1
|
Walgraeve J, Ferrero-Bordera B, Maaß S, Becher D, Schwerdtfeger R, van Dijl JM, Seefried M. Diamide-based screening method for the isolation of improved oxidative stress tolerance phenotypes in Bacillus mutant libraries. Microbiol Spectr 2023; 11:e0160823. [PMID: 37819171 PMCID: PMC10714788 DOI: 10.1128/spectrum.01608-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE During their life cycle, bacteria are exposed to a range of different stresses that need to be managed appropriately in order to ensure their growth and viability. This applies not only to bacteria in their natural habitats but also to bacteria employed in biotechnological production processes. Oxidative stress is one of these stresses that may originate either from bacterial metabolism or external factors. In biotechnological settings, it is of critical importance that production strains are resistant to oxidative stresses. Accordingly, this also applies to the major industrial cell factory Bacillus subtilis. In the present study, we, therefore, developed a screen for B. subtilis strains with enhanced oxidative stress tolerance. The results show that our approach is feasible and time-, space-, and resource-efficient. We, therefore, anticipate that it will enhance the development of more robust industrial production strains with improved robustness under conditions of oxidative stress.
Collapse
Affiliation(s)
| | | | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | | | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | |
Collapse
|
2
|
He H, Yu Q, Ding Z, Zhang L, Shi G, Li Y. Biotechnological and food synthetic biology potential of platform strain: Bacillus licheniformis. Synth Syst Biotechnol 2023; 8:281-291. [PMID: 37090063 PMCID: PMC10119484 DOI: 10.1016/j.synbio.2023.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023] Open
Abstract
Bacillus licheniformis is one of the most characteristic Gram-positive bacteria. Its unique genetic background and safety characteristics make it have important biologic applications in the food industry, including, the biosynthesis of high value-added bioproducts, probiotic functions, biological treatment of wastes derived from food production, etc. In this review, these recent advances are summarized and presented systematically for the first time. In addition, we highlight synthetic biology strategies as a potential driver of developing this strain for wider and more efficient application in the food industry. Finally, we present the current challenges faced and provide our unique perspective on relevant future research directions. In summary, this review will provide an illuminating and comprehensive perspective that will allow an in-depth understanding of B. licheniformis and promote its more effective development in the food industry.
Collapse
|
3
|
Dutschei T, Zühlke MK, Welsch N, Eisenack T, Hilkmann M, Krull J, Stühle C, Brott S, Dürwald A, Reisky L, Hehemann JH, Becher D, Schweder T, Bornscheuer UT. Metabolic engineering enables Bacillus licheniformis to grow on the marine polysaccharide ulvan. Microb Cell Fact 2022; 21:207. [PMID: 36217189 PMCID: PMC9549685 DOI: 10.1186/s12934-022-01931-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Marine algae are responsible for half of the global primary production, converting carbon dioxide into organic compounds like carbohydrates. Particularly in eutrophic waters, they can grow into massive algal blooms. This polysaccharide rich biomass represents a cheap and abundant renewable carbon source. In nature, the diverse group of polysaccharides is decomposed by highly specialized microbial catabolic systems. We elucidated the complete degradation pathway of the green algae-specific polysaccharide ulvan in previous studies using a toolbox of enzymes discovered in the marine flavobacterium Formosa agariphila and recombinantly expressed in Escherichia coli. Results In this study we show that ulvan from algal biomass can be used as feedstock for a biotechnological production strain using recombinantly expressed carbohydrate-active enzymes. We demonstrate that Bacillus licheniformis is able to grow on ulvan-derived xylose-containing oligosaccharides. Comparative growth experiments with different ulvan hydrolysates and physiological proteogenomic analyses indicated that analogues of the F. agariphila ulvan lyase and an unsaturated β-glucuronylhydrolase are missing in B. licheniformis. We reveal that the heterologous expression of these two marine enzymes in B. licheniformis enables an efficient conversion of the algal polysaccharide ulvan as carbon and energy source. Conclusion Our data demonstrate the physiological capability of the industrially relevant bacterium B. licheniformis to grow on ulvan. We present a metabolic engineering strategy to enable ulvan-based biorefinery processes using this bacterial cell factory. With this study, we provide a stepping stone for the development of future bioprocesses with Bacillus using the abundant marine renewable carbon source ulvan. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01931-0.
Collapse
Affiliation(s)
- Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Marie-Katherin Zühlke
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Norma Welsch
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Tom Eisenack
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany
| | - Maximilian Hilkmann
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany.,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany
| | - Joris Krull
- Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.,Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany.,Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359, Bremen, Germany
| | - Carlo Stühle
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Stefan Brott
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Alexandra Dürwald
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany
| | - Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.,Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany.,Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359, Bremen, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute for Microbiology, University of Greifswald, 17487, Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany. .,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany. .,Institute of Marine Biotechnology e.V., 17489, Greifswald, Germany.
| |
Collapse
|
4
|
Functional Characterization of Transporters for L-Aspartate in Bacillus licheniformis. FERMENTATION 2022. [DOI: 10.3390/fermentation8010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amino acid efflux and influx transport systems play vital roles in industrial microorganisms’ cell growth and metabolism. However, although biochemically characterized, most of them remain unknown at the molecular level in Bacillus licheniformis. In this study, three proteins, namely, YdgF, YvbW, and YveA, were predicted to be involved in the active transport of L-aspartate (L-Asp). This was verified by manipulating their encoding genes. When growing in the minimal medium with L-Asp as the only carbon and nitrogen source, the growth of strains lacking proteins YdgF, YvbW, and YveA was significantly inhibited compared with the wild-type strains, while supplementing the expression of the corresponding proteins in the single-gene knockout strains could alleviate the inhibition. Upon overexpression, the recombinant proteins mediated the accumulation of L-aspartate to varying degrees. Compared with the wild-type strains, the single knockout strains of the three protein genes exhibited reduced absorption of L-aspartate. In addition, this study focused on the effects of these three proteins on the absorption of β-alanine, L-glutamate, D-serine, D-alanine, and glycine.
Collapse
|
5
|
Deng H, Kong Y, Zhu J, Jiao X, Tong Y, Wan M, Zhao Y, Lin S, Ma Y, Meng X. Proteomic analyses revealed the antibacterial mechanism of Aronia melanocarpa isolated anthocyanins against Escherichia coli O157: H7. Curr Res Food Sci 2022; 5:1559-1569. [PMID: 36147549 PMCID: PMC9486179 DOI: 10.1016/j.crfs.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
|
6
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Zhou C, Zhou H, Li D, Zhang H, Wang H, Lu F. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microb Cell Fact 2020; 19:45. [PMID: 32093734 PMCID: PMC7041084 DOI: 10.1186/s12934-020-01307-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacillus licheniformis 2709 is extensively applied as a host for the high-level production of heterologous proteins, but Bacillus cells often possess unfavorable wild-type properties, such as production of viscous materials and foam during fermentation, which seriously influenced the application in industrial fermentation. How to develop it from a soil bacterium to a super-secreting cell factory harboring less undomesticated properties always plays vital role in industrial production. Besides, the optimal expression pattern of the inducible enzymes like alkaline protease has not been optimized by comparing the transcriptional efficiency of different plasmids and genomic integration sites in B. licheniformis. RESULT Bacillus licheniformis 2709 was genetically modified by disrupting the native lchAC genes related to foaming and the eps cluster encoding the extracellular mucopolysaccharide via a markerless genome-editing method. We further optimized the expression of the alkaline protease gene (aprE) by screening the most efficient expression system among different modular plasmids and genomic loci. The results indicated that genomic expression of aprE was superior to plasmid expression and finally the transcriptional level of aprE greatly increased 1.67-fold through host optimization and chromosomal integration in the vicinity of the origin of replication, while the enzyme activity significantly improved 62.19% compared with the wild-type alkaline protease-producing strain B. licheniformis. CONCLUSION We successfully engineered an AprE high-yielding strain free of undesirable properties and its fermentation traits could be applied to bulk-production by host genetic modification and expression optimization. In summary, host optimization is an enabling technology for improving enzyme production by eliminating the harmful traits of the host and optimizing expression patterns. We believe that these strategies can be applied to improve heterologous protein expression in other Bacillus species.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huiying Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| | - Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| |
Collapse
|
9
|
Zhou C, Zhou H, Zhang H, Lu F. Optimization of alkaline protease production by rational deletion of sporulation related genes in Bacillus licheniformis. Microb Cell Fact 2019; 18:127. [PMID: 31345221 PMCID: PMC6657089 DOI: 10.1186/s12934-019-1174-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our laboratory has constructed a Bacillus licheniformis strain that secretes alkaline protease (AprE) with excellent enzymatic properties. B. licheniformis is generally regarded as safe and has a high industrial exoenzyme secretion capacity, but the host retains some undomesticated characteristic that increase its competitiveness and survival, such as spore-formation, which increases the requirements and difficulties in industrial operations (e.g. sterilization and enzyme activity control). Furthermore, the influence of sporulation on alkaline protease production in B. licheniformis has not been elucidated in detail. RESULT A series of asporogenic variants of the parent strain were constructed by individually knocking out the master regulator genes (spo0A, sigF and sigE) involved in sporulation. Most of the variants formed abortively disporic cells characterized by asymmetric septa at the poles and unable to survive incubation at 75 °C for 10 min. Two of them (ΔsigF and ΔsigE) exhibited superior characteristics in protease production, especially improving the expression of the aprE gene. Under the currently used fermentation conditions, the vegetative production phase of ΔsigF can be prolonged to 72 h, and the highest protease production of ΔsigF reached 29,494 ± 1053 U/mL, which was about 19.7% higher than that of the wild-type strain. CONCLUSION We first constructed three key sporulation-deficient strain to investigate the effect of sporulation on alkaline protease synthesis. The sigF mutant retained important industrial properties such as facilitating the sterilization process, a prolonged stable phase of enzyme production and slower decreasing trend, which will be superior in energy conservation, simpler operations and target product controlling effect. In summary, the work provides a useful industrial host with preferable characteristics and a novel strategy to enhance the production of protease.
Collapse
Affiliation(s)
- Cuixia Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huiying Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Road, Tianjin Economic-Technological Development Area, Tianjin 022, 300457, People's Republic of China.
| |
Collapse
|
10
|
Harwood CR, Mouillon JM, Pohl S, Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 2018; 42:721-738. [PMID: 30053041 PMCID: PMC6199538 DOI: 10.1093/femsre/fuy028] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/17/2018] [Indexed: 11/14/2022] Open
Abstract
Members of the 'Bacillus subtilis group' include some of the most commercially important bacteria, used for the production of a wide range of industrial enzymes and fine biochemicals. Increasingly, group members have been developed for use as animal feed enhancers and antifungal biocontrol agents. The group has long been recognised to produce a range of secondary metabolites and, despite their long history of safe usage, this has resulted in an increased focus on their safety. Traditional methods used to detect the production of secondary metabolites and other potentially harmful compounds have relied on phenotypic tests. Such approaches are time consuming and, in some cases, lack specificity. Nowadays, accessibility to genome data and associated bioinformatical tools provides a powerful means for identifying gene clusters associated with the synthesis of secondary metabolites. This review focuses primarily on well-characterised strains of B. subtilis and B. licheniformis and their synthesis of non-ribosomally synthesised peptides and polyketides. Where known, the activities and toxicities of their secondary metabolites are discussed, together with the limitations of assays currently used to assess their toxicity. Finally, the regulatory framework under which such strains are authorised for use in the production of food and feed enzymes is also reviewed.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Jean-Marie Mouillon
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoevej 36, DK-2880 Bagsvaerd, Denmark
| | - Susanne Pohl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoevej 36, DK-2880 Bagsvaerd, Denmark
| |
Collapse
|
11
|
Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. Curr Top Microbiol Immunol 2017; 404:267-308. [PMID: 27885530 DOI: 10.1007/82_2016_49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.
Collapse
|
12
|
Tandem mass tag-based quantitative proteomics analyses reveal the response of Bacillus licheniformis to high growth temperatures. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1279-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Kim JH, Yang YM, Ji CJ, Ryu SH, Won YB, Ju SY, Kwon Y, Lee YE, Youn H, Lee JW. The inability of Bacillus licheniformis perR mutant to grow is mainly due to the lack of PerR-mediated fur repression. J Microbiol 2017; 55:457-463. [PMID: 28434086 DOI: 10.1007/s12275-017-7051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
Abstract
PerR, a member of Fur family protein, is a metal-dependent H2O2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerRBL, PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerRBL. PerRBL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerRBS. However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H2O2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerRBL and PerRBS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoon-Mo Yang
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chang-Jun Ji
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Su-Hyun Ryu
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Bin Won
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Shin-Yeong Ju
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yumi Kwon
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeh-Eun Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hwan Youn
- Department of Biology, California State University Fresno, Fresno, CA, 93740-8034, USA.
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
14
|
Kim JH, Won YB, Ji CJ, Yang YM, Ryu SH, Ju SY, Kwon Y, Lee YE, Lee JW. The difference in in vivo sensitivity between Bacillus licheniformis PerR and Bacillus subtilis PerR is due to the different cellular environments. Biochem Biophys Res Commun 2017; 484:125-131. [PMID: 28104400 DOI: 10.1016/j.bbrc.2017.01.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/16/2022]
Abstract
PerR, a member of Fur family of metal-dependent regulators, is a major peroxide sensor in many Gram positive bacteria, and controls the expression of genes involved in peroxide resistance. Bacillus licheniformis, a close relative to the well-studied model organism Bacillus subtilis, contains three PerR-like proteins (PerRBL, PerR2 and PerR3) in addition to Fur and Zur. In the present study, we characterized the role of PerRBL in B. licheniformis. In vitro and in vivo studies indicate that PerRBL, like PerRBS, uses either Fe2+ or Mn2+ as a corepressor and only the Fe2+-bound form of PerRBL senses low levels of H2O2 by iron-mediated histidine oxidation. Interestingly, regardless of the difference in H2O2 sensitivity, if any, between PerRBL and PerRBS, B. licheniformis expressing PerRBL or PerRBS could sense lower levels of H2O2 and was more sensitive to H2O2 than B. subtilis expressing PerRBL or PerRBS. This result suggests that the differences in cellular milieu between B. subtilis and B. licheniformis, rather than the intrinsic differences in PerRBS and PerRBLper se, affect the H2O2 sensing ability of PerR inside the cell and the H2O2 resistance of cell. In contrast, B. licheniformis and B. subtilis expressing Staphylococcus aureus PerR (PerRSA), which is more sensitive to H2O2 than PerRBL and PerRBS, were more resistant to H2O2 than those expressing either PerRBL or PerRBS. This result indicates that the sufficient difference in H2O2 susceptibility of PerR proteins can override the difference in cellular environment and affect the resistance of cell to H2O2.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Bin Won
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Chang-Jun Ji
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoon-Mo Yang
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Su-Hyun Ryu
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Shin-Yeong Ju
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Yumi Kwon
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Yeh-Eun Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
15
|
Sohier D, Riou A, Postollec F. A typical day working in a laboratory in 2050: are microbiologists becoming chemists and serene workers? Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kim JH, Ji CJ, Ju SY, Yang YM, Ryu SH, Kwon Y, Won YB, Lee YE, Youn H, Lee JW. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues. PLoS One 2016; 11:e0155539. [PMID: 27176811 PMCID: PMC4866751 DOI: 10.1371/journal.pone.0155539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/29/2016] [Indexed: 11/18/2022] Open
Abstract
The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chang-Jun Ji
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Shin-Yeong Ju
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoon-Mo Yang
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Su-Hyun Ryu
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yumi Kwon
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Bin Won
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeh-Eun Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hwan Youn
- Department of Biology, California State University Fresno, Fresno, California, 93740–8034, United States of America
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- * E-mail:
| |
Collapse
|