1
|
González-Torres B, González-Gómez JP, Ramírez K, Castro-del Campo N, González-López I, Garrido-Palazuelos LI, Chaidez C, Medrano-Félix JA. Population structure of the Salmonella enterica serotype Oranienburg reveals similar virulence, regardless of isolation years and sources. Gene 2023; 851:146966. [DOI: 10.1016/j.gene.2022.146966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
2
|
Sparks C, Awe A. Concentrations and risk assessment of metals and microplastics from antifouling paint particles in the coastal sediment of a marina in Simon's Town, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59996-60011. [PMID: 35412184 DOI: 10.1007/s11356-022-18890-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Maintenance of maritime vessels includes the removal of paint from hulls that are sources of metals, antifouling paint particles (APPs) and microplastics (MPs) that end up in the coastal environment. Simon's Town is a small urban town in False Bay, Cape Town, South Africa, where maritime activities take place (there is a naval harbour, marina and shipyard). The aim of this study was to measure metals, APPs and MPs in Simon's Town, to assess the impact of maritime activities and a storm water pipe in a sheltered marina. Sediment samples were collected from six sites during winter 2018. Sediment and extracted APPs were analysed for metal concentrations (Al, As, B, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sb, Sn, Sr, V and Zn) and MPs characterised based on type (shape and polymer), colour and size. Highest average metal concentrations in sediment for all sites were Fe (32228 ± SEM 4024), Al (12271 ± 1062) and Cu (1129 ± 407). Metals in paint particles were highest for Fe (80873 ± 19341), Cu (66762 ± 13082) and Zn (44910 ± 1400 µg/g). Metal and MP fragment concentrations were highest at the slipway of the shipyard, decreasing with increased distance from the slipway. MP filaments were highest close to the storm water outfall pipe. Our results suggest that shipyards are potential sources of metals and MP fragments (mainly APPs), with storm water pipes potential sources of MP filaments. Various indices applied to assess the potential impacts of metals and MPs suggest that these contaminants have the potential to adversely impact the intertidal ecosystem investigated.
Collapse
Affiliation(s)
- Conrad Sparks
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Adetunji Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
3
|
Yang SH, Chen CH, Chu KH. Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124953. [PMID: 33445049 DOI: 10.1016/j.jhazmat.2020.124953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of BlaTEM and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of BlaTEM and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Chih-Hung Chen
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan ROC
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Guerra-García JM, Navarro-Barranco C, Martínez-Laiz G, Moreira J, Giráldez I, Morales E, Fernández-Romero A, Florido M, Ros M. Assessing environmental pollution levels in marinas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144169. [PMID: 33360466 DOI: 10.1016/j.scitotenv.2020.144169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/10/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Despite the growing interest in recreational boating and the increasing number of marinas along the world's coastlines, environmental knowledge of these ecosystems is still very scarce. Detailed data of pollutants in marinas are necessary to provide a global approach of environmental risks in the context of international management strategies. In the present study, a set of 64 variables (30 in seawater and 34 in sediments) were measured to compare marinas from the Southern Iberian Peninsula (SIP). Uni and multivariate analyses showed significant differences among marinas, evidencing the importance of management on a local scale. The most relevant variables determining these differences were turbidity and the biocide Irgarol 1051 in seawater, and granulometry, hydrocarbons and faecal coliforms in sediment. The use of normalization techniques with Al or Fe, and the suitability of different methodologies to measure Total Organic Matter in marinas were also discussed. Additionally, we perform a comprehensive literature review of worldwide marina stressors and develop a simple and straightforward method for assessing environmental quality. The method was tested using SIP marinas and was based on the comparison of 15 selected sediment stressors with background values, concentrations of worldwide sediment quality guidelines (SQGs), and reference conditions/security thresholds established by the programme of coastal waters in port areas (ROM 5.1). A global score was assigned using a new proposed index, Marinas Environmental Pollution Index (MEPI), ranging from 0 to 150 points according to the environmental quality (<90: bad, 90-120: moderate, >120: good). MEPI of marinas from SIP ranged from 60 to 110 points indicating bad or moderate levels of pollution. Environmental quality is one of the decisive factors for awarding eco-labels or eco-certifications, such as Blue Flags in marinas. Therefore, pollution baseline information and environmental tools are mandatory for correct assignation of these awards and necessary for assessing the efficiency of management actions.
Collapse
Affiliation(s)
- José M Guerra-García
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain.
| | - Carlos Navarro-Barranco
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain
| | - Gemma Martínez-Laiz
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain
| | - Juan Moreira
- Departamento de Biología (Unidad de Zoología) & Centro de Investigación en Biodiversidad y Cambio Goblal (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Inmaculada Giráldez
- Dpto. Química "Prof. J.C. Vilchez Martín", Facultad de Ciencias Experimentales Research Center in Technology of Products and Chemical Processes, Pro(2)TecS Universidad de Huelva, Avda. Fuerzas Armadas, s/n, 21071 Huelva, Spain
| | - Emilio Morales
- Dpto. Química "Prof. J.C. Vilchez Martín", Facultad de Ciencias Experimentales Research Center in Technology of Products and Chemical Processes, Pro(2)TecS Universidad de Huelva, Avda. Fuerzas Armadas, s/n, 21071 Huelva, Spain
| | - Alejandro Fernández-Romero
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain
| | - Marta Florido
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain
| | - Macarena Ros
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Seville, Spain
| |
Collapse
|
5
|
Ruocco N, Bertocci I, Munari M, Musco L, Caramiello D, Danovaro R, Zupo V, Costantini M. Morphological and molecular responses of the sea urchin Paracentrotus lividus to highly contaminated marine sediments: The case study of Bagnoli-Coroglio brownfield (Mediterranean Sea). MARINE ENVIRONMENTAL RESEARCH 2020; 154:104865. [PMID: 32056706 DOI: 10.1016/j.marenvres.2019.104865] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Marine sediments store complex mixtures of compounds, including heavy metals, organotins and a large array of other contaminants. Sediment quality monitoring, characterization and management are priorities, due to potential impacts of the above compounds on coastal waters and their biota, especially in cases of pollutants released during dredging activities. Harbours and marinas, as well as estuaries and bays, where limited exchanges of water occurr, the accumulation of toxic compounds poses major concerns for human and environmental health. Here we report the effects of highly contaminated sediments from the site of national interest Bagnoli-Coroglio (Tyrrhenian Sea, Western Mediterranean) on the sea urchin Paracentrotus lividus, considered a good model for ecotoxicological studies. Adult sea urchins were reared one month in aquaria in the presence of contaminated sediment that was experimentally subject to different patterns of re-suspension events (mimicking the effect of natural storms occurring in the field), crossed with O2 enrichment versus natural gas exchanges in the water. The development of embryos deriving from adult urchins exposed to such experimental conditions was followed until the pluteus stage, checking the power of contaminated sediment to induce morphological malformations and its eventual buffering by high oxygenation. Real-Time qPCR analysis revealed that the expression of several genes (among the fifty analyzed, involved in different functional processes) was targeted by contaminated sediments more than those exposed in oxygen-enriched condition. Our findings have biological and ecological relevance in terms of assessing the actual impact on local organisms of chronic environmental contamination by heavy metals and polycyclic aromatic hydrocarbons affecting the Bagnoli-Coroglio area, and of exploring enhanced sediment and water oxygenation as a promising tool to mitigate the effects of contamination in future environmental restoration actions.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Iacopo Bertocci
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Luigi Musco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Davide Caramiello
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
6
|
Deshmukh R, Bhand S, Roy U. A novel method for rapid and sensitive detection of viable Escherichia coli cells using UV-induced PMA-coupled quantitative PCR. Braz J Microbiol 2019; 51:773-778. [PMID: 31654340 DOI: 10.1007/s42770-019-00161-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
We report a specific and sensitive method to improve the coupling of propidium monoazide (PMA) with DNA derived from killed cells of Escherichia coli using UV light of 365 nm. UV light of three different intensities mainly 2.4 × 103, 4.8 × 103, and 7.2 × 103 μJ/cm2 was applied to E. coli cells each for 1, 3, and 5 min. PMA was found to be successfully cross-linked with the DNA from killed cells of E. coli at 4.8 × 103 μJ/cm2 in 3 min leading to the complete inhibition of PCR amplification of DNA derived from PMA-treated heat-killed cells. In spiked phosphate-buffered saline and potable water samples, the difference of the Cq values between PMA-treated viable cells and PMA-untreated viable cells ranged from -0.17 to 0.2, demonstrating that UV-induced PMA activation had a negligible effect on viable cells. In contrast, the difference of the Cq values between PMA-treated heat-killed cells and PMA-untreated heat-killed cells ranged from 8.9 to 9.99, indicating the ability of PMA to inhibit PCR amplification of DNA derived from killed cells to an equivalent as low as 100 CFU. In conclusion, this UV-coupled PMA-qPCR assay provided a rapid and sensitive methodology to selectively detect viable E. coli cells in spiked water samples within 4 h.
Collapse
Affiliation(s)
- Rehan Deshmukh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India
| | - Sunil Bhand
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India.
| |
Collapse
|
7
|
Luna GM, Manini E, Turk V, Tinta T, D'Errico G, Baldrighi E, Baljak V, Buda D, Cabrini M, Campanelli A, Cenov A, Del Negro P, Drakulović D, Fabbro C, Glad M, Grilec D, Grilli F, Jokanović S, Jozić S, Kauzlarić V, Kraus R, Marini M, Mikuš J, Milandri S, Pećarević M, Perini L, Quero GM, Šolić M, Lušić DV, Zoffoli S. Status of faecal pollution in ports: A basin-wide investigation in the Adriatic Sea. MARINE POLLUTION BULLETIN 2019; 147:219-228. [PMID: 29636186 DOI: 10.1016/j.marpolbul.2018.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/19/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Ports are subject to a variety of anthropogenic impacts, and there is mounting evidence of faecal contamination through several routes. Yet, little is known about pollution in ports by faecal indicator bacteria (FIB). FIB spatio-temporal dynamics were assessed in 12 ports of the Adriatic Sea, a semi-enclosed basin under strong anthropogenic pressure, and their relationships with environmental variables were explored to gain insight into pollution sources. FIB were abundant in ports, often more so than in adjacent areas; their abundance patterns were related to salinity, oxygen, and nutrient levels. In addition, a molecular method, quantitative (q)PCR, was used to quantify FIB. qPCR enabled faster FIB determination and water quality monitoring that culture-based methods. These data provide robust baseline evidence of faecal contamination in ports and can be used to improve the management of routine port activities (dredging and ballast water exchange), having potential to spread pathogens in the sea.
Collapse
Affiliation(s)
- Gian Marco Luna
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy.
| | - Elena Manini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | - Valentina Turk
- National Institute of Biology, Marine Biology Station, Fornače 41, Piran, Slovenia
| | - Tinkara Tinta
- National Institute of Biology, Marine Biology Station, Fornače 41, Piran, Slovenia
| | - Giuseppe D'Errico
- Department for Life and Environmental Science (DISVA), Polytechnic University of Marche, Ancona, Italy
| | - Elisa Baldrighi
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | - Vanja Baljak
- University of Rijeka, Faculty of Medicine, Department of Environmental Health, Braće Branchetta 20, Rijeka, Croatia
| | - Donatella Buda
- Fondazione Centro Ricerche Marine, National Reference Laboratory (NRL) on Marine Biotoxin, Viale A. Vespucci 2, Cesenatico, FC, Italy
| | - Marina Cabrini
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, Italy
| | - Alessandra Campanelli
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | - Arijana Cenov
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Department of Environmental Health, Krešimirova 52a, Rijeka, Croatia
| | - Paola Del Negro
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, Italy
| | | | - Cinzia Fabbro
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Oceanography Division, via A. Piccard 54, Trieste, Italy
| | - Marin Glad
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Department of Environmental Health, Krešimirova 52a, Rijeka, Croatia
| | - Dolores Grilec
- Institute of Public Health of Dubrovnik-Neretva County, Croatia
| | - Federica Grilli
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | | | - Slaven Jozić
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Vesna Kauzlarić
- Institute of Public Health of Istrian County, Department of Environmental Health, Pula, Croatia
| | - Romina Kraus
- Ruđer Bošković Institute, Center for Marine Research, Giordano Paliaga 5, Rovinj, Croatia
| | - Mauro Marini
- Institute of Marine Sciences (CNR-ISMAR), National Research Council, Largo Fiera della Pesca 2, Ancona, Italy
| | - Josip Mikuš
- University of Dubrovnik, Department of Aquaculture, Ćira Carića 4, Dubrovnik, Croatia
| | - Stefania Milandri
- Fondazione Centro Ricerche Marine, National Reference Laboratory (NRL) on Marine Biotoxin, Viale A. Vespucci 2, Cesenatico, FC, Italy
| | - Marijana Pećarević
- University of Dubrovnik, Department of Aquaculture, Ćira Carića 4, Dubrovnik, Croatia
| | | | | | - Mladen Šolić
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Darija Vukić Lušić
- University of Rijeka, Faculty of Medicine, Department of Environmental Health, Braće Branchetta 20, Rijeka, Croatia; Teaching Institute of Public Health of Primorje-Gorski Kotar County, Department of Environmental Health, Krešimirova 52a, Rijeka, Croatia
| | - Silvia Zoffoli
- Fondazione Centro Ricerche Marine, National Reference Laboratory (NRL) on Marine Biotoxin, Viale A. Vespucci 2, Cesenatico, FC, Italy
| |
Collapse
|
8
|
Xue J, Feng Y. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments. J Appl Microbiol 2018; 124:1480-1492. [DOI: 10.1111/jam.13739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 01/30/2023]
Affiliation(s)
- J. Xue
- Department of Crop, Soil and Environmental Sciences; Auburn University; Auburn AL USA
| | - Y. Feng
- Department of Crop, Soil and Environmental Sciences; Auburn University; Auburn AL USA
| |
Collapse
|
9
|
Vezzulli L, Stagnaro L, Grande C, Tassistro G, Canesi L, Pruzzo C. Comparative 16SrDNA Gene-Based Microbiota Profiles of the Pacific Oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a Shellfish Farm (Ligurian Sea, Italy). MICROBIAL ECOLOGY 2018; 75:495-504. [PMID: 28803409 DOI: 10.1007/s00248-017-1051-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
The pacific oyster Crassostrea gigas and the Mediterranean mussel Mytilus galloprovincialis are two widely farmed bivalve species which show contrasting behaviour in relation to microbial diseases, with C. gigas being more susceptible and M. galloprovincialis being generally resistant. In a recent study, we showed that different susceptibility to infection exhibited by these two bivalve species may depend on their different capability to kill invading pathogens (e.g., Vibrio spp.) through the action of haemolymph components. Specific microbial-host interactions may also impact bivalve microbiome structure and further influence susceptibility/resistance to microbial diseases. To further investigate this concept, a comparative study of haemolymph and digestive gland 16SrDNA gene-based bacterial microbiota profiles in C. gigas and M. galloprovincialis co-cultivated at the same aquaculture site was carried out using pyrosequencing. Bacterial communities associated with bivalve tissues (hemolymph and digestive gland) were significantly different from those of seawater, and were dominated by relatively few genera such as Vibrio and Pseudoalteromonas. In general, Vibrio accounted for a larger fraction of the microbiota in C. gigas (on average 1.7-fold in the haemolymph) compared to M. galloprovincialis, suggesting that C. gigas may provide better conditions for survival for these bacteria, including potential pathogenic species such as V. aestuarianus. Vibrios appeared to be important members of C. gigas and M. galloprovincialis microbiota and might play a contrasting role in health and disease of bivalve species. Accordingly, microbiome analyses performed on bivalve specimens subjected to commercial depuration highlighted the ineffectiveness of such practice in removing Vibrio species from bivalve tissues.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| | - L Stagnaro
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - C Grande
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - G Tassistro
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - L Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - C Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Ekwanzala MD, Abia ALK, Ubomba-Jaswa E, Keshri J, Momba NBM. Genetic relatedness of faecal coliforms and enterococci bacteria isolated from water and sediments of the Apies River, Gauteng, South Africa. AMB Express 2017; 7:20. [PMID: 28063147 PMCID: PMC5218955 DOI: 10.1186/s13568-016-0319-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/26/2016] [Indexed: 11/15/2022] Open
Abstract
To date, the microbiological quality of river sediments and its impact on water resources are not included in the water quality monitoring assessment. Therefore, the aim of this study was to establish genetic relatedness between faecal coliforms and enterococci isolated from the river water and riverbed sediments of Apies River to better understand the genetic similarity of microorganisms between the sediment and water phases. Indicator bacteria were subjected to a molecular study, which consisted of PCR amplification and sequence analysis of the 16S rRNA and 23S rRNA gene using specific primers for faecal coliforms and enterococci, respectively. Results revealed that the Apies River had high faecal pollution levels with enterococci showing low to moderate correlation coefficient (r2 values ranged from 0.2605 to 0.7499) compared to the faecal coliforms which showed zero to low correlation (r2 values ranged from 0.0027 to 0.1407) indicating that enterococci may be better indicator than faecal coliforms for detecting faecal contamination in riverbed sediments. The phylogenetic tree of faecal coliforms revealed a 98% homology among their nucleotide sequences confirming the close genetic relatedness between river water and riverbed sediment isolates. The phylogenetic tree of the enterococci showed that Enterococcus faecalis and Enterococcus faecium are the predominant species found in both river water and riverbed sediments with bootstrap values of ≥99%. A high degree of genetic relatedness between sediment and water isolates indicated a possible common ancestry and transmission pathway. We recommend the microbial monitoring of riverbed sediments as it harbours more diverse microbial community and once resuspended may cause health and environmental problems.
Collapse
|
11
|
Singh G, Sithebe A, Enitan AM, Kumari S, Bux F, Stenström TA. Comparison of droplet digital PCR and quantitative PCR for the detection of Salmonella and its application for river sediments. JOURNAL OF WATER AND HEALTH 2017; 15:505-508. [PMID: 28771147 DOI: 10.2166/wh.2017.259] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite advances in microbial detection that quantitative polymerase chain reaction (qPCR) has led to, complex environmental samples, such as sediments, remain a challenge due to presence of PCR inhibitors. Aquatic sediments accumulate particle-bound microbial contaminants and thereby reflect a cumulative microbial load over time. The relatively new droplet digital PCR (ddPCR) has emerged as a direct quantitative method, highly tolerant to PCR inhibitors and relinquishing the necessity for calibration/standard curves. Information is virtually absent where ddPCR has been applied to detect pathogenic organisms in aquatic sediments. This study compared the efficacy of ddPCR with qPCR, for quantification of Salmonella in sediments from the Palmiet River near an informal settlement in Durban, South Africa. ddPCR significantly improved both analytical sensitivity and detection of low concentrations of Salmonella as compared to qPCR. The expected copy numbers measured from both qPCR and ddPCR showed good R2 values (0.999 and 0.994, respectively). The site mostly affected by the informal settlements exhibited Salmonella in the range of 255 ± 37 and 818 ± 30 Salmonella/g (p ≤ 0.0001) in qPCR and ddPCR, respectively. The improved detection of Salmonella in sediments with ddPCR makes it a promising technical method for the quantification of Salmonella in multifarious environmental samples.
Collapse
Affiliation(s)
- Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| | - Ayanda Sithebe
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| | - Abimbola M Enitan
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| | - Sheena Kumari
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| | - Faizal Bux
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| |
Collapse
|
12
|
Deshmukh RA, Joshi K, Bhand S, Roy U. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiologyopen 2016; 5:901-922. [PMID: 27397728 PMCID: PMC5221461 DOI: 10.1002/mbo3.383] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022] Open
Abstract
Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture‐based methods are laborious, time‐consuming, and yield false‐positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid‐based, immunology‐based, and biosensor‐based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real‐time PCR, multiplex PCR, DNA microarray, Next‐generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid‐based methods. Enzyme‐linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology‐based methods. Optical, electrochemical, and mass‐based biosensors are grouped into biosensor‐based methods. Overall, these methods are sensitive, specific, time‐effective, and important in prevention and diagnosis of waterborne bacterial diseases.
Collapse
Affiliation(s)
- Rehan A Deshmukh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, NH17B Bypass, Zuarinagar, Goa, 403726, India
| | - Kopal Joshi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, NH17B Bypass, Zuarinagar, Goa, 403726, India
| | - Sunil Bhand
- Biosensor Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, NH17B Bypass, Zuarinagar, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, NH17B Bypass, Zuarinagar, Goa, 403726, India
| |
Collapse
|
13
|
Caruso G, La Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Fonda Umani S, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Hristova Todorova N, K. Karamfilov V, Rastelli E, Cappello S, Acquaviva MI, Narracci M, De Angelis R, Del Negro P, Latini M, Danovaro R. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 2015; 42:883-904. [DOI: 10.3109/1040841x.2015.1087380] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Sabatino R, Di Cesare A, Pasquaroli S, Vignaroli C, Citterio B, Amiri M, Rossi L, Magnani M, Mauro A, Biavasco F. Adherence and intracellular survival within human macrophages of Enterococcus faecalis isolates from coastal marine sediment. Microbes Infect 2015; 17:660-4. [DOI: 10.1016/j.micinf.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 11/25/2022]
|
15
|
Rochelet M, Solanas S, Betelli L, Chantemesse B, Vienney F, Hartmann A. Rapid amperometric detection of Escherichia coli in wastewater by measuring β-D glucuronidase activity with disposable carbon sensors. Anal Chim Acta 2015; 892:160-6. [PMID: 26388487 DOI: 10.1016/j.aca.2015.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022]
Abstract
An assay on the indirect amperometric quantification of the β-D-Glucuronidase (GLUase) activity was developed for the rapid and specific detection of Escherichia coli (E. coli) in complex environmental samples. The p-aminophenyl β-D-glucopyranoside (PAPG) was selected as an electrochemical substrate for GLUase measurement and the p-aminophenol (PAP) released during the enzymatic hydrolysis was monitored by cyclic voltammetry with disposable carbon screen-printed sensors. The intensity of the measured anodic peak current was proportional to the amount of GLUase, and therefore to the number of E. coli in the tested sample. Once the substrate concentration and pH values optimized, a GLUase detection limit of 10 ng mL(-1) was achieved. Using a procedure involving a filtration step of the bacteria followed by their incubation with the substrate solution containing both the nonionic detergent Triton X-100 as permeabilization agent and the culture media Luria broth to monitor the growth, filtered bacterial cells ranging from 5 × 10(4) to 10(8) UFC/membrane were detected within 3 h. The amperometric assay was applied to the determination of fecal contamination in raw and treated wastewater samples and it was successfully compared with conventional bacterial plating methods and uidA gene quantitative PCR. Owing to its ability to perform measurements in turbid media, the GLUase amperometric method is a reliable tool for the rapid and decentralized quantification of viable but also nonculturable E. coli in complex environmental samples.
Collapse
Affiliation(s)
- Murielle Rochelet
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France.
| | - Sébastien Solanas
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| | - Laetitia Betelli
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| | - Benoît Chantemesse
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| | - Fabienne Vienney
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| | - Alain Hartmann
- INRA, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| |
Collapse
|
16
|
Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays. Appl Environ Microbiol 2014; 81:91-9. [PMID: 25326295 DOI: 10.1128/aem.02446-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as "naked DNA" in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources.
Collapse
|
17
|
Wang X, Son A. Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:2204-12. [PMID: 24162665 DOI: 10.1039/c3em00457k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
DNA hybridization is an important step for a number of bioassays such as fluorescence in situ hybridization, microarrays, as well as the NanoGene assay. Denaturation and fragmentation of genomic DNA are two critical pretreatments for DNA hybridization. However, no thorough and systematic characterization on denaturation and fragmentation has been carried out for the NanoGene assay so far. In this study, we investigated the denaturation and fragmentation of the bacterial gDNA with physical treatments (i.e., heating and sonication) and chemical treatments (i.e., dimethyl sulfoxide). First of all, a simple approach for indicating the denaturation fraction was developed based on the absorbance difference (i.e., hyperchromic effect) between the double-stranded DNA and single-stranded DNA fragments. Then the denaturation capabilities of the treatments to the gDNA were elucidated, followed by the examination of the possible renaturation over time. The fragmentation of the gDNA by each treatment was also investigated. Based on denaturation efficiency, minimum renaturation tendency, and fragmentation, the sonication method was found to be the best among the six methods. We further demonstrated that the sonication method produced the best result among the treatments examined for the DNA hybridization in the NanoGene assay.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
18
|
Chiellini C, Iannelli R, Petroni G. Temporal characterization of bacterial communities in a phytoremediation pilot plant aimed at decontaminating polluted sediments dredged from Leghorn harbor, Italy. N Biotechnol 2013; 30:772-9. [DOI: 10.1016/j.nbt.2012.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
|
19
|
Exploring the potential environmental functions of viable but non-culturable bacteria. World J Microbiol Biotechnol 2013; 29:2213-8. [PMID: 23733177 DOI: 10.1007/s11274-013-1390-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/28/2013] [Indexed: 12/25/2022]
Abstract
A conventional plate count is the most commonly employed method to estimate the number of living bacteria in environmental samples. In fact, judging the level of viable culture by plate count is limited, because it is often several orders of magnitude less than the number of living bacteria actually present. Most of the bacteria are in "viable but non-culturable" (VBNC) state, whose cells are intact and alive and can resuscitate when surrounding conditions are more favorable. The most exciting recent development in resuscitating VBNC bacteria is a bacterial cytokine, namely, the resuscitation-promoting factor (Rpf), secreted by Micrococcus luteus, which promotes the resuscitation and growth of high G+C Gram-positive organisms, including some species of the genus Mycobacterium. However, most of studies deal with VBNC bacteria only from the point of view of medicine and epidemiology. It is therefore of great significance to research whether these VBNC state bacteria also possess some useful environmental capabilities, such as degradation, flocculation, etc. Further studies are needed to elucidate the possible environmental role of the VBNC bacteria, rather than only considering their role as potential pathogens from the point view of epidemiology and public health. We have studied the resuscitation of these VBNC bacteria in polluted environments by adding culture supernatant containing Rpf from M. luteus, and it was found that, as a huge microbial resource, VBNC bacteria could provide important answers to dealing with existing problems of environmental pollution. This mini-review will provide new insight for considering the potentially environmental functions of VBNC bacteria.
Collapse
|
20
|
Di Cesare A, Luna GM, Vignaroli C, Pasquaroli S, Tota S, Paroncini P, Biavasco F. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments. PLoS One 2013; 8:e62838. [PMID: 23638152 PMCID: PMC3637307 DOI: 10.1371/journal.pone.0062838] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/27/2013] [Indexed: 12/20/2022] Open
Abstract
Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside) collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M), tet(L), tet(O)] and macrolide [erm(A), erm(B) and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M) and tet(L) in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin) highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O), erm(B) and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an underestimated health risk and deserves further investigation.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Pitkänen T, Ryu H, Elk M, Hokajärvi AM, Siponen S, Vepsäläinen A, Räsänen P, Santo Domingo JW. Detection of fecal bacteria and source tracking identifiers in environmental waters using rRNA-based RT-qPCR and rDNA-based qPCR assays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13611-20. [PMID: 24187936 DOI: 10.1021/es403489b] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, we evaluated the use of RT-qPCR assays targeting rRNA gene sequences for the detection of fecal bacteria in water samples. We challenged the RT-qPCR assays against RNA extracted from sewage effluent (n = 14), surface water (n = 30), and treated source water (n = 15) samples. Additionally, we applied the same assays using DNA as the qPCR template. The targeted fecal bacteria were present in most of the samples tested, although in several cases, the detection frequency increased when RNA was used as the template. For example, the majority of samples that tested positive for E. coli and Campylobacter spp. in surface waters, and for human-specific Bacteroidales, E. coli, and Enterococcus spp. in treated source waters were only detected when rRNA was used as the original template. The difference in detection frequency using rRNA or rDNA (rRNA gene) was sample- and assay-dependent, suggesting that the abundance of active and nonactive populations differed between samples. Statistical analyses for each population exhibiting multiple quantifiable results showed that the rRNA copy numbers were significantly higher than the rDNA counterparts (p < 0.05). Moreover, the detection frequency of rRNA-based assays were in better agreement with the culture-based results of E. coli, intestinal enterococci, and thermotolerant Campylobacter spp. in surface waters than that of rDNA-based assays, suggesting that rRNA signals were associated to active bacterial populations. Our data show that using rRNA-based approaches significantly increases detection sensitivity for common fecal bacteria in environmental waters. These findings have important implications for microbial water quality monitoring and public health risk assessments.
Collapse
Affiliation(s)
- Tarja Pitkänen
- U.S. Environmental Protection Agency , National Risk Management Research Laboratory, Cincinnati, Ohio 45268, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Maheux AF, Huppé V, Bissonnette L, Boissinot M, Rodrigue L, Bérubé È, Bergeron MG. Comparative analysis of classical and molecular microbiology methods for the detection of Escherichia coli and Enterococcus spp. in well water. ACTA ACUST UNITED AC 2012; 14:2983-9. [PMID: 23014932 DOI: 10.1039/c2em30565h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microbiological quality of 165 1 litre well water samples collected in the Québec City region was assessed by culture-based methods (mFC agar, Chromocult coliform agar, Colilert(®), MI agar, Chromocult enterococci, Enterolert™, and mEI agar) and by a molecular microbiology strategy, dubbed CRENAME-rtPCR, developed for the detection of Escherichia coli, Enterococcus spp., Enterococcus faecalis/faecium, and Bacillus atrophaeus subsp. globigii. In these drinking water samples, approved culture-based methods detected E. coli at rates varying from 1.8 to 3.6% and Enterococcus spp. at rates varying from 3.0 to 11.5%, while the molecular microbiology approach for E. coli was found to be as efficient, detecting contamination in 3.0% of samples. In contrast, CRENAME-rtPCR detected Enterococcus spp. in 27.9% of samples while the E. faecalis/faecium molecular assay did not uncover a single contaminated sample, thereby revealing a discrepancy in the coverage of waterborne enterococcal species detected by classical and molecular microbiology methods. The validation of the CRENAME-E. coli rtPCR test as a new tool to assess the quality of drinking water will require larger scale studies elaborated to demonstrate its equivalence to approved methods.
Collapse
Affiliation(s)
- Andrée F Maheux
- Centre de recherche en infectiologie de l'Université Laval, Centre de recherche du CHUQ, 2705 Laurier Blvd., Québec City, Québec, Canada G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
23
|
New sequence types and multidrug resistance among pathogenic Escherichia coli isolates from coastal marine sediments. Appl Environ Microbiol 2012; 78:3916-22. [PMID: 22447595 DOI: 10.1128/aem.07820-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes.
Collapse
|