1
|
Zuchowski R, Schito S, Mack C, Wirtz A, Bott M, Polen T, Noack S, Baumgart M. ALE reveals a surprising link between [Fe-S] cluster formation, tryptophan biosynthesis and the potential regulatory protein TrpP in Corynebacterium glutamicum. BMC Microbiol 2025; 25:214. [PMID: 40229682 PMCID: PMC11995493 DOI: 10.1186/s12866-025-03939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The establishment of synthetic microbial communities comprising complementary auxotrophic strains requires efficient transport processes for common goods. With external supplementation of the required metabolite, most auxotrophic strains reach wild-type level growth. One exception was the L-trypton auxotrophic strain phaCorynebacterium glutamicum ΔTRP ΔtrpP, which grew 35% slower than the wild type in supplemented defined media. C. glutamicum ΔTRP ΔtrpP lacks the whole L-tryptophan biosynthesis cluster (TRP, cg3359-cg3364) as well as the putative L-tryptophan transporter TrpP (Cg3357). We wanted to explore the role of TrpP in L-tryptophan transport, metabolism or regulation and to elucidate the cause of growth limitation despite supplementation. RESULTS Mutants lacking either TRP or trpP revealed that the growth defect was caused solely by trpP deletion, whereas L-tryptophan auxotrophy was caused only by TRP deletion. Notably, not only the deletion but also the overexpression of trpP in an L-tryptophan producer increased the final L-tryptophan titer, arguing against a transport function of TrpP. A transcriptome comparison of C. glutamicum ΔtrpP with the wild type showed alterations in the regulon of WhcA, that contains an [Fe-S] cluster. Through evolution-guided metabolic engineering, we discovered that inactivation of SufR (Cg1765) partially complemented the growth defect caused by ΔtrpP. SufR is the transcriptional repressor of the suf operon (cg1764-cg1759), which encodes the only system of C. glutamicum for iron‒sulfur cluster formation and repair. Finally, we discovered that the combined deletion of trpP and sufR increased L-tryptophan production by almost 3-fold in comparison with the parental strain without the deletions. CONCLUSIONS On the basis of our results, we exclude the possibility that TrpP is an L-tryptophan transporter. TrpP presence influences [Fe-S] cluster formation or repair, presumably through a regulatory function via direct interaction with another protein. [Fe-S] cluster availability influences not only certain enzymes but also targets of the WhiB-family regulator WhcA, which is involved in oxidative stress response. The reduced growth of WT ΔtrpP is likely caused by the reduced activity of [Fe-S]-cluster-containing enzymes involved in central metabolism, such as aconitase or succinate: menaquinone oxidoreductase. In summary, we identified a very interesting link between L-tryptophan biosynthesis and iron sulfur cluster formation that is relevant for L-tryptophan production. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Rico Zuchowski
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Simone Schito
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Christina Mack
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Tino Polen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
2
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Xu M, Li J, Shu Q, Tang M, Zhang X, Yang T, Xu Z, Rao Z. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant. J Ind Microbiol Biotechnol 2019; 46:1155-1166. [PMID: 31203489 DOI: 10.1007/s10295-019-02204-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
L-Arginine is an important amino acid with extensive application in the food and pharmaceutical industries. The efficiency of nitrogen uptake and assimilation by organisms is extremely important for L-arginine production. In this study, a strain engineering strategy focusing on upregulate intracellular nitrogen metabolism in Corynebacterium crenatum for L-arginine production was conducted. Firstly, the nitrogen metabolism global transcriptional regulator AmtR was deleted, which has demonstrated the beneficial effect on L-arginine production. Subsequently, this strain was engineered by overexpressing the ammonium transporter AmtB to increase the uptake of NH4+ and L-arginine production. To overcome the drawbacks of using a plasmid to express amtB, Ptac, a strong promoter with amtB gene fragment, was integrated into the amtR region on the chromosome in the Corynebacterium crenatum/ΔamtR. The final strain results in L-arginine production at a titer of 60.9 g/L, which was 35.14% higher than that produced by C. crenatum SYPA5-5.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, 226500, Jiangsu, China.
| | - Jing Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunfeng Shu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mi Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Li S, Zhou Y, Luo Z, Cui Y, Xu Y, Lin L, Zhao M, Guo Y, Pang Z. Dual function of ammonium acetate in acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. BIORESOURCE TECHNOLOGY 2018; 267:319-325. [PMID: 30029177 DOI: 10.1016/j.biortech.2018.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, a compound nitrogen source, integrating the advantages of ammonium acetate and soybean meal, was proposed to further improve acetone-butanol-ethanol fermentation. Unfortunately, this compound nitrogen source was found to effectively inhibit cellular performance, as the introduction of NH4+ significantly decreased the yield of butanol and total solvents by 34.78% and 35.14%, to only 6.62 g/L and 10.76 g/L, respectively. Meanwhile, the regulatory mechanism was further elucidated at different levels. As a result, the NH4+ could down-regulate the transcriptional levels of key genes involved in butanol synthesis, and the activity of acetoacetyl-CoA/acyl-CoA transferase, and then decrease the accumulation of key intermediates. Therefore, ammonium acetate has a dual function in ABE fermentation, as it effectively improves ABE fermentation when it is the sole nitrogen source but significantly decreases fermentation performance in the presence of soybean meal, broadening the understanding of nitrogen regulation mechanism of C. acetobutylicum.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiting Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanyan Cui
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yu Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mouming Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
5
|
Tyc O, de Jager VCL, van den Berg M, Gerards S, Janssens TKS, Zaagman N, Kai M, Svatos A, Zweers H, Hordijk C, Besselink H, de Boer W, Garbeva P. Exploring bacterial interspecific interactions for discovery of novel antimicrobial compounds. Microb Biotechnol 2017; 10:910-925. [PMID: 28557379 PMCID: PMC5481530 DOI: 10.1111/1751-7915.12735] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022] Open
Abstract
Recent studies indicated that the production of secondary metabolites by soil bacteria can be triggered by interspecific interactions. However, little is known to date about interspecific interactions between Gram-positive and Gram-negative bacteria. In this study, we aimed to understand how the interspecific interaction between the Gram-positive Paenibacillus sp. AD87 and the Gram-negative Burkholderia sp. AD24 affects the fitness, gene expression and the production of soluble and volatile secondary metabolites of both bacteria. To obtain better insight into this interaction, transcriptome and metabolome analyses were performed. Our results revealed that the interaction between the two bacteria affected their fitness, gene expression and the production of secondary metabolites. During interaction, the growth of Paenibacillus was not affected, whereas the growth of Burkholderia was inhibited at 48 and 72 h. Transcriptome analysis revealed that the interaction between Burkholderia and Paenibacillus caused significant transcriptional changes in both bacteria as compared to the monocultures. The metabolomic analysis revealed that the interaction increased the production of specific volatile and soluble antimicrobial compounds such as 2,5-bis(1-methylethyl)-pyrazine and an unknown Pederin-like compound. The pyrazine volatile compound produced by Paenibacillus was subjected to bioassays and showed strong inhibitory activity against Burkholderia and a range of plant and human pathogens. Moreover, strong additive antimicrobial effects were observed when soluble extracts from the interacting bacteria were combined with the pure 2,5-bis(1-methylethyl)-pyrazine. The results obtained in this study highlight the importance to explore bacterial interspecific interactions to discover novel secondary metabolites and to perform simultaneously metabolomics of both, soluble and volatile compounds.
Collapse
Affiliation(s)
- Olaf Tyc
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands
| | - Victor C L de Jager
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands
| | - Marlies van den Berg
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands
| | - Saskia Gerards
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands
| | | | - Niels Zaagman
- MicroLife Solutions B.V., Science Park 406, 1098 XH, Amsterdam, The Netherlands
| | - Marco Kai
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, D-07745, Jena, Germany
| | - Ales Svatos
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, D-07745, Jena, Germany
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands
| | - Cornelis Hordijk
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands
| | - Harrie Besselink
- BioDetection Systems B.V., Science Park 406, 1098 XH, Amsterdam, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands
- Department of Soil Quality, Wageningen University and Research Centre (WUR), PO BOX 47, 6700 AA, Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO BOX 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Lubitz D, Wendisch VF. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum. BMC Microbiol 2016; 16:235. [PMID: 27717325 PMCID: PMC5055667 DOI: 10.1186/s12866-016-0857-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum is a well-studied bacterium which naturally overproduces glutamate when induced by an elicitor. Glutamate production is accompanied by decreased 2-oxoglutatate dehydrogenase activity. Elicitors of glutamate production by C. glutamicum analyzed to molecular detail target the cell envelope. RESULTS Ciprofloxacin, an inhibitor of bacterial DNA gyrase and topoisomerase IV, was shown to inhibit growth of C. glutamicum wild type with concomitant excretion of glutamate. Enzyme assays showed that 2-oxoglutarate dehydrogenase activity was decreased due to ciprofloxacin addition. Transcriptome analysis revealed that this inhibitor of DNA gyrase increased RNA levels of genes involved in DNA synthesis, repair and modification. Glutamate production triggered by ciprofloxacin led to glutamate titers of up to 37 ± 1 mM and a substrate specific glutamate yield of 0.13 g/g. Even in the absence of the putative glutamate exporter gene yggB, ciprofloxacin effectively triggered glutamate production. When C. glutamicum wild type was cultivated under nitrogen-limiting conditions, 2-oxoglutarate rather than glutamate was produced as consequence of exposure to ciprofloxacin. Recombinant C. glutamicum strains overproducing lysine, arginine, ornithine, and putrescine, respectively, secreted glutamate instead of the desired amino acid when exposed to ciprofloxacin. CONCLUSIONS Ciprofloxacin induced DNA synthesis and repair genes, reduced 2-oxoglutarate dehydrogenase activity and elicited glutamate production by C. glutamicum. Production of 2-oxoglutarate could be triggered by ciprofloxacin under nitrogen-limiting conditions.
Collapse
Affiliation(s)
- Dorit Lubitz
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Toyoda K, Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:45-60. [DOI: 10.1007/s00253-015-7074-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
9
|
DNA Microarray-Based Identification of Genes Regulated by NtrC in Bradyrhizobium japonicum. Appl Environ Microbiol 2015; 81:5299-308. [PMID: 26025905 DOI: 10.1128/aem.00609-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
The Bradyrhizobium japonicum NtrBC two-component system is a critical regulator of cellular nitrogen metabolism, including the acquisition and catabolism of nitrogenous compounds. To better define the roles of this system, genome-wide transcriptional profiling was performed to identify the NtrC regulon during the response to nitrogen limitation. Upon cells perceiving low intracellular nitrogen, they stimulate the phosphorylation of NtrC, which induces genes responsible for alteration of the core glutamine synthetase/glutamate synthase nitrogen assimilation pathway, including the genes for the glutamine synthetases and PII proteins. In addition, genes responsible for the import and utilization of multiple nitrogen sources, specifically nitrate and nitrite, were upregulated by NtrC activation. Mutational analysis of a candidate nitrite reductase revealed a role for NtrC in regulating the assimilation of nitrite, since mutations in both ntrC and the gene encoding the candidate nitrite reductase abolished the ability to grow on nitrite as a sole nitrogen source.
Collapse
|
10
|
Poetsch A, Haussmann U, Burkovski A. Proteomics of corynebacteria: From biotechnology workhorses to pathogens. Proteomics 2011; 11:3244-55. [PMID: 21674800 DOI: 10.1002/pmic.201000786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 11/09/2022]
Abstract
Corynebacteria belong to the high G+C Gram-positive bacteria (Actinobacteria) and are closely related to Mycobacterium and Nocardia species. The best investigated member of this group of almost seventy species is Corynebacterium glutamicum, a soil bacterium isolated in 1957, which is used for the industrial production of more than two million tons of amino acids per year. This review focuses on the technical advances made in proteomics approaches during the last years and summarizes applications of these techniques with respect to C. glutamicum metabolic pathways and stress response. Additionally, selected proteome applications for other biotechnologically important or pathogenic corynebacteria are described.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
11
|
Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH, van den Berg M, Leveau JHJ. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME JOURNAL 2011; 5:1494-504. [PMID: 21614084 DOI: 10.1038/ismej.2011.29] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Interactions between bacteria and fungi cover a wide range of incentives, mechanisms and outcomes. The genus Collimonas consists of soil bacteria that are known for their antifungal activity and ability to grow at the expense of living fungi. In non-contact confrontation assays with the fungus Aspergillus niger, Collimonas fungivorans showed accumulation of biomass concomitant with inhibition of hyphal spread. Through microarray analysis of bacterial and fungal mRNA from the confrontation arena, we gained new insights into the mechanisms underlying the fungistatic effect and mycophagous phenotype of collimonads. Collimonas responded to the fungus by activating genes for the utilization of fungal-derived compounds and for production of a putative antifungal compound. In A. niger, differentially expressed genes included those involved in lipid and cell wall metabolism and cell defense, which correlated well with the hyphal deformations that were observed microscopically. Transcriptional profiles revealed distress in both partners: downregulation of ribosomal proteins and upregulation of mobile genetic elements in the bacteria and expression of endoplasmic reticulum stress and conidia-related genes in the fungus. Both partners experienced nitrogen shortage in each other's presence. Overall, our results indicate that the Collimonas/Aspergillus interaction is a complex interplay between trophism, antibiosis and competition for nutrients.
Collapse
Affiliation(s)
- Francesca Mela
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 2011; 90:1641-54. [DOI: 10.1007/s00253-011-3272-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 01/26/2023]
|
13
|
Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME JOURNAL 2011; 5:973-85. [PMID: 21228890 DOI: 10.1038/ismej.2010.196] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of soil bacteria to successfully compete with a range of other microbial species is crucial for their growth and survival in the nutrient-limited soil environment. In the present work, we studied the behavior and transcriptional responses of soil-inhabiting Pseudomonas fluorescens strain Pf0-1 on nutrient-poor agar to confrontation with strains of three phylogenetically different bacterial genera, that is, Bacillus, Brevundimonas and Pedobacter. Competition for nutrients was apparent as all three bacterial genera had a negative effect on the density of P. fluorescens Pf0-1; this effect was most strong during the interaction with Bacillus. Microarray-based analyses indicated strong differences in the transcriptional responses of Pf0-1 to the different competitors. There was higher similarity in the gene expression response of P. fluorescens Pf0-1 to the Gram-negative bacteria as compared with the Gram-positive strain. The Gram-negative strains did also trigger the production of an unknown broad-spectrum antibiotic in Pf0-1. More detailed analysis indicated that expression of specific Pf0-1 genes involved in signal transduction and secondary metabolite production was strongly affected by the competitors' identity, suggesting that Pf0-1 can distinguish among different competitors and fine-tune its competitive strategies. The results presented here demonstrate that P. fluorescens Pf0-1 shows a species-specific transcriptional and metabolic response to bacterial competitors and provide new leads in the identification of specific cues in bacteria-bacteria interactions and of novel competitive strategies, antimicrobial traits and genes.
Collapse
|
14
|
Hao N, Yan M, Zhou H, Liu HM, Cai P, Ouyang PK. The effect of AmtR on growth and amino acids production in Corynebacterium glutamicum. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810060013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
da Silva Neto JF, Koide T, Gomes SL, Marques MV. Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon. BMC Microbiol 2010; 10:231. [PMID: 20799976 PMCID: PMC3224663 DOI: 10.1186/1471-2180-10-231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. RESULTS In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. CONCLUSIONS Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.
Collapse
Affiliation(s)
- José F da Silva Neto
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo, SP, Brazil
| | - Tie Koide
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. dos Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brasil
| | - Suely L Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Marilis V Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
17
|
Wittmann C. Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:21-49. [PMID: 20140657 DOI: 10.1007/10_2009_58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Gram-positive soil bacterium Corynebacterium glutamicum was discovered as a natural overproducer of glutamate about 50 years ago. Linked to the steadily increasing economical importance of this microorganism for production of glutamate and other amino acids, the quest for efficient production strains has been an intense area of research during the past few decades. Efficient production strains were created by applying classical mutagenesis and selection and especially metabolic engineering strategies with the advent of recombinant DNA technology. Hereby experimental and computational approaches have provided fascinating insights into the metabolism of this microorganism and directed strain engineering. Today, C. glutamicum is applied to the industrial production of more than 2 million tons of amino acids per year. The huge achievements in recent years, including the sequencing of the complete genome and efficient post genomic approaches, now provide the basis for a new, fascinating era of research - analysis of metabolic and regulatory properties of C. glutamicum on a global scale towards novel and superior bioprocesses.
Collapse
Affiliation(s)
- Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany,
| |
Collapse
|
18
|
Fanous A, Weiss W, Görg A, Jacob F, Parlar H. A proteome analysis of the cadmium and mercury response in Corynebacterium glutamicum. Proteomics 2008; 8:4976-86. [DOI: 10.1002/pmic.200800165] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Qi SW, Chaudhry MT, Zhang Y, Meng B, Huang Y, Zhao KX, Poetsch A, Jiang CY, Liu S, Liu SJ. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Proteomics 2007; 7:3775-87. [PMID: 17880007 DOI: 10.1002/pmic.200700481] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current study examined the aromatic degradation and central metabolism in Corynebacterium glutamicum by proteomic and molecular methods. Comparative analysis of proteomes from cells grown on gentisate and on glucose revealed that 30% of the proteins of which their abundance changed were involved in aromatic degradation and central carbon metabolism. Similar results were obtained from cells grown on benzoate, 4-cresol, phenol, and resorcinol. Results from these experiments revealed that (i) enzymes involved in degradation of benzoate, 4-cresol, gentisate, phenol, and resorcinol were specifically synthesized and (ii) that the abundance of enzymes involved in central carbon metabolism of glycolysis/gluconeogenesis, pentose phosphate pathway, and TCA cycles were significantly changed on various aromatic compounds. Significantly, three novel proteins, NCgl0524, NCgl0525, and NCgl0527, were identified on 4-cresol. The genes encoding NCgl0525 and NCgl0527 were confirmed to be necessary for assimilation of 4-cresol with C. glutamicum. The abundance of fructose-1,6-bisphosphatase (Fbp) was universally increased on all the tested aromatic compounds. This Fbp gene was disrupted and the mutant WT(Deltafbp) lost the ability to grow on aromatic compounds. Genetic complementation by the Fbp gene restored this ability. We concluded that gluconeogenesis is a necessary process for C. glutamicum growing on various aromatic compounds.
Collapse
Affiliation(s)
- Su-Wei Qi
- State Key Laboratory of Microbial Resource, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rodionov DA. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev 2007; 107:3467-97. [PMID: 17636889 PMCID: PMC2643304 DOI: 10.1021/cr068309+] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitry A Rodionov
- Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| |
Collapse
|
21
|
Brinkrolf K, Brune I, Tauch A. The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum. J Biotechnol 2007; 129:191-211. [PMID: 17227685 DOI: 10.1016/j.jbiotec.2006.12.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/14/2006] [Accepted: 12/04/2006] [Indexed: 11/18/2022]
Abstract
The complete nucleotide sequence of the Corynebacterium glutamicum ATCC 13032 genome was previously determined and allowed the reliable prediction of 3002 protein-coding genes within this genome. Using computational methods, we have defined 158 genes, which form the minimal repertoire for proteins that presumably act as transcriptional regulators of gene expression. Most of these regulatory proteins have a direct role as DNA-binding transcriptional regulator, while others either have less well-defined functions in transcriptional regulation or even more general functions, such as the sigma factors. Recent advances in genome-wide transcriptional profiling of C. glutamicum generated a huge amount of data on regulation of gene expression. To understand transcriptional regulation of gene expression from the perspective of systems biology, rather than from the analysis of an individual regulatory protein, we compiled the current knowledge on the defined DNA-binding transcriptional regulators and their physiological role in modulating transcription in response to environmental signals. This comprehensive data collection provides a solid basis for database-guided reconstructions of the gene regulatory network of C. glutamicum, currently comprising 56 transcriptional regulators that exert 411 regulatory interactions to control gene expression. A graphical reconstruction revealed first insights into the functional modularity, the hierarchical architecture and the topological design principles of the transcriptional regulatory network of C. glutamicum.
Collapse
Affiliation(s)
- Karina Brinkrolf
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|