1
|
Milrad Y, Mosebach L, Buchert F. Regulation of Microalgal Photosynthetic Electron Transfer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2103. [PMID: 39124221 PMCID: PMC11314055 DOI: 10.3390/plants13152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments.
Collapse
Affiliation(s)
- Yuval Milrad
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
2
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Mutation of negative regulatory gene CEHC1 encoding an FBXO3 protein results in normoxic expression of HYDA genes in Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586359. [PMID: 38586028 PMCID: PMC10996464 DOI: 10.1101/2024.03.22.586359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of HYDA1 transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the HYDA1 promoter, conferred motility only in hypoxic conditions. By selecting for mutants able to swim even in the presence of oxygen we obtained strains that express the reporter gene constitutively. One mutant identified a gene encoding an F-box only protein 3 (FBXO3), known to participate in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 , leads to constitutive expression of HYDA1 and other genes regulated by hypoxia, and of many genes known to be targets of CRR1, a transcription factor in the nutritional copper signaling pathway. CRR1 was required for the constitutive expression of the HYDA1 reporter gene in cehc1-1 mutants. The CRR1 protein, which is normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 acts to facilitate the degradation of CRR1. Our results reveal a novel negative regulator in the CRR1 pathway and possibly other pathways leading to complex metabolic changes associated with response to hypoxia.
Collapse
|
3
|
Danial AW, Abdel-Basset R, Abdel-Kader HAA. Tuning photosynthetic oxygen for hydrogen evolution in synergistically integrated, sulfur deprived consortia of Coccomyxa chodatii and Rhodobium gokarnense at dim and high light. PHOTOSYNTHESIS RESEARCH 2023; 155:203-218. [PMID: 36418759 PMCID: PMC9879849 DOI: 10.1007/s11120-022-00961-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
In this work, tuning oxygen tension was targeted to improve hydrogen evolution. To achieve such target, various consortia of the chlorophyte Coccomyxa chodatii with a newly isolated photosynthetic purple non-sulfur bacterium (PNSB) strain Rhodobium gokarnense were set up, sulfur replete/deprived, malate/acetate fed, bicarbonate/sulfur added at dim/high light. C. chodatii and R. gokarnense are newly introduced to biohydrogen studies for the first time. Dim light was applied to avoid the inhibitory drawbacks of photosynthetic oxygen evolution, values of hydrogen are comparable with high light or even more and thus economically feasible to eliminate the costs of artificial illumination. Particularly, the consortium of 2n- (n = 1.9 × 105 cell/ml, sulfur deprived) demonstrated its perfection for the target, i.e., the highest possible cumulative hydrogen. This consortium exhibited negative photosynthesis, i.e., oxygen uptake in the light. Most hydrogen in consortia is from bacterial origin, although algae evolved much more hydrogen than bacteria on per cell basis, but for only one day (the second 24 h), as kinetics revealed. The higher hydrogen in unibacterial culture or consortia results from higher bacterial cell density (20 times). Consortia evolved more hydrogen than their respective separate cultures, further enhanced when bicarbonate and sulfur were supplemented at higher light. The share of algae relatively increased as bicarbonate or sulfur were added at higher light intensity, i.e., PSII activity partially recovered, resulting in a transient autotrophic hydrogen evolution. The addition of acetic acid in mixture with malic acid significantly enhanced the cumulative hydrogen levels, mostly decreased cellular ascorbic acid indicating less oxidative stress and relief of PSII, relative to malic acid alone. Starch, however, decreased, indicating the specificity of acetic acid. Exudates (reducing sugars, amino acids, and soluble proteins) were detected, indicating mutual utilization. Yet, hydrogen evolution is limited; tuning PSII activity remains a target for sustainable hydrogen production.
Collapse
Affiliation(s)
- Amal W Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - R Abdel-Basset
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Huwida A A Abdel-Kader
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Giri DD, Dwivedi H, Khalaf D Alsukaibi A, Pal DB, Otaibi AA, Areeshi MY, Haque S, Gupta VK. Sustainable production of algae-bacteria granular consortia based biological hydrogen: New insights. BIORESOURCE TECHNOLOGY 2022; 352:127036. [PMID: 35331885 DOI: 10.1016/j.biortech.2022.127036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Microbes recycling nutrient and detoxifying ecosystems are capable to fulfil the future energy need by producing biohydrogen by due to the coupling of autotrophic and heterotrophic microbes. In granules microbes mutualy exchanging nutrients and electrons for hydrogen production. The consortial biohydrogen production depend upon constituent microbes, their interdependence, competition for resources, and other operating parameters while remediating a waste material in nature or bioreactor. The present review deals with development of granular algae-bacteria consortia, hydrogen yield in coculture, important enzymes and possible engineering for improved hydrogen production.
Collapse
Affiliation(s)
- Deen Dayal Giri
- Department of Botany, Maharaj Singh College, Saharanpur-247001,Uttar Pradesh, India
| | - Himanshu Dwivedi
- Department of Botany, Maharaj Singh College, Saharanpur-247001,Uttar Pradesh, India
| | | | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine,Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
5
|
Patil PP, Mohammad Aslam S, Vass I, Szabó M. Characterization of the wave phenomenon of flash-induced chlorophyll fluorescence in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2022; 152:235-244. [PMID: 35166999 PMCID: PMC9424139 DOI: 10.1007/s11120-022-00900-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/25/2022] [Indexed: 06/01/2023]
Abstract
Flash-induced chlorophyll fluorescence relaxation is a powerful tool to monitor the reoxidation reactions of the reduced primary quinone acceptor, QA- by QB and the plastoquinone (PQ) pool, as well as the charge recombination reactions between the donor and acceptor side components of Photosystem II (PSII). Under certain conditions, when the PQ pool is highly reduced (e.g. in microaerobic conditions), a wave phenomenon appears in the fluorescence relaxation kinetics, which reflects the transient reoxidation and re-reduction of QA- by various electron transfer processes, which in cyanobacteria is mediated by NAD(P)H dehydrogenase (NDH-1). The wave phenomenon was also observed and assigned to the operation of type 2 NAD(P)H dehydrogenase (NDH-2) in the green alga Chlamydomonas reinhardtii under hydrogen-producing conditions, which required a long incubation of algae under sulphur deprivation (Krishna et al. J Exp Bot 70 (21):6321-6336, 2019). However, the conditions that induce the wave remained largely uncharacterized so far in microalgae. In this work, we investigated the wave phenomenon in Chlamydomonas reinhardtii under conditions that lead to a decrease of PSII activity by applying hydroxylamine treatment, which impacts the donor side of PSII in combination with a strongly reducing environment of the PQ pool (microaerobic conditions). A similar wave phenomenon could be induced by photoinhibitory conditions (illumination with strong light in the presence of the protein synthesis inhibitor lincomycin). These results indicate that the fluorescence wave phenomenon is activated in green algae when the PSII activity decreases relative to Photosystem I (PS I) activity and the PQ pool is strongly reduced. Therefore, the fluorescence wave could be used as a sensitive indicator of altered intersystem electron transfer processes, e.g. under stress conditions.
Collapse
Affiliation(s)
- Priyanka Pradeep Patil
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Sabit Mohammad Aslam
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Imre Vass
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Milán Szabó
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
6
|
Nikkanen L, Solymosi D, Jokel M, Allahverdiyeva Y. Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. PHYSIOLOGIA PLANTARUM 2021; 173:514-525. [PMID: 33764547 DOI: 10.1111/ppl.13404] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria and microalgae perform oxygenic photosynthesis where light energy is harnessed to split water into oxygen and protons. This process releases electrons that are used by the photosynthetic electron transport chain to form reducing equivalents that provide energy for the cell metabolism. Constant changes in environmental conditions, such as light availability, temperature, and access to nutrients, create the need to balance the photochemical reactions and the metabolic demands of the cell. Thus, cyanobacteria and microalgae evolved several auxiliary electron transport (AET) pathways to disperse the potentially harmful over-supply of absorbed energy. AET pathways are comprised of electron sinks, e.g. flavodiiron proteins (FDPs) or other terminal oxidases, and pathways that recycle electrons around photosystem I, like NADPH-dehydrogenase-like complexes (NDH) or the ferredoxin-plastoquinone reductase (FQR). Under controlled conditions the need for these AET pathways is decreased and AET can even be energetically wasteful. Therefore, redirecting photosynthetic reducing equivalents to biotechnologically useful reactions, catalyzed by i.e. innate hydrogenases or heterologous enzymes, offers novel possibilities to apply photosynthesis research.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Daniel Solymosi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Martina Jokel
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Water oxidation by photosystem II is the primary source of electrons for sustained H 2 photoproduction in nutrient-replete green algae. Proc Natl Acad Sci U S A 2020; 117:29629-29636. [PMID: 33168746 PMCID: PMC7703569 DOI: 10.1073/pnas.2009210117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Photosynthetic H2 production in the green alga Chlamydomonas reinhardtii is catalyzed by O2-sensitive [FeFe]-hydrogenases, which accept electrons from photosynthetically reduced ferredoxin and reduce protons to H2. Since the process occurs downstream of photosystem I, the contribution of photosystem II (PSII) in H2 photoproduction has long been a subject of debate. Indeed, water oxidation by PSII results in O2 accumulation in chloroplasts, which inhibits H2 evolution. Therefore, clear evidence for direct water biophotolysis resulting in simultaneous H2 and O2 releases in algae has never been presented. This paper demonstrates that sustained H2 photoproduction in C. reinhardtii is directly linked to PSII-dependent water oxidation and brings insights into regulation of PSII activity and H2 production by CO2/HCO3– under microoxic conditions. The unicellular green alga Chlamydomonas reinhardtii is capable of photosynthetic H2 production. H2 evolution occurs under anaerobic conditions and is difficult to sustain due to 1) competition between [FeFe]-hydrogenase (H2ase), the key enzyme responsible for H2 metabolism in algae, and the Calvin–Benson–Bassham (CBB) cycle for photosynthetic reductants and 2) inactivation of H2ase by O2 coevolved in photosynthesis. Recently, we achieved sustainable H2 photoproduction by shifting algae from continuous illumination to a train of short (1 s) light pulses, interrupted by longer (9 s) dark periods. This illumination regime prevents activation of the CBB cycle and redirects photosynthetic electrons to H2ase. Employing membrane-inlet mass spectrometry and H218O, we now present clear evidence that efficient H2 photoproduction in pulse-illuminated algae depends primarily on direct water biophotolysis, where water oxidation at the donor side of photosystem II (PSII) provides electrons for the reduction of protons by H2ase downstream of photosystem I. This occurs exclusively in the absence of CO2 fixation, while with the activation of the CBB cycle by longer (8 s) light pulses the H2 photoproduction ceases and instead a slow overall H2 uptake is observed. We also demonstrate that the loss of PSII activity in DCMU-treated algae or in PSII-deficient mutant cells can be partly compensated for by the indirect (PSII-independent) H2 photoproduction pathway, but only for a short (<1 h) period. Thus, PSII activity is indispensable for a sustained process, where it is responsible for more than 92% of the final H2 yield.
Collapse
|
8
|
Antal T, Petrova E, Slepnyova V, Kukarskikh G, Volgusheva A, Dubini A, Baizhumanov A, Tyystjärvi T, Gorelova O, Baulina O, Chivkunova O, Solovchenko A, Rubin A. Photosynthetic hydrogen production as acclimation mechanism in nutrient-deprived Chlamydomonas. ALGAL RES 2020; 49:101951. [DOI: 10.1016/j.algal.2020.101951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Algae-Bacteria Consortia as a Strategy to Enhance H 2 Production. Cells 2020; 9:cells9061353. [PMID: 32486026 PMCID: PMC7348838 DOI: 10.3390/cells9061353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Biological hydrogen production by microalgae is a potential sustainable, renewable and clean source of energy. However, many barriers limiting photohydrogen production in these microorganisms remain unsolved. In order to explore this potential and make biohydrogen industrially affordable, the unicellular microalga Chlamydomonas reinhardtii is used as a model system to solve barriers and identify new approaches that can improve hydrogen production. Recently, Chlamydomonas–bacteria consortia have opened a new window to improve biohydrogen production. In this study, we review the different consortia that have been successfully employed and analyze the factors that could be behind the improved H2 production.
Collapse
|
10
|
Krishna PS, Morello G, Mamedov F. Characterization of the transient fluorescence wave phenomenon that occurs during H2 production in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6321-6336. [PMID: 31504725 PMCID: PMC6859737 DOI: 10.1093/jxb/erz380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/14/2019] [Indexed: 05/10/2023]
Abstract
The redox state of the plastoquinone (PQ) pool in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cells was studied using single flash-induced variable fluorescence decay kinetics. During H2 production, the fluorescence decay kinetics exhibited an unusual post-illumination rise of variable fluorescence, giving a wave-like appearance. The wave showed the transient fluorescence minimum at ~60 ms after the flash, followed by a rise, reaching the transient fluorescence maximum at ~1 s after the flash, before decaying back to the initial fluorescence level. Similar wave-like fluorescence decay kinetics have been reported previously in anaerobically incubated cyanobacteria but not in green algae. From several different electron and proton transfer inhibitors used, polymyxin B, an inhibitor of type II NAD(P)H dehydrogenase (NDA2), had the effect of eliminating the fluorescence wave feature, indicating involvement of NDA2 in this phenomenon. This was further confirmed by the absence of the fluorescence wave in the Δnda2 mutant lacking NDA2. Additionally, Δnda2 mutants have also shown delayed and diminished H2 production (only 23% if compared with the wild type). Our results show that the fluorescence wave phenomenon in C. reinhardtii is observed under highly reducing conditions and is induced by the NDA2-mediated electron flow from the reduced stromal components to the PQ pool. Therefore, the fluorescence wave phenomenon is a sensitive probe for the complex network of redox reactions at the PQ pool level in the thylakoid membrane. It could be used in further characterization and improvement of the electron transfer pathways leading to H2 production in C. reinhardtii.
Collapse
Affiliation(s)
- Pilla Sankara Krishna
- Molecular Biomimetics, Department of Chemistry – Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Giorgio Morello
- Molecular Biomimetics, Department of Chemistry – Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry – Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Correspondence:
| |
Collapse
|
11
|
Burlacot A, Peltier G, Li-Beisson Y. Subcellular Energetics and Carbon Storage in Chlamydomonas. Cells 2019; 8:E1154. [PMID: 31561610 PMCID: PMC6830334 DOI: 10.3390/cells8101154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023] Open
Abstract
Microalgae have emerged as a promising platform for production of carbon- and energy- rich molecules, notably starch and oil. Establishing an economically viable algal biotechnology sector requires a holistic understanding of algal photosynthesis, physiology, cell cycle and metabolism. Starch/oil productivity is a combined effect of their cellular content and cell division activities. Cell growth, starch and fatty acid synthesis all require carbon building blocks and a source of energy in the form of ATP and NADPH, but with a different requirement in ATP/NADPH ratio. Thus, several cellular mechanisms have been developed by microalgae to balance ATP and NADPH supply which are essentially produced by photosynthesis. Major energy management mechanisms include ATP production by the chloroplast-based cyclic electron flow and NADPH removal by water-water cycles. Furthermore, energetic coupling between chloroplast and other cellular compartments, mitochondria and peroxisome, is increasingly recognized as an important process involved in the chloroplast redox poise. Emerging literature suggests that alterations of energy management pathways affect not only cell fitness and survival, but also influence biomass content and composition. These emerging discoveries are important steps towards diverting algal photosynthetic energy to useful products for biotechnological applications.
Collapse
Affiliation(s)
- Adrien Burlacot
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
12
|
|
13
|
Nawrocki WJ, Bailleul B, Picot D, Cardol P, Rappaport F, Wollman FA, Joliot P. The mechanism of cyclic electron flow. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:433-438. [PMID: 30827891 DOI: 10.1016/j.bbabio.2018.12.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 12/16/2022]
Abstract
Apart from the canonical light-driven linear electron flow (LEF) from water to CO2, numerous regulatory and alternative electron transfer pathways exist in chloroplasts. One of them is the cyclic electron flow around Photosystem I (CEF), contributing to photoprotection of both Photosystem I and II (PSI, PSII) and supplying extra ATP to fix atmospheric carbon. Nonetheless, CEF remains an enigma in the field of functional photosynthesis as we lack understanding of its pathway. Here, we address the discrepancies between functional and genetic/biochemical data in the literature and formulate novel hypotheses about the pathway and regulation of CEF based on recent structural and kinetic information.
Collapse
Affiliation(s)
- W J Nawrocki
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France; Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 4, Chemin de la Vallée, B-4000 Liège, Belgium.
| | - B Bailleul
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| | - D Picot
- Institut de Biologie Physico-Chimique, UMR 7099 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| | - P Cardol
- Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 4, Chemin de la Vallée, B-4000 Liège, Belgium
| | - F Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| | - F-A Wollman
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| | - P Joliot
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
14
|
Jokel M, Nagy V, Tóth SZ, Kosourov S, Allahverdiyeva Y. Elimination of the flavodiiron electron sink facilitates long-term H 2 photoproduction in green algae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:280. [PMID: 31827608 PMCID: PMC6894204 DOI: 10.1186/s13068-019-1618-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/23/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND The development of renewable and sustainable biofuels to cover the future energy demand is one of the most challenging issues of our time. Biohydrogen, produced by photosynthetic microorganisms, has the potential to become a green biofuel and energy carrier for the future sustainable world, since it provides energy without CO2 emission. The recent development of two alternative protocols to induce hydrogen photoproduction in green algae enables the function of the O2-sensitive [FeFe]-hydrogenases, located at the acceptor side of photosystem I, to produce H2 for several days. These protocols prevent carbon fixation and redirect electrons toward H2 production. In the present work, we employed these protocols to a knockout Chlamydomonas reinhardtii mutant lacking flavodiiron proteins (FDPs), thus removing another possible electron competitor with H2 production. RESULTS The deletion of the FDP electron sink resulted in the enhancement of H2 photoproduction relative to wild-type C. reinhardtii. Additionally, the lack of FDPs leads to a more effective obstruction of carbon fixation even under elongated light pulses. CONCLUSIONS We demonstrated that the rather simple adjustment of cultivation conditions together with genetic manipulation of alternative electron pathways of photosynthesis results in efficient re-routing of electrons toward H2 photoproduction. Furthermore, the introduction of a short recovery phase by regular switching from H2 photoproduction to biomass accumulation phase allows to maintain cell fitness and use photosynthetic cells as long-term H2-producing biocatalysts.
Collapse
Affiliation(s)
- Martina Jokel
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Valéria Nagy
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Szilvia Z. Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726 Hungary
| | - Sergey Kosourov
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
15
|
Wirth R, Lakatos G, Böjti T, Maróti G, Bagi Z, Rákhely G, Kovács KL. Anaerobic gaseous biofuel production using microalgal biomass – A review. Anaerobe 2018; 52:1-8. [DOI: 10.1016/j.anaerobe.2018.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|
16
|
Scoma A, Hemschemeier A. The hydrogen metabolism of sulfur deprived Chlamydomonas reinhardtii cells involves hydrogen uptake activities. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Nagy V, Vidal-Meireles A, Tengölics R, Rákhely G, Garab G, Kovács L, Tóth SZ. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2016; 39:1460-72. [PMID: 26714836 DOI: 10.1111/pce.12701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 05/10/2023]
Abstract
In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the induction of photosynthesis in anoxia, and it prevents the over-reduction of the photosynthetic electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex metabolic response resulting in the induction of various stress-related genes, down-regulation of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the evolved O2 inhibits the hydrogenase. Here, we show that upon sulphur deprivation, the ascorbate content in C. reinhardtii increases about 50-fold, reaching the mM range; at this concentration, ascorbate inactivates the Mn-cluster of PSII, and afterwards, it can donate electrons to tyrozin Z(+) at a slow rate. This stage is followed by donor-side-induced photoinhibition, leading to the loss of charge separation activity in PSII and reaction centre degradation. The time point at which maximum ascorbate concentration is reached in the cell is critical for the establishment of anaerobiosis and initiation of H2 production. We also show that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather than hydrogenase activity and starch degradation.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Roland Tengölics
- Department of Biotechnology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, H-6726, Szeged, Hungary
| |
Collapse
|
18
|
Gonzalez-Ballester D, Jurado-Oller JL, Fernandez E. Relevance of nutrient media composition for hydrogen production in Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2015; 125:395-406. [PMID: 25952745 DOI: 10.1007/s11120-015-0152-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/29/2015] [Indexed: 05/23/2023]
Abstract
Microalgae are capable of biological H2 photoproduction from water, solar energy, and a variety of organic substrates. Acclimation responses to different nutrient regimes finely control photosynthetic activity and can influence H2 production. Hence, nutrient stresses are an interesting scenario to study H2 production in photosynthetic organisms. In this review, we mainly focus on the H2-production mechanisms in Chlamydomonas reinhardtii and the physiological relevance of the nutrient media composition when producing H2.
Collapse
Affiliation(s)
- David Gonzalez-Ballester
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071, Córdoba, Spain,
| | | | | |
Collapse
|
19
|
Antal TK, Krendeleva TE, Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. PHOTOSYNTHESIS RESEARCH 2015; 125:357-81. [PMID: 25986411 DOI: 10.1007/s11120-015-0157-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/11/2015] [Indexed: 05/10/2023]
Abstract
A complex regulatory network in the chloroplast of green algae provides an efficient tool for maintenance of energy and redox balance in the cell under aerobic and anaerobic conditions. In this review, we discuss the structural and functional organizations of electron transport pathways in the chloroplast, and regulation of photosynthesis in the green microalga Chlamydomonas reinhardtii. The focus is on the regulatory mechanisms induced in response to nutrient deficiency stress and anoxia and especially on the role of a hydrogenase-mediated reaction in adaptation to highly reducing conditions and ATP deficiency in the cell.
Collapse
Affiliation(s)
- Taras K Antal
- Faculty of Biology, Moscow State University, Vorobyevi Gory, Moscow, 119992, Russia,
| | | | | |
Collapse
|
20
|
Jurado-Oller JL, Dubini A, Galván A, Fernández E, González-Ballester D. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:149. [PMID: 26388936 PMCID: PMC4573693 DOI: 10.1186/s13068-015-0341-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/10/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Despite the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process. RESULTS We have examined several physiological aspects related to acetate assimilation in the context of hydrogen production metabolism. Measurements of oxygen and CO2 levels, acetate uptake, and cell growth were performed under different light conditions, and oxygenic regimes. We show that oxygen and light intensity levels control acetate assimilation and modulate hydrogen production. We also demonstrate that the determination of the contribution of the PSII-dependent hydrogen production pathway in mixotrophic cultures, using the photosynthetic inhibitor DCMU, can lead to dissimilar results when used under various oxygenic regimes. The level of inhibition of DCMU in hydrogen production under low light seems to be linked to the acetate uptake rates. Moreover, we highlight the importance of releasing the hydrogen partial pressure to avoid an inherent inhibitory factor on the hydrogen production. CONCLUSION Low levels of oxygen allow for low acetate uptake rates, and paradoxically, lead to efficient and sustained production of hydrogen. Our data suggest that acetate plays an important role in the hydrogen production process, during non-stressed conditions, other than establishing anaerobiosis, and independent of starch accumulation. Potential metabolic pathways involved in hydrogen production in mixotrophic cultures are discussed. Mixotrophic nutrient-replete cultures under low light are shown to be an alternative for the simultaneous production of hydrogen and biomass.
Collapse
Affiliation(s)
- Jose Luis Jurado-Oller
- />Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071 Córdoba, Spain
| | - Alexandra Dubini
- />Biosciences Center, National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Aurora Galván
- />Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071 Córdoba, Spain
| | - Emilio Fernández
- />Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071 Córdoba, Spain
| | - David González-Ballester
- />Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edif. Severo Ochoa, 14071 Córdoba, Spain
| |
Collapse
|
21
|
Baltz A, Dang KV, Beyly A, Auroy P, Richaud P, Cournac L, Peltier G. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1. PLANT PHYSIOLOGY 2014; 165:1344-1352. [PMID: 24820024 PMCID: PMC4081341 DOI: 10.1104/pp.114.240432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/06/2014] [Indexed: 05/21/2023]
Abstract
Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae.
Collapse
Affiliation(s)
- Anthony Baltz
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France; andAix Marseille Université, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementale, F-13284 Marseille, France
| | - Kieu-Van Dang
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France; andAix Marseille Université, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementale, F-13284 Marseille, France
| | - Audrey Beyly
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France; andAix Marseille Université, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementale, F-13284 Marseille, France
| | - Pascaline Auroy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France; andAix Marseille Université, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementale, F-13284 Marseille, France
| | - Pierre Richaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France; andAix Marseille Université, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementale, F-13284 Marseille, France
| | - Laurent Cournac
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France; andAix Marseille Université, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementale, F-13284 Marseille, France
| | - Gilles Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance, France;Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France; andAix Marseille Université, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementale, F-13284 Marseille, France
| |
Collapse
|
22
|
Noth J, Krawietz D, Hemschemeier A, Happe T. Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. J Biol Chem 2012; 288:4368-77. [PMID: 23258532 DOI: 10.1074/jbc.m112.429985] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In anaerobiosis, the green alga Chlamydomonas reinhardtii evolves molecular hydrogen (H(2)) as one of several fermentation products. H(2) is generated mostly by the [Fe-Fe]-hydrogenase HYDA1, which uses plant type ferredoxin PETF/FDX1 (PETF) as an electron donor. Dark fermentation of the alga is mainly of the mixed acid type, because formate, ethanol, and acetate are generated by a pyruvate:formate lyase pathway similar to Escherichia coli. However, C. reinhardtii also possesses the pyruvate:ferredoxin oxidoreductase PFR1, which, like pyruvate:formate lyase and HYDA1, is localized in the chloroplast. PFR1 has long been suggested to be responsible for the low but significant H(2) accumulation in the dark because the catalytic mechanism of pyruvate:ferredoxin oxidoreductase involves the reduction of ferredoxin. With the aim of proving the biochemical feasibility of the postulated reaction, we have heterologously expressed the PFR1 gene in E. coli. Purified recombinant PFR1 is able to transfer electrons from pyruvate to HYDA1, using the ferredoxins PETF and FDX2 as electron carriers. The high reactivity of PFR1 toward oxaloacetate indicates that in vivo, fermentation might also be coupled to an anaerobically active glyoxylate cycle. Our results suggest that C. reinhardtii employs a clostridial type H(2) production pathway in the dark, especially because C. reinhardtii PFR1 was also able to allow H(2) evolution in reaction mixtures containing Clostridium acetobutylicum 2[4Fe-4S]-ferredoxin and [Fe-Fe]-hydrogenase HYDA.
Collapse
Affiliation(s)
- Jens Noth
- Ruhr Universität Bochum, Fakultät für Biologie und Biotechnologie, AG Photobiotechnologie, 44801 Bochum, Germany
| | | | | | | |
Collapse
|