12/2009] [Indexed: 11/16/2022]
Abstract
We investigated variations in the gene expression of Bombyx mori following infection with a nucleopolyhedrovirus (BmNPV). Two B. mori strains, KN and 306, which are highly resistant and susceptible to BmNPV infection, respectively, were used in this study. The infection profiles of BmNPV in the B. mori KN and 306 larvae revealed that the virus invaded the midguts of both these strains. However, its proliferation was notably inhibited in the midgut of the resistant strain. By using the suppression subtractive hybridization method, two cDNA libraries were constructed in order to compare the BmNPV responsive gene expressions between the two silkworm lines. In total, 62 differentially expressed genes were obtained. Real-time qPCR analysis confirmed that eight genes were significantly up-regulated in the midgut of the KN strain following BmNPV infection. Our results imply that these up-regulated genes may be involved in the B. mori immune response against BmNPV infection.
Collapse
Affiliation(s)
- Yan-Yuan Bao
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Swevers L, Soin T, Mosallanejad H, Iatrou K, Smagghe G. Ecdysteroid signaling in ecdysteroid-resistant cell lines from the polyphagous noctuid pest Spodoptera exigua. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:825-833. [PMID: 18675909 DOI: 10.1016/j.ibmb.2008.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/04/2008] [Accepted: 06/17/2008] [Indexed: 05/26/2023]
Abstract
Although dibenzoylhydrazine-type non-steroidal ecdysone agonists such as methoxyfenozide (RH-2485) have an excellent performance record, the emergence of resistance could severely compromise the efficacy of these compounds in integrated pest management programs. To investigate possible mechanisms of resistance, cell lines derived from the polyphagous noctuid pest Spodoptera exigua (Se4 cells) were selected for continuous growth in the presence of high concentrations of 20-hydroxyecdysone (20E) or methoxyfenozide. Here we describe an analysis of ecdysteroid receptor signaling in the ecdysteroid-resistant Se4 cell lines. In contrast to other ecdysteroid-resistant cell lines described in literature, our data support the existence of a normal functioning ecdysteroid receptor complex in the resistant Se4 cell lines: (1) using a recombinant BmNPV baculovirus as a transduction tool, activation of an ecdysone-responsive luciferase cassette was demonstrated; (2) the early gene HR3 is constitutively expressed in the resistant cell lines that are grown in the presence of 20E or methoxyfenozide. Quantitative RT-PCR experiments indicated that expression levels of SeEcR mRNA were comparable among sensitive and resistant cell lines. Sequencing of PCR fragments also revealed the presence of SeEcR mRNA with a wild-type ligand-binding domain in resistant cells. Finally, a possible role for the gene FTZ-F1, whose expression correlates with the absence of circulating ecdysteroids during insect development, in the resistance mechanism was investigated. However, it was observed that FTZ-F1, in contrast to what is observed during insect development, is constitutively expressed in Se4 cells and that its expression is not regulated by the addition of ecdysteroid. It is proposed that the resistance mechanism in Se4 cells resides at the coupling between the conserved hierarchical cascade of early and early-late gene expression and the differentiation program in the Se4 cell line. The use of insect cell lines for the investigation of resistance against dibenzoylhydrazine ecdysone agonists and their relevance for uncovering resistance mechanisms in insects during pest control programs is discussed.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biology, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
| | | | | | | | | |
Collapse
|
12
|
Andronopoulou E, Labropoulou V, Douris V, Woods DF, Biessmann H, Iatrou K. Specific interactions among odorant-binding proteins of the African malaria vector Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2006; 15:797-811. [PMID: 17201772 DOI: 10.1111/j.1365-2583.2006.00685.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this report we present results from a comprehensive study undertaken toward the identification of proteins interacting with odourant-binding proteins (OBPs) of the African malaria vector Anopheles gambiae with a focus on the interactions among different OBPs. From an initial screen for proteins that interact with a member of the Plus-C group of OBPs, OBP48, which is primarily expressed in female antennae and downregulated after a blood meal, a number of interacting proteins were identified, which included five classic OBPs and OBP48 itself. The interacting OBPs as well as a number of other classic and Plus-C group OBPs that were not identified in the initial screen, were expressed in lepidopteran cells and subsequently examined for in vitro interactions in the absence of exogenously added ligands. Co-immunoprecipitation and chemical cross-linking studies suggest that OBP48 is capable of homodimerizing, heterodimerizing and forming higher order complexes with those examined examples of classical OBPs identified in the initial screen but not with other classical or Plus-C group OBPs that failed to appear in the screen. The latter OBPs are, however, also capable of forming homodimers in vitro and, at least in the case of two examined classic OBPs, heterodimers as well. These results suggest a previously unsuspected potential of nonrandom combinatorial complexity that may be crucial for odour discrimination by the mosquito.
Collapse
Affiliation(s)
- E Andronopoulou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research Demokritos, Aghia Paraskevi Attikis, Athens, Greece
| | | | | | | | | | | |
Collapse
|
13
|
Kenoutis C, Efrose RC, Swevers L, Lavdas AA, Gaitanou M, Matsas R, Iatrou K. Baculovirus-mediated gene delivery into Mammalian cells does not alter their transcriptional and differentiating potential but is accompanied by early viral gene expression. J Virol 2006; 80:4135-4146. [PMID: 16571829 PMCID: PMC1440473 DOI: 10.1128/jvi.80.8.4135-4146.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Accepted: 02/01/2006] [Indexed: 12/22/2022] Open
Abstract
Gene delivery to neural cells is central to the development of transplantation therapies for neurological diseases. In this study, we used a baculovirus derived from the domesticated silk moth, Bombyx mori, as vector for transducing a human cell line (HEK293) and primary cultures of rat Schwann cells. Under optimal conditions of infection with a recombinant baculovirus containing the reporter green fluorescent protein gene under mammalian promoter control, the infected cells express the transgene with high efficiency. Toxicity assays and transcriptome analyses suggest that baculovirus infection is not cytotoxic and does not induce differential transcriptional responses in HEK293 cells. Infected Schwann cells retain their characteristic morphological and molecular phenotype as determined by immunocytochemistry for the marker proteins S-100, glial fibrillary acidic protein, and p75 nerve growth factor receptor. Moreover, baculovirus-infected Schwann cells are capable of differentiating in vitro and express the P0 myelination marker. However, transcripts for several immediate-early viral genes also accumulate in readily detectable levels in the transduced cells. This transcriptional activity raises concerns regarding the long-term safety of baculovirus vectors for gene therapy applications. Potential approaches for overcoming the identified problem are discussed.
Collapse
Affiliation(s)
- Christos Kenoutis
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research Demokritos, P.O. Box 60228, 153 10 Aghia Paraskevi Attikis (Athens), Greece
| | | | | | | | | | | | | |
Collapse
|
14
|
Douris V, Swevers L, Labropoulou V, Andronopoulou E, Georgoussi Z, Iatrou K. Stably Transformed Insect Cell Lines: Tools for Expression of Secreted and Membrane‐anchored Proteins and High‐throughput Screening Platforms for Drug and Insecticide Discovery. Adv Virus Res 2006; 68:113-56. [PMID: 16997011 DOI: 10.1016/s0065-3527(06)68004-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insect cell-based expression systems are prominent amongst current expression platforms for their ability to express virtually all types of heterologous recombinant proteins. Stably transformed insect cell lines represent an attractive alternative to the baculovirus expression system, particularly for the production of secreted and membrane-anchored proteins. For this reason, transformed insect cell systems are receiving increased attention from the research community and the biotechnology industry. In this article, we review recent developments in the field of insect cell-based expression from two main perspectives, the production of secreted and membrane-anchored proteins and the establishment of novel methodological tools for the identification of bioactive compounds that can be used as research reagents and leads for new pharmaceuticals and insecticides.
Collapse
Affiliation(s)
- Vassilis Douris
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology National Centre for Scientific Research Demokritos, GR 153 10 Aghia Paraskevi Attikis (Athens), Greece
| | | | | | | | | | | |
Collapse
|