1
|
Kong D, Zhang H, Yuan Y, Wu J, Liu Z, Chen S, Zhang F, Wang L. Enhanced biodegradation activity toward polyethylene by fusion protein of anchor peptide and Streptomyces sp. strain K30 latex clearing protein. Int J Biol Macromol 2024; 264:130378. [PMID: 38428774 DOI: 10.1016/j.ijbiomac.2024.130378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Polyethylene is the most commonly used plastic product, and its biodegradation is a worldwide problem. Latex clearing protein derived from Streptomyces sp. strain K30 (LcpK30) has been reported to be able to break the carbon-carbon double bond inside oxidized polyethylene and is an effective biodegradation enzyme for polyethylene. However, the binding of the substrate to the enzyme was difficult due to the hydrophobic nature of polyethylene. Therefore, to further improve the efficiency of LcpK30, the effect of different anchor peptides on the binding capacity of LcpK30 to the substrate was screened in this study. The results of fluorescence confocal microscopy showed that the anchoring peptide LCI had the most significant improvement in effect and was finally selected for further application in a UV-irradiated PE degradation system. The degradation results showed that LCI was able to improve the degradation efficiency of LcpK30 by approximately 1.15 times in the presence of equimolar amounts of protein compared with wild-type. This study further improves the application of LcpK30 in the field of polyethylene degradation by modification.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. and Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd, Dongying 257335, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
2
|
Liu Z, Li G, Zhang F, Wu J. Enhanced biodegradation activity towards poly(ethyl acrylate) and poly(vinyl acetate) by anchor peptide assistant targeting. J Biotechnol 2022; 349:47-52. [DOI: 10.1016/j.jbiotec.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
|
3
|
Ji Y, Lu Y, Puetz H, Schwaneberg U. Anchor peptides promote degradation of mixed plastics for recycling. Methods Enzymol 2021; 648:271-292. [PMID: 33579408 DOI: 10.1016/bs.mie.2020.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Resource stewardship and sustainable use of natural resources is mandatory for a circular plastic economy. The discovery of microbes and enzymes that can selectively degrade mixed-plastic waste enables to recycle plastics. Knowledge on how to achieve efficient and selective enzymatic plastic degradation is a key prerequisite for biocatalytic recycling of plastics. Wild-type natural polymer degrading enzymes such as cellulases pose often selective non-catalytic binding domains that facilitate a targeting and efficient degradation of polymeric substrates. Recently identified polyester hydrolases with synthetic polymer degrading activities, however, lack in general such selective domains. Inspired by nature, we herein report a protocol for the identification and engineering of anchor peptides which serve as non-catalytic binding domains specifically toward synthetic plastics. The identified anchor peptides hold the promise to be fused to known plastic degrading enzymes and thereby enhance the efficiency of biocatalytic plastic recycling processes.
Collapse
Affiliation(s)
- Yu Ji
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Yi Lu
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Hendrik Puetz
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials, Aachen, Germany.
| |
Collapse
|
4
|
Biomimetic vs. Direct Approach to Deposit Hydroxyapatite on the Surface of Low Melting Point Polymers for Tissue Engineering. NANOMATERIALS 2020; 10:nano10112162. [PMID: 33138141 PMCID: PMC7693928 DOI: 10.3390/nano10112162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023]
Abstract
Polymers are widely used in many applications in the field of biomedical engineering. Among eclectic selections of polymers, those with low melting temperature (Tm < 200 °C), such as poly(methyl methacrylate), poly(lactic-co-glycolic acid), or polyethylene, are often used in bone, dental, maxillofacial, and corneal tissue engineering as substrates or scaffolds. These polymers, however, are bioinert, have a lack of reactive surface functional groups, and have poor wettability, affecting their ability to promote cellular functions and biointegration with the surrounding tissue. Improving the biointegration can be achieved by depositing hydroxyapatite (HAp) on the polymeric substrates. Conventional thermal spray and vapor phase coating, including the Food and Drug Administration (FDA)-approved plasma spray technique, is not suitable for application on the low Tm polymers due to the high processing temperature, reaching more than 1000 °C. Two non-thermal HAp coating approaches have been described in the literature, namely, the biomimetic deposition and direct nanoparticle immobilization techniques. In the current review, we elaborate on the unique features of each technique, followed by discussing the advantages and disadvantages of each technique to help readers decide on which method is more suitable for their intended applications. Finally, the future perspectives of the non-thermal HAp coating are given in the conclusion.
Collapse
|
5
|
Kumada Y, Miyamura Y, Tanibata R, Takahashi K, Ogasawara S, Gondaira F, Horiuchi JI. Design and site-directed immobilization of single-chain Fv antibody to polystyrene latex beads via material-binding peptides and application to latex turbidimetric assay. J Biosci Bioeng 2020; 131:84-89. [PMID: 33023860 DOI: 10.1016/j.jbiosc.2020.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
In this study, immobilization of single-chain Fv (scFv) antibodies on the surfaces of polystyrene (PS) latex beads via material-binding peptides was investigated for sensitive immuno-turbidimetric assay of C-reactive protein (CRP). Anti-CRP scFvs fused with polystyrene-binding peptide (PS-tag) and poly(methylmethacrylate)-binding peptide (PMMA-tag) were over-expressed in Escherichia coli cells and recovered in the active form following refolding. The beads with PMMA-tag-fused scFv (scFv-PM) were successfully suspended with sufficient dispersion at pH 8.0. Three types of alternative scFv-PMs with a penta-asparatic acid tag (D5-tag) introduced at different positions were then designed. All of the D5-tagged scFv-PMs were successfully immobilized on the surfaces of beads with no significant change in the diameter of the latex beads at pH levels ranging from 6.0 to 8.0. According to the results of turbidimetric assay for the detection of CRP, 13 ng/ml of CRP was detectable using beads with D5-tagged scFv-PMs at 400 ng/cm3, and no turbidity change was observed in the absence of antigen. When the density of scFv-PM was 250 ng/cm2, which was 63% of the maximum density, the beads were dispersed well and reactive with the antigen at a concentration range comparable to those with D5-tagged scFv-PMs. These results indicate that controlling charge density on the surface of beads after site-directed immobilization is definitely important in order to maintain high levels of dispersion and reactivity. Thus, the usefulness of the scFv-PM as well as D5-tagged scFv-PMs developed in the present study should be significant when used as ligand antibodies in the preparation of immuno-latex beads.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-0951, Japan.
| | - Yohei Miyamura
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-0951, Japan
| | - Reina Tanibata
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-0951, Japan
| | - Koichi Takahashi
- Denka Co., Ltd., 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8338, Japan
| | - Shinya Ogasawara
- Denka Co., Ltd., 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8338, Japan
| | - Fumio Gondaira
- Denka Co., Ltd., 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8338, Japan
| | - Jun-Ichi Horiuchi
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-0951, Japan
| |
Collapse
|
6
|
Colorimetric detection of Escherichia coli using engineered bacteriophage and an affinity reporter system. Anal Bioanal Chem 2019; 411:7273-7279. [PMID: 31511947 DOI: 10.1007/s00216-019-02095-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
Abstract
Reporter phage systems have emerged as a promising technology for the detection of bacteria in foods and water. However, the sensitivity of these assays is often limited by the concentration of the expressed reporter as well as matrix interferences associated with the sample. In this study, bacteriophage T7 was engineered to overexpress mutated alkaline phosphatase fused to a carbohydrate-binding module (ALP*-CBM) following infection of E. coli to enable colorimetric detection in a model system. Magnetic cellulose particles were employed to separate and concentrate the overexpressed ALP*-CBM in bacterial lysate. Infection of E. coli with the engineered phage resulted in a limit of quantitation of 1.2 × 105 CFU, equating to 1.2 × 103 CFU/mL in 3.5 h when using a colorimetric assay and 100 mL sample volume. When employing an enrichment step, < 101 CFU/mL could be visually detected from a 100 mL sample volume within 8 h. These results suggest that affinity tag modified enzymes coupled with a material support can provide a simple and effective means to improve signal sensitivity of phage-based assays. Graphical abstract.
Collapse
|
7
|
Islam S, Apitius L, Jakob F, Schwaneberg U. Targeting microplastic particles in the void of diluted suspensions. ENVIRONMENT INTERNATIONAL 2019; 123:428-435. [PMID: 30622067 DOI: 10.1016/j.envint.2018.12.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 05/22/2023]
Abstract
Accumulation of microplastic in the environment and food chain will be a grand challenge for our society. Polyurethanes are widely used synthetic polymers in medical (e.g. catheters) and industrial products (especially as foams). Polyurethane is not abundant in nature and only a few microbial strains (fungi and bacteria) and enzymes (polyurethaneases and cutinases) have been reported to efficiently degrade polyurethane. Notably, in nature a long period of time (from 50 to >100 years depending on the literature) is required for degradation of plastics. Material binding peptides (e.g. anchor peptides) bind strongly to polymers such as polypropylene, polyethylene terephthalate, and polyurethane and can target specifically polymers. In this study we report the fusion of the anchor peptide Tachystatin A2 to the bacterial cutinase Tcur1278 which accelerated the degradation of polyester-polyurethane nanoparticles by a factor of 6.6 in comparison to wild-type Tcur1278. Additionally, degradation half-lives of polyester-polyurethane nanoparticles were reduced from 41.8 h to 6.2 h (6.7-fold) in a diluted polyester-polyurethane suspension (0.04% w/v).
Collapse
Affiliation(s)
- Shohana Islam
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Lina Apitius
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Felix Jakob
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany; Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Rübsam K, Davari MD, Jakob F, Schwaneberg U. KnowVolution of the Polymer-Binding Peptide LCI for Improved Polypropylene Binding. Polymers (Basel) 2018; 10:E423. [PMID: 30966458 PMCID: PMC6415234 DOI: 10.3390/polym10040423] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 12/02/2022] Open
Abstract
The functionalization of polymer surfaces by polymer-binding peptides offers tremendous opportunities for directed immobilization of enzymes, bioactive peptides, and antigens. The application of polymer-binding peptides as adhesion promoters requires reliable and stable binding under process conditions. Molecular modes of interactions between material surfaces, peptides, and solvent are often not understood to an extent that enables (semi-) rational design of polymer-binding peptides, hindering the full exploitation of their potential. Knowledge-gaining directed evolution (KnowVolution) is an efficient protein engineering strategy that facilitates tailoring protein properties to application demands through a combination of directed evolution and computational guided protein design. A single round of KnowVolution was performed to gain molecular insights into liquid chromatography peak I peptide, 47 aa (LCI)-binding to polypropylene (PP) in the presence of the competing surfactant Triton X-100. KnowVolution yielded a total of 8 key positions (D19, S27, Y29, D31, G35, I40, E42, and D45), which govern PP-binding in the presence of Triton X-100. The recombination of two of the identified amino acid substitutions (Y29R and G35R; variant KR-2) yielded a 5.4 ± 0.5-fold stronger PP-binding peptide compared to LCI WT in the presence of Triton X-100 (1 mM). The LCI variant KR-2 shows a maximum binding capacity of 8.8 ± 0.1 pmol/cm² on PP in the presence of Triton X-100 (up to 1 mM). The KnowVolution approach enables the development of polymer-binding peptides, which efficiently coat and functionalize PP surfaces and withstand surfactant concentrations that are commonly used, such as in household detergents.
Collapse
Affiliation(s)
- Kristin Rübsam
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany.
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany.
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany.
| | - Felix Jakob
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany.
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany.
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany.
| |
Collapse
|
9
|
Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017; 12:02D301. [DOI: 10.1116/1.4978435] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Kumada Y, Otsuki R, Sakoda Y, Akai R, Matoba K, Katayama J, Kishimoto M, Horiuchi JI. Identification and characterization of polydimethylsiloxane-binding peptides (PDMS-tag) for oriented immobilization of functional protein on a PDMS surface. J Biotechnol 2016; 236:193-8. [DOI: 10.1016/j.jbiotec.2016.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
11
|
Kuroda A, Alexandrov M, Nishimura T, Ishida T. Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing. Biotechnol J 2016; 11:757-67. [DOI: 10.1002/biot.201500438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Akio Kuroda
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Maxym Alexandrov
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Tomoki Nishimura
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Takenori Ishida
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| |
Collapse
|
12
|
Kumada Y, Kang B, Yamakawa K, Kishimoto M, Horiuchi JI. Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)-binding peptide (PMMA-Tag). Biotechnol Prog 2015; 31:1563-70. [DOI: 10.1002/btpr.2169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Yoichi Kumada
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Bongmun Kang
- Venture Laboratory; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Kagenari Yamakawa
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Michimasa Kishimoto
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Jun-Ichi Horiuchi
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| |
Collapse
|
13
|
Liu Y, Yu J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1623-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1960-1969. [PMID: 25119345 DOI: 10.1016/j.bbapap.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
Abstract
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
15
|
Kumada Y, Ootsuka T, Asada M, Yoshizuka S, Chiyama M, Sakane M, Fida HM, Sawada K, Okumura K, Kishimoto M. Identification and characterization of peptide fragments for the direct and site-specific immobilization of functional proteins onto the surface of silicon nitride. J Biotechnol 2014; 184:103-10. [DOI: 10.1016/j.jbiotec.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 11/25/2022]
|
16
|
Kumada Y, Ishikawa Y, Fujiwara Y, Takeda R, Miyamoto R, Niwa D, Momose S, Kang B, Kishimoto M. Efficient refolding and immobilization of PMMA-tag-fused single-chain Fv antibodies for sensitive immunological detection on a PMMA plate. J Immunol Methods 2014; 411:1-10. [PMID: 24910412 DOI: 10.1016/j.jim.2014.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the efficient refolding and site-specific immobilization of single-chain variable fragments (scFvs) genetically fused with a poly(methylmethacrylate)-binding peptide (PMMA-tag). According to the results of an aggregation test of a scFv-PM in the presence of 0.5 M urea, aggregation was hardly detectable at a weak-alkaline pH (8.5) with lower concentrations of NaCl. Consequently, more than 93% recovery of the anti-RNase scFv-PM model was attained, when it was refolded by dialysis against 50 mM TAPS (pH8.5). These results suggested that the apparent isoelectric point (pI) of a target scFv was decreased to a great extent by the genetic fusion of a PMMA-tag containing 5 acidic amino acids, and, thus, the solubility of the scFv-PM in its semi-denatured form was considerably improved. We also designed alternative peptide-tags composed of plural aspartic acid residues (D5, D10 and D15-tags) to decrease the apparent pI value of the fusion protein. As a consequence, scFv-D5, scFv-D10 and scFv-D15 were also efficiently refolded with yields of more than 95%. It is noteworthy that even scFv-PS-D15, which had both a positively charged polystyrene-binding peptide (PS-tag) and a negatively charged D15-tag, was serially connected at the C-terminal region of scFvs, and also refolded with a yield of 96.1%. These results clearly indicate that controlling the apparent pI value of scFvs by the fusion of oligo-peptides composed of acidic amino acids at the C-terminus resulted in a high degree of recovery via dialysis refolding. According to the results of a sandwich ELISA using scFv-PMs, scFv-D15 and scFv-PS-D15 as ligands, high antigen-binding signals were detected from both the PMMA and phi-PS plates immobilized with scFv-PMs. Furthermore, the high antigen-binding activity of scFv-PMs was maintained in an adsorption state when it was immobilized on the surface of not only PMMA, but also hydrophilic PS (phi-PS) and polycarbonate (PC). These results strongly suggested that a PMMA-tag introduced at the C-terminus of scFvs preferably recognizes ester and/or carboxyl groups exposed on the surface of plastics. The scFv-PM developed in the present study has advantages such as being a ligand antibody, compared with whole Ab and the conventional PS-tag-fused scFvs (scFv-PS), and, thus, it is considerably useful in a sandwich ELISA as well as in various immuno-detection and immuno-separation systems.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan.
| | - Yasuyuki Ishikawa
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Yusuke Fujiwara
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Rui Takeda
- Department of Chemistry and Materials Technology, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Ryosuke Miyamoto
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Daisuke Niwa
- Rohm Corporation, Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Shun Momose
- Rohm Corporation, Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Bongmun Kang
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Michimasa Kishimoto
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
17
|
Silaffin Peptides as a Novel Signal Enhancer for Gravimetric Biosensors. Appl Biochem Biotechnol 2013; 170:25-31. [DOI: 10.1007/s12010-013-0161-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
|