1
|
Tran PHN, Lee TS. Harnessing organelle engineering to facilitate biofuels and biochemicals production in yeast. J Microbiol 2025; 63:e2501006. [PMID: 40195834 DOI: 10.71150/jm.2501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
Microbial biosynthesis using yeast species offers numerous advantages to produce industrially relevant biofuels and biochemicals. Conventional metabolic engineering approaches in yeast focus on biosynthetic pathways in the cytoplasm, but these approaches are disturbed by various undesired factors including metabolic crosstalk, competing pathways and insufficient precursors. Given that eukaryotic cells contain subcellular organelles with distinct physicochemical properties, an emerging strategy to overcome cytosolic pathway engineering bottlenecks is through repurposing these organelles as specialized microbial cell factories for enhanced production of valuable chemicals. Here, we review recent progress and significant outcomes of harnessing organelle engineering for biofuels and biochemicals production in both conventional and non-conventional yeasts. We highlight key engineering strategies for the compartmentalization of biosynthetic pathways within specific organelles such as mitochondria, peroxisomes, and endoplasmic reticulum; involved in engineering of signal peptide, cofactor and energy enhancement, organelle biogenesis and dual subcellular engineering. Finally, we discuss the potential and challenges of organelle engineering for future studies and propose an automated pipeline to fully exploit this approach.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen Tran
- Joint BioEnergy Institute, Emeryville 94608, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville 94608, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| |
Collapse
|
2
|
Li DX, Guo Q, Yang YX, Jiang SJ, Ji XJ, Ye C, Wang YT, Shi TQ. Recent Advances and Multiple Strategies of Monoterpenoid Overproduction in Saccharomyces cerevisiae and Yarrowia lipolytica. ACS Synth Biol 2024; 13:1647-1662. [PMID: 38860708 DOI: 10.1021/acssynbio.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.
Collapse
Affiliation(s)
- Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Shun-Jie Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
3
|
Huang G, Li J, Lin J, Duan C, Yan G. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2024; 51:kuae015. [PMID: 38621758 PMCID: PMC11074996 DOI: 10.1093/jimb/kuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Lycopene has been widely used in the food industry and medical field due to its antioxidant, anti-cancer, and anti-inflammatory properties. However, achieving efficient manufacture of lycopene using chassis cells on an industrial scale remains a major challenge. Herein, we attempted to integrate multiple metabolic engineering strategies to establish an efficient and balanced lycopene biosynthetic system in Saccharomyces cerevisiae. First, the lycopene synthesis pathway was modularized to sequentially enhance the metabolic flux of the mevalonate pathway, the acetyl-CoA supply module, and lycopene exogenous enzymatic module. The modular operation enabled the efficient conversion of acetyl-CoA to downstream pathway of lycopene synthesis, resulting in a 3.1-fold increase of lycopene yield. Second, we introduced acetate as an exogenous carbon source and utilized an acetate-repressible promoter to replace the natural ERG9 promoter. This approach not only enhanced the supply of acetyl-CoA but also concurrently diminished the flux toward the competitive ergosterol pathway. As a result, a further 42.3% increase in lycopene production was observed. Third, we optimized NADPH supply and mitigated cytotoxicity by overexpressing ABC transporters to promote lycopene efflux. The obtained strain YLY-PDR11 showed a 12.7-fold increase in extracellular lycopene level compared to the control strain. Finally, the total lycopene yield reached 343.7 mg/L, which was 4.3 times higher than that of the initial strain YLY-04. Our results demonstrate that combining multi-modular metabolic engineering with efflux engineering is an effective approach to improve the production of lycopene. This strategy can also be applied to the overproduction of other desirable isoprenoid compounds with similar synthesis and storage patterns in S. cerevisiae. ONE-SENTENCE SUMMARY In this research, lycopene production in yeast was markedly enhanced by integrating a multi-modular approach, acetate signaling-based down-regulation of competitive pathways, and an efflux optimization strategy.
Collapse
Affiliation(s)
- Guangxi Huang
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiarong Li
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jingyuan Lin
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Guoliang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Key Laboratory of Food Bioengineering (China National Light Industry), China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Li M, Yang R, Guo J, Liu M, Yang J. Optimization of IspS ib stability through directed evolution to improve isoprene production. Appl Environ Microbiol 2023; 89:e0121823. [PMID: 37815338 PMCID: PMC10617563 DOI: 10.1128/aem.01218-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/11/2023] [Indexed: 10/11/2023] Open
Abstract
Enzyme stability is often a limiting factor in the microbial production of high-value-added chemicals and commercial enzymes. A previous study by our research group revealed that the unstable isoprene synthase from Ipomoea batatas (IspSib) critically limits isoprene production in engineered Escherichia coli. Directed evolution was, therefore, performed in the present study to improve the thermostability of IspSib. First, a tripartite protein folding system designated as lac'-IspSib-'lac, which could couple the stability of IspSib to antibiotic ampicillin resistance, was successfully constructed for the high-throughput screening of variants. Directed evolution of IspSib was then performed through two rounds of random mutation and site-saturation mutation, which produced three variants with higher stability: IspSibN397V A476V, IspSibN397V A476T, and IspSibN397V A476C. The subsequent in vitro thermostability test confirmed the increased protein stability. The melting temperatures of the screened variants IspSibN397V A476V, IspSibN397V A476T, and IspSibN397V A476C were 45.1 ± 0.9°C, 46.1 ± 0.7°C, and 47.2 ± 0.3°C, respectively, each of which was higher than the melting temperature of wild-type IspSib (41.5 ± 0.4°C). The production of isoprene at the shake-flask fermentation level was increased by 1.94-folds, to 1,335 mg/L, when using IspSibN397V A476T. These findings provide insights into the optimization of the thermostability of terpene synthases, which are key enzymes for isoprenoid production in engineered microorganisms. In addition, the present study would serve as a successful example of improving enzyme stability without requiring detailed structural information or catalytic reaction mechanisms.IMPORTANCEThe poor thermostability of IspSib critically limits isoprene production in engineered Escherichia coli. A tripartite protein folding system designated as lac'-IspSib-'lac, which could couple the stability of IspSib to antibiotic ampicillin resistance, was successfully constructed for the first time. In order to improve the enzyme stability of IspSib, the directed evolution of IspSib was performed through error-PCR, and high-throughput screening was realized using the lac'-IspSib-'lac system. Three positive variants with increased thermostability were obtained. The thermostability test and the melting temperature analysis confirmed the increased stability of the enzyme. The production of isoprene was increased by 1.94-folds, to 1,335 mg/L, using IspSibN397V A476T. The directed evolution process reported here is also applicable to other terpene synthases key to isoprenoid production.
Collapse
Affiliation(s)
- Meijie Li
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Rumeng Yang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jing Guo
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Jianming Yang
- Energy-rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Cao C, Zhang H, Cao X, Kong S, Zhu B, Lin X, Zhou YJ. Construction and Optimization of Nonclassical Isoprenoid Biosynthetic Pathways in Yeast Peroxisomes for (+)-Valencene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437260 DOI: 10.1021/acs.jafc.3c02932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Isoprenoids are a kind of natural product with various activities, but their plant extraction suffers low concentration. The rapid development of synthetic biology offers a sustainable route for supply of high-value-added natural products by engineering microorganisms. However, the complexity of cellular metabolism makes engineering endogenous isoprenoid biosynthetic pathways with metabolic interaction difficult. Here, for the first time, we constructed and optimized three types of isoprenoid pathways (the Haloarchaea-type, Thermoplasma-type, and isoprenoid alcohol pathway) in yeast peroxisomes for the synthesis of sesquiterpene (+)-valencene. In yeast, the Haloarchaea-type MVA pathway is more effective than the classical MVA pathway. MVK and IPK were determined to be the rate-limiting steps of the Haloarchaea-type MVA pathway, and the production of 869 mg/L (+)-valencene under fed-batch fermentation in shake flasks was realized. This work expands isoprenoid synthesis in eukaryotes and provides a more efficient pathway for isoprenoid synthesis.
Collapse
Affiliation(s)
- Chunyang Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Haiyan Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Sijia Kong
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
6
|
Ali MK, Liu X, Li J, Zhu X, Sen B, Wang G. Alpha-Tocopherol Significantly Improved Squalene Production Yield of Aurantiochytrium sp. TWZ-97 through Lowering ROS levels and Up-Regulating Key Genes of Central Carbon Metabolism Pathways. Antioxidants (Basel) 2023; 12:antiox12051034. [PMID: 37237900 DOI: 10.3390/antiox12051034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Media supplementation has proven to be an effective technique for improving byproduct yield during microbial fermentation. This study explored the impact of different concentrations of bioactive compounds, namely alpha-tocopherol, mannitol, melatonin, sesamol, ascorbic acid, and biotin, on the Aurantiochytrium sp. TWZ-97 culture. Our investigation revealed that alpha-tocopherol was the most effective compound in reducing the reactive oxygen species (ROS) burden, both directly and indirectly. Adding 0.7 g/L of alpha-tocopherol led to an 18% improvement in biomass, from 6.29 g/L to 7.42 g/L. Moreover, the squalene concentration increased from 129.8 mg/L to 240.2 mg/L, indicating an 85% improvement, while the squalene yield increased by 63.2%, from 19.82 mg/g to 32.4 mg/g. Additionally, our comparative transcriptomics analysis suggested that several genes involved in glycolysis, pentose phosphate pathway, TCA cycle, and MVA pathway were overexpressed following alpha-tocopherol supplementation. The alpha-tocopherol supplementation also lowered ROS levels by binding directly to ROS generated in the fermentation medium and indirectly by stimulating genes that encode antioxidative enzymes, thereby decreasing the ROS burden. Our findings suggest that alpha-tocopherol supplementation can be an effective method for improving squalene production in Aurantiochytrium sp. TWZ-97 culture.
Collapse
Affiliation(s)
- Memon Kashif Ali
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiuping Liu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xingyu Zhu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Qingdao Institute for Ocean Technology of Tianjin University Co., Ltd., Qingdao 266237, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
A highly efficient transcriptome-based biosynthesis of non-ethanol chemicals in Crabtree negative Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:37. [PMID: 36870984 PMCID: PMC9985264 DOI: 10.1186/s13068-023-02276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/04/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Owing to the Crabtree effect, Saccharomyces cerevisiae produces a large amount of ethanol in the presence of oxygen and excess glucose, leading to a loss of carbon for the biosynthesis of non-ethanol chemicals. In the present study, the potential of a newly constructed Crabtree negative S. cerevisiae, as a chassis cell, was explored for the biosynthesis of various non-ethanol compounds. RESULTS To understand the metabolic characteristics of Crabtree negative S. cerevisiae sZJD-28, its transcriptional profile was compared with that of Crabtree positive S. cerevisiae CEN.PK113-11C. The reporter GO term analysis showed that, in sZJD-28, genes associated with translational processes were down-regulated, while those related to carbon metabolism were significantly up-regulated. To verify a potential increase in carbon metabolism for the Crabtree negative strain, the production of non-ethanol chemicals, derived from different metabolic nodes, was then undertaken for both sZJD-28 and CEN.PK113-11C. At the pyruvate node, production of 2,3-butanediol and lactate in sZJD-28-based strains was remarkably higher than that of CEN.PK113-11C-based ones, representing 16.8- and 1.65-fold increase in titer, as well as 4.5-fold and 0.65-fold increase in specific titer (mg/L/OD), respectively. Similarly, for shikimate derived p-coumaric acid, the titer of sZJD-28-based strain was 0.68-fold higher than for CEN.PK113-11C-based one, with a 0.98-fold increase in specific titer. While farnesene and lycopene, two acetoacetyl-CoA derivatives, showed 0.21- and 1.88-fold increases in titer, respectively. From malonyl-CoA, the titer of 3-hydroxypropionate and fatty acids in sZJD-28-based strains were 0.19- and 0.76-fold higher than that of CEN.PK113-11C-based ones, respectively. In fact, yields of products also improved by the same fold due to the absence of residual glucose. Fed-batch fermentation further showed that the titer of free fatty acids in sZJD-28-based strain 28-FFA-E reached 6295.6 mg/L with a highest reported specific titer of 247.7 mg/L/OD in S. cerevisiae. CONCLUSIONS Compared with CEN.PK113-11C, the Crabtree negative sZJD-28 strain displayed a significantly different transcriptional profile and obvious advantages in the biosynthesis of non-ethanol chemicals due to redirected carbon and energy sources towards metabolite biosynthesis. The findings, therefore, suggest that a Crabtree negative S. cerevisiae strain could be a promising chassis cell for the biosynthesis of various chemicals.
Collapse
|
8
|
Xu M, Sun M, Meng X, Zhang W, Shen Y, Liu W. Engineering Pheromone-Mediated Quorum Sensing with Enhanced Response Output Increases Fucosyllactose Production in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:238-248. [PMID: 36520033 DOI: 10.1021/acssynbio.2c00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Engineering dynamic control of gene expression is desirable because many engineered functions interfere with endogenous cellular processes that have evolved to facilitate growth and survival. Minimizing conflict between growth and production phases can therefore improve product titers in microbial cell factories. We developed an autoinduced gene expression system by rewiring the Saccharomyces cerevisiae pheromone response pathway. To ameliorate growth reduction due to the early onset response at low population densities, α-pheromone of Kluyveromyces lactis (Kα) instead of S. cerevisiae (Sα) was expressed in mating type "a" yeast. Kα-induced expression of pathway genes was further enhanced by the transcriptional activator Gal4p expressed under the control of the pheromone-responsive FUS1 promoter (Pfus1). As a demonstration, the engineered circuit combined with the deletion of the endogenous galactose metabolic pathway genes was applied to the production of human milk oligosaccharides, 2'-fucosyllactose (2'-FL) and 3-fucosllactose (3-FL). The engineered strains produced 3.37 g/L 2'-FL and 2.36 g/L 3-FL on glucose with a volumetric productivity of 0.14 and 0.03 g/L·h-1 in batch flask cultivation, respectively. These represented 147 and 153% increases over the control strains on galactose wherein the respective pathway genes are expressed under GAL promoters only. Further fed-batch fermentation achieved titers of 32.05 and 20.91 g/L for 2' and 3-FL, respectively. The genetic program developed here thus represents a promising option for implementing dynamic regulation in yeast and could be used for the production of biochemicals that may place a heavy metabolic burden on cell growth.
Collapse
Affiliation(s)
- Mingyuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Mengtong Sun
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| |
Collapse
|
9
|
Ma T, Zong H, Lu X, Zhuge B. Synthesis of pinene in the industrial strain Candida glycerinogenes by modification of its mevalonate pathway. J Microbiol 2022; 60:1191-1200. [PMID: 36279103 DOI: 10.1007/s12275-022-2344-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Terpenes have many applications and are widely found in nature, but recent progress in synthetic biology has enabled the use of microorganisms as chassis cells for the synthesis of these compounds. Candida glycerinogenes (C. glycerinogenes) is an industrial strain that may be developed as a chassis for the synthesis of terpenes since it has a tolerance to hyperosmolality and high sugar, and has a complete mevalonate (MVA) pathway. However, monoterpenes such as pinene are highly toxic, and the tolerance of C. glycerinogenes to pinene was investigated. We also measured the content of mevalonate and squalene to evaluate the strength of the MVA pathway. To determine terpene synthesis capacity, a pathway for the synthesis of pinene was constructed in C. glycerinogenes. Pinene production was improved by overexpression, gene knockdown and antisense RNA inhibition. Pinene production was mainly enhanced by strengthening the upstream MVA pathway and inhibiting the production of by-products from the downstream pathway. With these strategies, yield could be increased by almost 16 times, to 6.0 mg/L. Overall, we successfully constructed a pinene synthesis pathway in C. glycerinogenes and enhanced pinene production through metabolic modification.
Collapse
Affiliation(s)
- Tengfei Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
10
|
Zhang Y, Cao X, Wang J, Tang F. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway. Microb Cell Fact 2022; 21:212. [PMID: 36243714 PMCID: PMC9571491 DOI: 10.1186/s12934-022-01934-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linalool is a monoterpenoid, also a vital silvichemical with commercial applications in cosmetics, flavoring ingredients, and medicines. Regulation of mevalonate (MVA) pathway metabolic flux is a common strategy to engineer Saccharomyces cerevisiae for efficient linalool production. However, metabolic regulation of the MVA pathway is complex and involves competition for central carbon metabolism, resulting in limited contents of target metabolites. RESULTS In this study, first, a truncated linalool synthase (t26AaLS1) from Actinidia arguta was selected for the production of linalool in S. cerevisiae. To simplify the complexity of the metabolic regulation of the MVA pathway and increase the flux of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), we introduced the two-step isopentenyl utilization pathway (IUP) into S. cerevisiae, which could produce large amounts of IPP/DMAPP. Further, the S. cerevisiae IDI1 (ecoding isopentenyl diphosphate delta-isomerase) and ERG20F96W-N127W (encoding farnesyl diphosphate synthase) genes were integrated into the yeast genome, combined with the strategies of copy number variation of the t26AaLS1 and ERG20F96W-N127W genes to increase the metabolic flux of the downstream IPP, as well as optimization of isoprenol and prenol concentrations, resulting in a 4.8-fold increase in the linalool titer. Eventually, under the optimization of carbon sources and Mg2+ addition, a maximum linalool titer of 142.88 mg/L was obtained in the two-phase extractive shake flask fermentation. CONCLUSIONS The results show that the efficient synthesis of linalool in S. cerevisiae could be achieved through a two-step pathway, gene expression adjustment, and optimization of culture conditions. The study may provide a valuable reference for the other monoterpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Yaoyao Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Xianshuang Cao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Jin Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China.
| |
Collapse
|
11
|
Wu QY, Huang ZY, Wang JY, Yu HL, Xu JH. Construction of an Escherichia coli cell factory to synthesize taxadien-5α-ol, the key precursor of anti-cancer drug paclitaxel. BIORESOUR BIOPROCESS 2022; 9:82. [PMID: 38647602 PMCID: PMC10992617 DOI: 10.1186/s40643-022-00569-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Paclitaxel (Taxol™), an alkaloid of diterpenoid family, is one of the most widely used anti-cancer drugs due to its effectiveness against a variety of tumors. Rather than directly extraction and chemical synthesis of paclitaxel or its intermediates from yew plants, construction of a microbial cell factory for paclitaxel biosynthesis will be more efficient and sustainable. The challenge for biosynthesis of paclitaxel lies on the insufficient precursor, such as taxadien-5α-ol. In this study, we report a recombinant Escherichia coli strain constructed with a heterologous mevalonate pathway, a taxadiene synthase from yew, and a cytochrome P450-mediated oxygenation system for the de novo production of taxadien-5α-ol, the first product of the multi-step taxadiene oxygenation metabolism. The key enzymes including taxadiene synthases and cytochrome P450 reductases were screened, and the linker for fusing taxadiene-5α-hydroxylase with its reductase partner cytochrome P450 reductase was optimized. By reducing the metabolic burden and optimizing the fermentation conditions, the final production of total oxygenated taxanes was raised up to 27 mg L-1 in a 50-mL flask cultivation, of which the yield of taxadien-5α-ol was 7.0 mg L-1, representing approximately a 12-fold and 23-fold improvements, respectively, as compared with the initial titers. The engineered MVA pathway for the overproduction of terpenoid precursors can serve as an efficient platform for the production of other valuable terpenoids.
Collapse
Affiliation(s)
- Qing-Yang Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jin-Yi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
12
|
Zhang L, Li YL, Hu JH, Liu ZY. Overexpression of enzymes in glycolysis and energy metabolic pathways to enhance coenzyme Q10 production in Rhodobacter sphaeroides VK-2-3. Front Microbiol 2022; 13:931470. [PMID: 36033867 PMCID: PMC9412181 DOI: 10.3389/fmicb.2022.931470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
We subjected the components of the glycolysis and energy metabolism pathways of Rhodobacter sphaeroides (R. sphaeroides) to metabolic engineering to improve the titer and yield of coenzyme Q10 (CoQ10). Phosphofructokinase (PFK), cyclic adenylate-dependent protein kinase (PKAC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and adenosine triphosphate hydrolase (KdpC) were overexpressed in R. sphaeroides VK-2-3 (VK-2-3). The strains were labeled R. sphaeroides PFK (RS.PFK), RS.PKAC, RS.PFK–PKAC, RS.KdpC, RS.GAPDH, and RS.KdpC–GAPDH. Results showed that the CoQ10 titers of RS.PFK, RS.PKAC, and RS.PFK–PKAC were 300.96 ± 0.87, 405.94 ± 4.77, and 379.94 ± 0.42 mg/l, respectively. The CoQ10 titers of RS.PFK and VK-2-3 were not significantly different; however, those for RS.PKAC and RS.PFK–PKAC were 13 and 6% higher than that of VK-2-3, respectively. Further, the titers of RS.KdpC, RS.GAPDH, and RS.KdpC–GAPDH were 360.17 ± 0.39, 409.79 ± 0.76, and 359.87 ± 1.14 mg/l, respectively. The titers of RS.KdpC and RS.KdpC–GAPDH were not significantly different from that for VK-2-3, whereas that for RS.GAPDH was 14% higher than that of VK-2-3. Finally, when the cultures of RS.GAPDH and VK-2-3 were scaled up in 5-L fermenters, the CoQ10 titers and RS.GAPDH yields increased by 44.3 and 37.8%, respectively, compared with VK-2-3.To the best of our knowledge, the glycolysis pathway of R. sphaeroides was studied for the first time in this study. We genetically modified the components of the energy metabolism pathway to obtain the strain with high yield of CoQ10 mutant RS.GAPDH. The findings of this study can serve as a basis for future studies involving metabolic engineering of CoQ10-producing strains.
Collapse
Affiliation(s)
- Long Zhang
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, Inner Mongolia, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot, Inner Mongolia, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
| | - Yong-li Li
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, Inner Mongolia, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot, Inner Mongolia, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
| | - Jian-hua Hu
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, Inner Mongolia, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot, Inner Mongolia, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
| | - Zhan-ying Liu
- Inner Mongolia Energy Conservation and Emission Reduction Engineering Technology Research Center for Fermentation Industry, Hohhot, Inner Mongolia, China
- Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-fermentation Industry, Hohhot, Inner Mongolia, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, China
- *Correspondence: Zhan-ying Liu,
| |
Collapse
|
13
|
Isar J, Jain D, Joshi H, Dhoot S, Rangaswamy V. MICROBIAL isoprene production: an overview. World J Microbiol Biotechnol 2022; 38:122. [PMID: 35637362 DOI: 10.1007/s11274-022-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Isoprene, a volatile C5 hydrocarbon, is a precursor of synthetic rubber and an important building block for a variety of natural products, solely being produced by petrochemical routes. To mitigate the ever-increasing contribution of petrochemical industry to global warming through significant carbon (CO2) evolution, bio-based process for isoprene production using microbial cell factories have been explored. Highly efficient fermentation-based processes have been studied for little over a decade now with extensive research on the rational strain development for creating robust strains for commercial isoprene production. Most of these studies involved sugars as feedstocks and using naturally occurring isoprene pathways viz., mevalonate and methyl erythritol pathway in E. coli. Recent advances, driven by efforts in reducing environmental pollution, have focused on utilization of inorganic CO2 by cyanobacteria or syngas from waste gases by acetogens for isoprene production. This review endeavors to capture the latest relevant progress made in rational strain development, metabolic engineering and synthetic biology strategies used, challenges in fermentation process development at lab and commercial scale production of isoprene along with a future perspective pertaining to this area of research.
Collapse
Affiliation(s)
- Jasmine Isar
- High Value Chemicals, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, 400701, India
| | - Dharmendra Jain
- High Value Chemicals, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, 400701, India
| | - Harshvardhan Joshi
- High Value Chemicals, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, 400701, India
| | - Shrikant Dhoot
- High Value Chemicals, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, 400701, India
| | - Vidhya Rangaswamy
- High Value Chemicals, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Navi Mumbai, 400701, India.
| |
Collapse
|
14
|
Klaehn JR, Orme CJ, Ginosar DM. Separation of isoprene from biologically-derived gas streams. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- John R. Klaehn
- Biological and Chemical Processing and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho, United States
| | - Christopher J. Orme
- Biological and Chemical Processing and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho, United States
| | - Daniel M. Ginosar
- Biological and Chemical Processing and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho, United States
| |
Collapse
|
15
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
16
|
Zhang X, Liu X, Meng Y, Zhang L, Qiao J, Zhao GR. Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Xu M, Meng X, Zhang W, Shen Y, Liu W. Improved production of 2'-fucosyllactose in engineered Saccharomyces cerevisiae expressing a putative α-1, 2-fucosyltransferase from Bacillus cereus. Microb Cell Fact 2021; 20:165. [PMID: 34425826 PMCID: PMC8381501 DOI: 10.1186/s12934-021-01657-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background 2′-fucosyllactose (2′-FL) is one of the most abundant oligosaccharides in human milk. It constitutes an authorized functional additive to improve infant nutrition and health in manufactured infant formulations. As a result, a cost-effective method for mass production of 2′-FL is highly desirable. Results A microbial cell factory for 2′-FL production was constructed in Saccharomyces cerevisiae by expressing a putative α-1, 2-fucosyltransferase from Bacillus cereus (FutBc) and enhancing the de novo GDP-l-fucose biosynthesis. When enabled lactose uptake, this system produced 2.54 g/L of 2′-FL with a batch flask cultivation using galactose as inducer and carbon source, representing a 1.8-fold increase compared with the commonly used α-1, 2-fucosyltransferase from Helicobacter pylori (FutC). The production of 2′-FL was further increased to 3.45 g/L by fortifying GDP-mannose synthesis. Further deleting gal80 enabled the engineered strain to produce 26.63 g/L of 2′-FL with a yield of 0.85 mol/mol from lactose with sucrose as a carbon source in a fed-batch fermentation. Conclusion FutBc combined with the other reported engineering strategies holds great potential for developing commercial scale processes for economic 2′-FL production using a food-grade microbial cell factory. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01657-5.
Collapse
Affiliation(s)
- Mingyuan Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China.
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
18
|
Kim TY, Park H, Kim SK, Kim SJ, Park YC. Production of (-)-α-bisabolol in metabolically engineered Saccharomyces cerevisiae. J Biotechnol 2021; 340:13-21. [PMID: 34391805 DOI: 10.1016/j.jbiotec.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
(-)-α-Bisabolol is a natural monocyclic sesquiterpene alcohol present in German chamomile and has been used as an ingredient of functional foods, cosmetics and pharmaceuticals. In this study, metabolic engineering strategies were attempted to produce (-)-α-bisabolol in Saccharomyces cerevisiae. The codon-optimized MrBBS gene coding for (-)-α-bisabolol synthase from Matricaria recutita was expressed in S. cerevisiae for (-)-α-bisabolol production. The resulting strain (DM) produced 9.5 mg/L of (-)-α-bisabolol in 24 h of batch culture. Additionally, the mevalonate pathway was intensified by introducing a truncated HMG1 gene coding for HMG-CoA reductase and ERG10 encoding acetyl-CoA thiolase. The resulting strain (DtEM) produced a 2.9-fold increased concentration of (-)-α-bisabolol than the DM strain. To increase the acetyl-CoA pool, the ACS1 gene coding for acetyl-CoA synthetase was also overexpressed in the DtEM strain. Finally, the DtEMA strain produced 124 mg/L of (-)-α-bisabolol with 2.7 mg/L-h of productivity in a fed-batch fermentation, which were 13 and 6.8 times higher than the DM strain in batch culture, respectively. Conclusively, these metabolically-engineered approaches might pave the way for the sustainable production of other sesquiterpenes in engineered S. cerevisiae.
Collapse
Affiliation(s)
- Tae Yeob Kim
- Department of Bio and Fermentation Convergence Technology, and Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Haeseong Park
- Department of Bio and Fermentation Convergence Technology, and Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea; Center for Industrialization of Agricultural and Livestock Microorganism (CIALM), Jeongeup 56212, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, and Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
19
|
Shaikh KM, Odaneth AA. Metabolic engineering of Yarrowia lipolytica for the production of isoprene. Biotechnol Prog 2021; 37:e3201. [PMID: 34369095 DOI: 10.1002/btpr.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Yarrowia lipolytica has recently emerged as a prominent microbial host for production of terpenoids. Its robust metabolism and growth in wide range of substrates offer several advantages at industrial scale. In the present study, we investigate the metabolic potential of Y. lipolytica to produce isoprene. Sustainable production of isoprene has been attempted through engineering several microbial hosts; however, the engineering studies performed so far are challenged with low titers. Engineering of Y. lipolytica, which have inherent high acetyl-CoA flux could fuel precursors into the biosynthesis of isoprene and thus is an approach that would offer sustainable production opportunities. The present work, therefore, explores this opportunity wherein a codon-optimized IspS gene (single copy) of Pueraria montana was integrated into the Y. lipolytica genome. With no detectable isoprene level during the growth or stationary phase of modified strain, attempts were made to overexpress enzymes from MVA pathway. GC-FID analyses of gas collected during stationary phase revealed that engineered strains were able to produce detectable isoprene only after overexpressing HMGR (or tHMGR). The significant role of HMGR (tHMGR) in diverting the pathway flux toward DMAPP is thus highlighted in our study. Nevertheless, the final recombinant strains overexpressing HMGR (tHMGR) along with Erg13 and IDI showed isoprene titers of ~500 μg/L and yields of ~80 μg/g. Further characterization of the recombinant strains revealed high lipid and squalene content compared to the unmodified strain. Overall, the preliminary results of our laboratory-scale studies represent Y. lipolytica as a promising host for fermentative production of isoprene.
Collapse
Affiliation(s)
- Kurshedaktar M Shaikh
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Mumbai, India
| | - Annamma A Odaneth
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology (formerly UDCT), Mumbai, India
| |
Collapse
|
20
|
Zhang Q, Yu S, Lyu Y, Zeng W, Zhou J. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2 S)-Naringenin in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:1166-1175. [PMID: 33877810 DOI: 10.1021/acssynbio.1c00002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The (2S)-naringenin is an important natural flavonoid with several bioactive effects on human health. It is also a key precursor in the biosynthesis of other high value compounds. The production of (2S)-naringenin is significantly influenced by the acetyl-CoA available in the cytosol. In this study, we increased the acetyl-CoA supply via the β-oxidation of fatty acids in the peroxisomes of Saccharomyces cerevisiae. Several lipases from different sources and PEX11, FOX1, FOX2, and FOX3, the key genes of the fatty acid β-oxidation pathway, were overexpressed during the production of (2S)-naringenin in yeast. The level of acetyl-CoA was 0.205 nmol higher than that in the original strain and the production of (2S)-naringenin increased to 286.62 mg/g dry cell weight when PEX11 was overexpressed in S. cerevisiae strain L07. Remarkable (2S)-naringenin production (1129.44 mg/L) was achieved with fed-batch fermentation, with the highest titer reported in any microorganism. Our results demonstrated the use of fatty acid β-oxidation to increase the level of cytoplasmic acetyl-CoA and the production of its derivatives.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
Wang J, Zhu L, Li Y, Xu S, Jiang W, Liang C, Fang Y, Chu A, Zhang L, Ding Z, Shi G. Enhancing Geranylgeraniol Production by Metabolic Engineering and Utilization of Isoprenol as a Substrate in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4480-4489. [PMID: 33823596 DOI: 10.1021/acs.jafc.1c00508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The amount of geranylgeranyl diphosphate (GGPP) is vital for microbial production of geranylgeraniol (GGOH) in Saccharomyces cerevisiae. In this study, a GGPP synthase with stronger catalytic ability was used to increase the supply of GGPP, and an engineered strain producing 374.02 mg/L GGOH at the shake flask level was constructed. Then, by increasing the metabolic flux of the mevalonate (MVA) pathway and the supply of isopentenyl pyrophosphate (IPP), the titer was further increased to 772.98 mg/L at the shake flask level, and we achieved the highest GGOH titer to date of 5.07 g/L in a 5 L bioreactor. This is the first report on the utilization of isoprenol for increasing the amount of IPP and enhancing GGOH production in S. cerevisiae. In the future, these strategies and engineered strains can be used to enhance the production of other terpenoids in S. cerevisiae.
Collapse
Affiliation(s)
- Junhua Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Linghuan Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Wei Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, People's Republic of China
| | - Chaojuan Liang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yakun Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Alex Chu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
22
|
Anaerobic Production of Isoprene by Engineered Methanosarcina Species Archaea. Appl Environ Microbiol 2021; 87:AEM.02417-20. [PMID: 33452028 DOI: 10.1128/aem.02417-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/25/2020] [Indexed: 01/14/2023] Open
Abstract
Isoprene is a valuable petrochemical used for a wide variety of consumer goods, such as adhesives and synthetic rubber. We were able to achieve a high yield of renewable isoprene by taking advantage of the naturally high-flux mevalonate lipid synthesis pathway in anaerobic methane-producing archaea (methanogens). Our study illustrates that by genetically manipulating Methanosarcina species methanogens, it is possible to create organisms that grow by producing the hemiterpene isoprene. Mass balance measurements show that engineered methanogens direct up to 4% of total carbon flux to isoprene, demonstrating that methanogens produce higher isoprene yields than engineered yeast, bacteria, or cyanobacteria, and from inexpensive feedstocks. Expression of isoprene synthase resulted in increased biomass and changes in gene expression that indicate that isoprene synthesis depletes membrane precursors and redirects electron flux, enabling isoprene to be a major metabolic product. Our results demonstrate that methanogens are a promising engineering chassis for renewable isoprene synthesis.IMPORTANCE A significant barrier to implementing renewable chemical technologies is high production costs relative to those for petroleum-derived products. Existing technologies using engineered organisms have difficulty competing with petroleum-derived chemicals due to the cost of feedstocks (such as glucose), product extraction, and purification. The hemiterpene monomer isoprene is one such chemical that cannot currently be produced using cost-competitive renewable biotechnologies. To reduce the cost of renewable isoprene, we have engineered methanogens to synthesize it from inexpensive feedstocks such as methane, methanol, acetate, and carbon dioxide. The "isoprenogen" strains we developed have potential to be used for industrial production of inexpensive renewable isoprene.
Collapse
|
23
|
Zhou P, Du Y, Fang X, Xu N, Yue C, Ye L. Combinatorial Modulation of Linalool Synthase and Farnesyl Diphosphate Synthase for Linalool Overproduction in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1003-1010. [PMID: 33427461 DOI: 10.1021/acs.jafc.0c06384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Linalool, as a fragrant monoterpene, is an important feedstock for food, pharmaceuticals, and cosmetics industries. Although our previous study had significantly increased linalool production by the directed evolution of linalool synthase and overexpression of the whole mevalonate pathway genes, the engineered yeast strain suffered from dramatically reduced biomass. Herein, a stress-free linalool-producing yeast cell factory was constructed by the combinational regulation of linalool synthase and farnesyl diphosphate synthase instead of multienzyme overexpression. First, the expression level of linalool synthase was successfully enhanced by introducing a N-terminal SKIK tag, which improved linalool production by 3.3-fold. Subsequently, the modular assembly of linalool synthase and dominant negative farnesyl diphosphate synthase via short peptide tags efficiently converted geranyl pyrophosphate to linalool. Additional downregulation of the native farnesyl diphosphate synthase led to the highest reported linalool production (80.9 mg/L) in yeast. This combinatorial modulation strategy may also be applied to the production of other high-value monoterpenes.
Collapse
Affiliation(s)
- Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Du
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Xin Fang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Nannan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Chunlei Yue
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, PR China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
24
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
25
|
Pathway engineering of Saccharomyces cerevisiae for efficient lycopene production. Bioprocess Biosyst Eng 2021; 44:1033-1047. [PMID: 33486569 DOI: 10.1007/s00449-020-02503-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
To construct a Saccharomyces cerevisiae strain for efficient lycopene production, we used a pathway engineering strategy based on expression modules comprising fusion proteins and a strong constitutive promoter. The two recombinant plasmids pEBI encoding the fusion genes with an inducible promoter, as well as pIETB with a constitutive promoter and terminator were introduced into S. cerevisiae YPH499 and BY4741 to obtain the four recombinant strains ypEBI, ypIETB, byEBI and byIETB. The lycopene production and the transcription levels of key genes were higher in the BY4741 chassis than in YPH499. Accordingly, the content of total and unsaturated fatty acids was also higher in BY4741, which also exhibited a decrease of glucose, increase of trehalose, increase of metabolite in citrate cycle, and low levels of amino acids. These changes rerouted metabolic fluxes toward lycopene synthesis, indicating that the BY4741 chassis was more suitable for lycopene synthesis. The lycopene content of bpIETB in SG-Leu medium supplemented with 100 mg/L of linolenic acid reached 10.12 mg/g dry cell weight (DCW), which was 85.7% higher than without the addition of unsaturated fatty acids. The constitutive promoter expression strategy employed in this study achieved efficient lycopene synthesis in S. cerevisiae, and the strain bpIETB was obtained a suitable chassis host for lycopene production, which provides a basis for further optimization of lycopene production in artificial synthetic cells and a reference for the multi-enzyme synthesis of other similar complex terpenoids.
Collapse
|
26
|
Navale GR, Dharne MS, Shinde SS. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:457-475. [PMID: 33394155 DOI: 10.1007/s00253-020-11040-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Isoprenoids, often called terpenoids, are the most abundant and highly diverse family of natural organic compounds. In plants, they play a distinct role in the form of photosynthetic pigments, hormones, electron carrier, structural components of membrane, and defence. Many isoprenoids have useful applications in the pharmaceutical, nutraceutical, and chemical industries. They are synthesized by various isoprenoid synthase enzymes by several consecutive steps. Recent advancement in metabolic engineering and synthetic biology has enabled the production of these isoprenoids in the heterologous host systems like Escherichia coli and Saccharomyces cerevisiae. Both heterologous systems have been engineered for large-scale production of value-added isoprenoids. This review article will provide the detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids. The review particularly highlighted the efforts taken for the production of C5-C20 isoprenoids by metabolic engineering techniques in E. coli and S. cerevisiae over a decade. The challenges and strategies are also discussed in detail for scale-up and engineering of isoprenoids in the heterologous host systems.Key points• Isoprenoids are beneficial and valuable natural products.• E. coli and S. cerevisiae are the promising host for isoprenoid biosynthesis.• Emerging techniques in synthetic biology enabled the improved production.• Need to expand the catalogue and scale-up of un-engineered isoprenoids. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Govinda R Navale
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
| | - Sandip S Shinde
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Department Industrial and Chemical Engineering, Institute of Chemical Technology Mumbai Marathwada Campus, Jalna, 431213, India.
| |
Collapse
|
27
|
Wang Z, Zhang R, Yang Q, Zhang J, Zhao Y, Zheng Y, Yang J. Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:1-35. [PMID: 33934850 DOI: 10.1016/bs.aambs.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isoprenoids, as the largest group of chemicals in the domains of life, constitute more than 50,000 members. These compounds consist of different numbers of isoprene units (C5H8), by which they are typically classified into hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15), diterpenoids (C20), triterpenoids (C30), and tetraterpenoids (C40). In recent years, isoprenoids have been employed as food additives, in the pharmaceutical industry, as advanced biofuels, and so on. To realize the sufficient and efficient production of valuable isoprenoids on an industrial scale, fermentation using engineered microorganisms is a promising strategy compared to traditional plant extraction and chemical synthesis. Due to the advantages of mature genetic manipulation, robustness and applicability to industrial bioprocesses, Saccharomyces cerevisiae has become an attractive microbial host for biochemical production, including that of various isoprenoids. In this review, we summarized the advances in the biosynthesis of isoprenoids in engineered S. cerevisiae over several decades, including synthetic pathway engineering, microbial host engineering, and central carbon pathway engineering. Furthermore, the challenges and corresponding strategies towards improving isoprenoid production in engineered S. cerevisiae were also summarized. Finally, suggestions and directions for isoprenoid production in engineered S. cerevisiae in the future are discussed.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qun Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jintian Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Youxi Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
28
|
Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnol Adv 2020; 44:107628. [DOI: 10.1016/j.biotechadv.2020.107628] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
|
29
|
Daletos G, Katsimpouras C, Stephanopoulos G. Novel Strategies and Platforms for Industrial Isoprenoid Engineering. Trends Biotechnol 2020; 38:811-822. [DOI: 10.1016/j.tibtech.2020.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
|
30
|
Lee HW, Park JH, Kim WK, Lee JG, Lee JS, Ahn JO, Lee EG, Lee HW. Engineered Escherichia coli strains as platforms for biological production of isoprene. FEBS Open Bio 2020; 10:780-788. [PMID: 32135038 PMCID: PMC7193156 DOI: 10.1002/2211-5463.12829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 11/12/2022] Open
Abstract
Volatile compounds can be produced by fermentation from genetically engineered microorganisms. Escherichia coli strains are mainly used for isoprene production owing to their higher titers; however, this has thus far been confined to only strains BL21, BL21 (DE3), Rosetta, and BW25113. Here, we tested four groups of E. coli strains for improved isoprene production, including K-12 (DH5α, BW25113, W3110, MG1655, XL1-Blue, and JM109), B [Rosetta (DE3), BL21, and BL21 (DE3)], Crooks C, and Waksman W strains. The isoprene productivity of BL21 and MG1655 was remarkably higher than that of the others in 5-L fermentation, and scale-up fermentation (300 L) of BL21 was successfully performed. This system shows potential for biobased production of fuel and volatile compounds in industrial applications.
Collapse
Affiliation(s)
- Hyeok-Won Lee
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, Korea
| | - Won-Kyo Kim
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, Korea
| | - Jin-Gyeom Lee
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, Korea
| | - Ju-Seok Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, Korea
| | - Jung-Oh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, Korea.,Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, Korea
| | - Eun-Gyo Lee
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, Korea.,Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, Korea
| | - Hong-Weon Lee
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju, Korea.,Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, Korea
| |
Collapse
|
31
|
Wen Z, Ledesma-Amaro R, Lu M, Jin M, Yang S. Metabolic Engineering of Clostridium cellulovorans to Improve Butanol Production by Consolidated Bioprocessing. ACS Synth Biol 2020; 9:304-315. [PMID: 31940438 DOI: 10.1021/acssynbio.9b00331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clostridium cellulovorans DSM 743B can produce butyrate when grown on lignocellulose, but it can hardly synthesize butanol. In a previous study, C. cellulovorans was successfully engineered to switch the metabolism from butyryl-CoA to butanol by overexpressing an alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824; however, its full potential in butanol production is still unexplored. In the study, a metabolic engineering approach based on a push-pull strategy was developed to further enhance cellulosic butanol production. In order to accomplish this, the carbon flux from acetyl-CoA to butyryl-CoA was pulled by overexpressing a trans-enoyl-coenzyme A reductase gene (ter), which can irreversibly catalyze crotonyl-CoA to butyryl-CoA. Then an acid reassimilation pathway uncoupled with acetone production was introduced to redirect the carbon flow from butyrate and acetate toward butyryl-CoA. Finally, xylose metabolism engineering was implemented by inactivating xylR (Clocel_0594) and araR (Clocel_1253), as well as overexpressing xylT (CA_C1345), which is expected to supply additional carbon and reducing power for CoA and butanol synthesis pathways. The final engineered strain produced 4.96 g/L of n-butanol from alkali extracted corn cobs (AECC), increasing by 235-fold compared to that of the wild type. It serves as a promising butanol producer by consolidated bioprocessing.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | | | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
32
|
Zhang C, Li M, Zhao GR, Lu W. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1382-1389. [PMID: 31944688 DOI: 10.1021/acs.jafc.9b07290] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolic engineering of Saccharomyces cerevisiae focusing on the cytoplasm for sustainable terpenoid production is commonly practiced. However, engineering organelles for terpenoid production is rarely reported. Herein, peroxisomes, together with the cytoplasm, were engineered to boost sesquiterpene α-humulene synthesis in S. cerevisiae. The farnesyl diphosphate synthetic pathway and α-humulene synthase were successfully expressed inside yeast peroxisomes to enable high-level α-humulene production with glucose as the sole carbon source. With the combination of peroxisomal and cytoplasmic engineering, α-humulene production was increased by 2.5-fold compared to that in cytoplasm-engineered recombinant strains. Finally, the α-humulene titer of 1726.78 mg/L was achieved by fed-batch fermentation in a 5 L bioreactor. The strategy presented here offers an efficient method for terpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Chuanbo Zhang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Man Li
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Guang-Rong Zhao
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
- Key Laboratory of System Bioengineering, Ministry of Education Tianjin University , Tianjin 300350 , People's Republic of China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300350 , People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
- Key Laboratory of System Bioengineering, Ministry of Education Tianjin University , Tianjin 300350 , People's Republic of China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300350 , People's Republic of China
| |
Collapse
|
33
|
Sun L, Kwak S, Jin YS. Vitamin A Production by Engineered Saccharomyces cerevisiae from Xylose via Two-Phase in Situ Extraction. ACS Synth Biol 2019; 8:2131-2140. [PMID: 31374167 DOI: 10.1021/acssynbio.9b00217] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin A is an essential human micronutrient and plays critical roles in vision, reproduction, immune system, and skin health. Current industrial methods for the production of vitamin A rely on chemical synthesis from petroleum-derived substrates, such as acetone and acetylene. Here, we developed a biotechnological method for production of vitamin A from an abundant and nonedible sugar. Specifically, we engineered Saccharomyces cerevisiae to produce vitamin A from xylose-the second most abundant sugar in plant cell wall hydrolysates-by introducing a β-carotene biosynthetic pathway, and a gene coding for β-carotene 15,15'-dioxygenase (BCMO) into a xylose-fermenting S. cerevisiae. The resulting yeast strain produced vitamin A from xylose at a titer 4-fold higher than from glucose. When a two-phase in situ extraction strategy with dodecane or olive oil as an extractive agent was employed, vitamin A production improved additional 2-fold. Furthermore, a xylose fed-batch fermentation with dodecane in situ extraction achieved a final titer of 3350 mg/L vitamin A, which consisted of retinal (2094 mg/L) and retinol (1256 mg/L). These results suggest that potential limiting factors of vitamin A production in yeast, such as insufficient supply of isoprenoid precursors, and limited intracellular storage capacity, can be effectively addressed by using xylose as a carbon source, and two-phase in situ extraction. The engineered S. cerevisiae and fermentation strategies described in this study might contribute to sustainable and economic production of vitamin A, and vitamin A-enriched bioproducts from renewable biomass.
Collapse
|
34
|
Arhar S, Natter K. Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158513. [PMID: 31465888 DOI: 10.1016/j.bbalip.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/26/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
The biosynthetic pathways for most lipophilic metabolites share several common principles. These substances are built almost exclusively from acetyl-CoA as the donor for the carbon scaffold and NADPH is required for the reductive steps during biosynthesis. Due to their hydrophobicity, the end products are sequestered into the same cellular compartment, the lipid droplet. In this review, we will summarize the efforts in the metabolic engineering of yeasts for the production of two major hydrophobic substance classes, fatty acid-based lipids and isoprenoids, with regard to these common aspects. We will compare and discuss the results of genetic engineering strategies to construct strains with enhanced synthesis of the precursor acetyl-CoA and with modified redox metabolism for improved NADPH supply. We will also discuss the role of the lipid droplet in the storage of the hydrophobic product and review the strategies to either optimize this organelle for higher capacity or to achieve excretion of the product into the medium.
Collapse
Affiliation(s)
- Simon Arhar
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Klaus Natter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria.
| |
Collapse
|
35
|
Paramasivan K, Kumar HN P, Mutturi S. Systems-based Saccharomyces cerevisiae strain design for improved squalene synthesis. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Hong KQ, Fu XM, Dong SS, Xiao DG, Dong J. Modulating acetate ester and higher alcohol production in Saccharomyces cerevisiae through the cofactor engineering. J Ind Microbiol Biotechnol 2019; 46:1003-1011. [PMID: 30969383 DOI: 10.1007/s10295-019-02176-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Flavor production by esters or by higher alcohols play a key role in the sensorial quality of fermented alcoholic beverages. In Saccharomyces cerevisiae cells, the syntheses of esters and higher alcohols are considerably influenced by intracellular CoA levels catalyzed by pantothenate kinase. In this work, we examined the effects of cofactor CoA and acetyl-CoA synthesis on the metabolism of esters and higher alcohols. Strains 12α-BAP2 and 12α+ATF1 where generated by deleting and overexpressing BAP2 (encoded branched-chain amino acid permease) and ATF1 (encoded alcohol acetyl transferases), respectively, in the parent 12α strains. Then, 12α-BAP2+CAB1 and 12α-BAP2+CAB3 strains were obtained by overexpressing CAB1 (encoded pantothenate kinase Cab1) and CAB3 (encoded pantothenate kinase Cab3) in the 12α-BAP2 strain, and 12α-BAP2+CAB1+ATF1 and 12α-BAP2+CAB3+ATF1 were generated by overexpressing ATF1 in the pantothenate kinase overexpression strains. The acetate ester level in 12α-BAP2 was slightly changed relative to that in the control strain 12α, whereas the acetate ester levels in 12α-BAP2+CAB1, 12α-BAP2+CAB3, 12α-BAP2+CAB1+ATF1, and 12α-BAP2+CAB3+ATF1 were distinctly increased (44-118% for ethyl acetate and 18-57% for isoamyl acetate). The levels of n-propanol, methyl-1-butanol, isopentanol, isobutanol, and phenethylol levels were changed and varied among the six engineered strains. The levels of acetate esters and higher alcohols can be modulated by changing the CoA and acetyl-CoA levels. The method proposed in this work supplies a practical means of breeding yeast strains by modulating acetate ester and higher alcohol production.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiao-Meng Fu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Sheng-Sheng Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Jian Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
37
|
Liu H, Fan J, Wang C, Li C, Zhou X. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3723-3732. [PMID: 30808164 DOI: 10.1021/acs.jafc.9b00653] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
β-Amyrin is a plant-derived triterpenoid skeleton with wide applications in food and medical industry. β-Amyrin biosynthesis in Saccharomyces cerevisiae is derived from the mevalonate pathway with cytosolic acetyl-CoA as a precursor. In this work, endogenous and several heterologous acetyl-CoA synthesis pathways were coupled to β-amyrin production and a combinational acetyl-CoA supply route was demonstrated to be optimal due to more balanced redox cofactors, much lower energy consumption, and glucose utilization as well as significantly enhanced β-amyrin production (a 200% increase compared to the original β-amyrin-producing strain). Further disruption of an acetyl-CoA competing pathway led to a 330% increase in β-amyrin production as compared to the original strain. Finally, the engineered strain harboring the optimal pathway configuration achieved a final β-amyrin production of 279.0 ± 13.0 mg/L in glucose fed-batch fermentation, which is the highest as ever reported. This work provides an efficient platform for triterpenoid biosynthesis in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hu Liu
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jingjing Fan
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Chen Wang
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Chun Li
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin , 300072 , China
| | - Xiaohong Zhou
- Institute for Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
38
|
Seok J, Ko YJ, Lee ME, Hyeon JE, Han SO. Systems metabolic engineering of Corynebacterium glutamicum for the bioproduction of biliverdin via protoporphyrin independent pathway. J Biol Eng 2019; 13:28. [PMID: 30976317 PMCID: PMC6441180 DOI: 10.1186/s13036-019-0156-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Background Biliverdin, a prospective recyclable antioxidant and one of the most important precursors for optogenetics, has received growing attention. Biliverdin is currently produced by oxidation of bilirubin from mammalian bile using chemicals. However, unsustainable procedures of extraction, chemical oxidation, and isomer separation have prompted bio-based production using a microbial cell factory. Results In vitro thermodynamic analysis was performed to show potential candidates of bottleneck enzymes in the pathway to produce biliverdin. Among the candidates, hemA and hemL were overexpressed in Corynebacterium glutamicum to produce heme, precursor of biliverdin. To increase precursor supply, we suggested a novel hemQ-mediated coproporphyrin dependent pathway rather than noted hemN-mediated protoporphyrin dependent pathway in C. glutamicum. After securing precursors, hmuO was overexpressed to pull the carbon flow to produce biliverdin. Through modular optimization using gene rearrangements of hemA, hemL, hemQ, and hmuO, engineered C. glutamicum BV004 produced 11.38 ± 0.47 mg/L of biliverdin at flask scale. Fed-batch fermentations performed in 5 L bioreactor with minimal medium using glucose as a sole carbon source resulted in the accumulation of 68.74 ± 4.97 mg/L of biliverdin, the highest titer to date to the best of our knowledge. Conclusions We developed an eco-friendly microbial cell factory to produce biliverdin using C. glutamicum as a biosystem. Moreover, we suggested that C. glutamicum has the thermodynamically favorable coproporphyrin dependent pathway. This study indicated that C. glutamicum can work as a powerful platform to produce biliverdin as well as heme-related products based on the rational design with in vitro thermodynamic analysis. Electronic supplementary material The online version of this article (10.1186/s13036-019-0156-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiho Seok
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Young Jin Ko
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Myeong-Eun Lee
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Jeong Eun Hyeon
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea.,2Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, 01133 Republic of Korea.,3Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul, 01133 Republic of Korea
| | - Sung Ok Han
- 1Department of Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
39
|
Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ YPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae. Appl Environ Microbiol 2019; 85:AEM.01990-18. [PMID: 30683746 DOI: 10.1128/aem.01990-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/16/2019] [Indexed: 01/06/2023] Open
Abstract
Saccharomyces cerevisiae is an established cell factory for production of terpenoid pharmaceuticals and chemicals. Numerous studies have demonstrated that deletion or overexpression of off-pathway genes in yeast can improve terpenoid production. The deletion of YPL062W in S. cerevisiae, in particular, has benefitted carotenoid production by channeling carbon toward carotenoid precursors acetyl coenzyme A (acetyl-CoA) and mevalonate. The genetic function of YPL062W and the molecular mechanisms for these benefits are unknown. In this study, we systematically examined this gene deletion to uncover the gene function and its molecular mechanism. RNA sequencing (RNA-seq) analysis uncovered that YPL062W deletion upregulated the pyruvate dehydrogenase bypass, the mevalonate pathway, heterologous expression of galactose (GAL) promoter-regulated genes, energy metabolism, and membrane composition synthesis. Bioinformatics analysis and serial promoter deletion assay revealed that YPL062W functions as a core promoter for ALD6 and that the expression level of ALD6 is negatively correlated to terpenoid productivity. We demonstrate that ΔYPL062W increases the production of all major terpenoid classes (C10, C15, C20, C30, and C40). Our study not only elucidated the biological function of YPL062W but also provided a detailed methodology for understanding the mechanistic aspects of strain improvement.IMPORTANCE Although computational and reverse metabolic engineering approaches often lead to improved gene deletion mutants for cell factory engineering, the systems level effects of such gene deletions on the production phenotypes have not been extensively studied. Understanding the genetic and molecular function of such gene alterations on production strains will minimize the risk inherent in the development of large-scale fermentation processes, which is a daunting challenge in the field of industrial biotechnology. Therefore, we established a detailed experimental and systems biology approach to uncover the molecular mechanisms of YPL062W deletion in S. cerevisiae, which is shown to improve the production of all terpenoid classes. This study redefines the genetic function of YPL062W, demonstrates a strong correlation between YPL062W and terpenoid production, and provides a useful modification for the creation of terpenoid production platform strains. Further, this study underscores the benefits of detailed and systematic characterization of the metabolic effects of genetic alterations on engineered biosynthetic factories.
Collapse
|
40
|
Guo J, Cao Y, Liu H, Zhang R, Xian M, Liu H. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways. Appl Microbiol Biotechnol 2019; 103:2597-2608. [PMID: 30719552 DOI: 10.1007/s00253-018-09578-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/01/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
Abstract
The biosynthesis of isoprene by microorganisms is a promising green route. However, the yield of isoprene is limited due to the generation of excess NAD(P)H via the mevalonate (MVA) pathway, which converts more glucose into CO2 or undesired reduced by-products. The production of 1,3-propanediol (1,3-PDO) from glycerol is a typical NAD(P)H-consuming process, which restricts 1,3-PDO yield to ~ 0.7 mol/mol. In this study, we propose a strategy of redox cofactor balance by coupling the production of isoprene with 1,3-PDO fermentation. With the introduction and optimization of the dual pathways in an engineered Escherichia coli, ~ 85.2% of the excess NADPH from isoprene pathway was recycled for 1,3-PDO production. The best strain G05 simultaneously produced 665.2 mg/L isoprene and 2532.1 mg/L 1,3-PDO under flask fermentation conditions. The yields were 0.3 mol/mol glucose and 1.0 mol/mol glycerol, respectively, showing 3.3- and 4.3-fold improvements relative to either pathway independently. Since isoprene is a volatile organic compound (VOC) whereas 1,3-PDO is separated from the fermentation broth, their coproduction process does not increase the complexity or cost for the separation from each other. Hence, the presented strategy will be especially useful for developing efficient biocatalysts for other biofuels and biochemicals, which are driven by cofactor concentrations.
Collapse
Affiliation(s)
- Jing Guo
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujin Cao
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China
| | - Hui Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China.
| | - Huizhou Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China.
| |
Collapse
|
41
|
Ko SC, Lee HJ, Choi SY, Choi JI, Woo HM. Bio-solar cell factories for photosynthetic isoprenoids production. PLANTA 2019; 249:181-193. [PMID: 30078076 DOI: 10.1007/s00425-018-2969-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/01/2018] [Indexed: 05/08/2023]
Abstract
Photosynthetic production of isoprenoids in cyanobacteria is considered in terms of metabolic engineering and biological importance. Metabolic engineering of photosynthetic bacteria (cyanobacteria) has been performed to construct bio-solar cell factories that convert carbon dioxide to various value-added chemicals. Isoprenoids, which are found in nature and range from essential cell components to defensive molecules, have great value in cosmetics, pharmaceutics, and biofuels. In this review, we summarize the recent engineering of cyanobacteria for photosynthetic isoprenoids production as well as carbon molar basis comparisons with heterotrophic isoprenoids production in engineered Escherichia coli.
Collapse
Affiliation(s)
- Sung Cheon Ko
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sun Young Choi
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
42
|
Wadhwa M, Srinivasan S, Bachhawat AK, Venkatesh KV. Role of phosphate limitation and pyruvate decarboxylase in rewiring of the metabolic network for increasing flux towards isoprenoid pathway in a TATA binding protein mutant of Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:152. [PMID: 30241525 PMCID: PMC6149198 DOI: 10.1186/s12934-018-1000-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Background Production of isoprenoids, a large and diverse class of commercially important chemicals, can be achieved through engineering metabolism in microorganisms. Several attempts have been made to reroute metabolic flux towards isoprenoid pathway in yeast. Most approaches have focused on the core isoprenoid pathway as well as on meeting the increased precursors and cofactor requirements. To identify unexplored genetic targets that positively influence the isoprenoid pathway activity, a carotenoid based genetic screen was previously developed and three novel mutants of a global TATA binding protein SPT15 was isolated for heightened isoprenoid flux in Saccharomyces cerevisiae. Results In this study, we investigated how one of the three spt15 mutants, spt15_Ala101Thr, was leading to enhanced isoprenoid pathway flux in S. cerevisiae. Metabolic flux analysis of the spt15_Ala101Thr mutant initially revealed a rerouting of the central carbon metabolism for the production of the precursor acetyl-CoA through activation of pyruvate-acetaldehyde-acetate cycle in the cytoplasm due to high flux in the reaction caused by pyruvate decarboxylase (PDC). This led to alternate routes of cytosolic NADPH generation, increased mitochondrial ATP production and phosphate demand in the mutant strain. Comparison of the transcriptomics of the spt15_Ala101Thr mutant cell with SPT15WT bearing cells shows upregulation of phosphate mobilization genes and pyruvate decarboxylase 6 (PDC6). Increasing the extracellular phosphate led to an increase in the growth rate and biomass but diverted flux away from the isoprenoid pathway. PDC6 is also shown to play a critical role in isoprenoid pathway flux under phosphate limitation conditions. Conclusion The study not only proposes a probable mechanism as to how a spt15_Ala101Thr mutant (a global TATA binding protein mutant) could increase flux towards the isoprenoid pathway, but also PDC as a new route of metabolic manipulation for increasing the isoprenoid flux in yeast. Electronic supplementary material The online version of this article (10.1186/s12934-018-1000-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manisha Wadhwa
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Mohali, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Anand K Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Mohali, India.
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, India.
| |
Collapse
|
43
|
Yao Z, Zhou P, Su B, Su S, Ye L, Yu H. Enhanced Isoprene Production by Reconstruction of Metabolic Balance between Strengthened Precursor Supply and Improved Isoprene Synthase in Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:2308-2316. [PMID: 30145882 DOI: 10.1021/acssynbio.8b00289] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isoprene, as a versatile bulk chemical, has wide industrial applications. Here, we attempted to improve isoprene biosynthesis in Saccharomyces cerevisiae by simultaneous strengthening of precursor supply and conversion via a combination of pathway compartmentation and protein engineering. At first, a superior isoprene synthase mutant ISPSLN was created by saturation mutagenesis, leading to almost 4-fold improvement in isoprene production. Subsequent introduction of ISPSLN to strains with strengthened precursor supply in either cytoplasm or mitochondria implied an imperfect match between the synthesis and conversion of the isopentenyl pyrophosphate (IPP)/dimethylallyl diphosphate (DMAPP) pool. To reconstruct metabolic balance between the upstream and downstream flux, additional copies of diphosphomevalonate decarboxylase gene ( MVD1) and isopentenyl-diphosphate delta-isomerase gene ( IDI1) were introduced into the cytoplasmic and mitochondrial engineered strains. Finally, the diploid strain created by mating the above haploid strains produced 11.9 g/L of isoprene, the highest ever reported in eukaryotic cells.
Collapse
Affiliation(s)
- Zhen Yao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Bingmei Su
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Sisi Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, PR China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
44
|
Upregulating the mevalonate pathway and repressing sterol synthesis in Saccharomyces cerevisiae enhances the production of triterpenes. Appl Microbiol Biotechnol 2018; 102:6923-6934. [PMID: 29948122 PMCID: PMC6096838 DOI: 10.1007/s00253-018-9154-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 01/29/2023]
Abstract
Pentacyclic triterpenes are diverse plant secondary metabolites derived from the mevalonate (MVA) pathway. Many of these molecules are potentially valuable, particularly as pharmaceuticals, and research has focused on their production in simpler and more amenable heterologous systems such as the yeast Saccharomyces cerevisiae. We have developed a new heterologous platform for the production of pentacyclic triterpenes in S. cerevisiae based on a combinatorial engineering strategy involving the overexpression of MVA pathway genes, the knockout of negative regulators, and the suppression of a competing pathway. Accordingly, we overexpressed S. cerevisiae ERG13, encoding 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, and a truncated and deregulated variant of the rate-limiting enzyme HMG-CoA reductase 1 (tHMGR). In the same engineering step, we deleted the ROX1 gene, encoding a negative regulator of the MVA pathway and sterol biosynthesis, resulting in a push-and-pull strategy to enhance metabolic flux through the system. In a second step, we redirected this enhanced metabolic flux from late sterol biosynthesis to the production of 2,3-oxidosqualene, the direct precursor of pentacyclic triterpenes. In yeast cells transformed with a newly isolated sequence encoding lupeol synthase from the Russian dandelion (Taraxacum koksaghyz), we increased the yield of pentacyclic triterpenes by 127-fold and detected not only high levels of lupeol but also a second valuable pentacyclic triterpene product, β-amyrin.
Collapse
|
45
|
Carvalho Â, Hansen EH, Kayser O, Carlsen S, Stehle F. Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res 2018; 17:3861260. [PMID: 28582498 PMCID: PMC5812543 DOI: 10.1093/femsyr/fox037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/02/2017] [Indexed: 11/14/2022] Open
Abstract
During the last decade, the use of medical Cannabis has expanded globally and legislation is getting more liberal in many countries, facilitating the research on cannabinoids. The unique interaction of cannabinoids with the human endocannabinoid system makes these compounds an interesting target to be studied as therapeutic agents for the treatment of several medical conditions. However, currently there are important limitations in the study, production and use of cannabinoids as pharmaceutical drugs. Besides the main constituent tetrahydrocannabinolic acid, the structurally related compound cannabidiol is of high interest as drug candidate. From the more than 100 known cannabinoids reported, most can only be extracted in very low amounts and their pharmacological profile has not been determined. Today, cannabinoids are isolated from the strictly regulated Cannabis plant, and the supply of compounds with sufficient quality is a major problem. Biotechnological production could be an attractive alternative mode of production. Herein, we explore the potential use of synthetic biology as an alternative strategy for synthesis of cannabinoids in heterologous hosts. We summarize the current knowledge surrounding cannabinoids biosynthesis and present a comprehensive description of the key steps of the genuine and artificial pathway, systems biotechnology needs and platform optimization.
Collapse
Affiliation(s)
- Ângela Carvalho
- Evolva Biotech A/S, Lersø Parkallé 42-44, 2100, Copenhagen, Denmark
| | | | - Oliver Kayser
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Simon Carlsen
- Evolva Biotech A/S, Lersø Parkallé 42-44, 2100, Copenhagen, Denmark
| | - Felix Stehle
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| |
Collapse
|
46
|
Chen H, Li M, Liu C, Zhang H, Xian M, Liu H. Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microb Cell Fact 2018; 17:65. [PMID: 29712558 PMCID: PMC5925831 DOI: 10.1186/s12934-018-0913-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/24/2018] [Indexed: 11/21/2022] Open
Abstract
Background Lycopene is a terpenoid pigment that has diverse applications in the food and medicine industries. A prospective approach for lycopene production is by metabolic engineering in microbial hosts, such as Escherichia coli. Isopentenyl diphosphate isomerase (IDI, E.C. 5.3.3.2) is one of the rate-limiting enzymes in the lycopene biosynthetic pathway and one major target during metabolic engineering. The properties of IDIs differ depending on the sources, but under physiological conditions, IDIs are limited by low enzyme activity, short half-life and weak substrate affinity. Therefore, it is important to prepare an excellent IDI by protein engineering. Results Directed evolution strategy (error-prone PCR) was utilized to optimize the activity of Saccharomyces cerevisiae IDI. Using three rounds of error-prone PCR; screening the development of a lycopene-dependent color reaction; and combinatorial site-specific saturation mutagenesis, three activity-enhancing mutations were identified: L141H, Y195F, and W256C. L141H, located near the active pocket inside the tertiary structure of IDI, formed a hydrogen bond with nearby β-phosphates of isopentenylpyrophosphate (IPP). Phe-195 and Cys-256 were nonpolar amino acids and located near the hydrophobic group of IPP, enlarging the hydrophobic scope, and the active pocket indirectly. Purified IDI was characterized and the result showed that the Km of mutant IDI decreased by 10% compared with Km of the parent IDI, and Kcat was 28% fold improved compared to that of the original IDI. Results of a fermentation experiment revealed that mutant IDI had a 1.8-fold increased lycopene production and a 2.1-fold increased yield capacity compared to wild-type IDI. Conclusion We prepared an engineered variant of IDI with improved catalytic activity by combining random and site directed mutagenesis. The best mutants produced by this approach enhanced catalytic activity while also displaying improved stability in pH, enhanced thermostability and longer half-life. Importantly, the mutant IDI could play an important role in fed-batch fermentation, being an effective and attractive biocatalyst for the production of biochemicals. Electronic supplementary material The online version of this article (10.1186/s12934-018-0913-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hailin Chen
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, People's Republic of China.,Sino-Danish College, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, People's Republic of China
| | - Meijie Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Changqing Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Haibo Zhang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, People's Republic of China.
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, People's Republic of China.
| | - Huizhou Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, People's Republic of China
| |
Collapse
|
47
|
Wilson J, Gering S, Pinard J, Lucas R, Briggs BR. Bio-production of gaseous alkenes: ethylene, isoprene, isobutene. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:234. [PMID: 30181774 PMCID: PMC6114056 DOI: 10.1186/s13068-018-1230-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
To reduce emissions from petrochemical refinement, bio-production has been heralded as a way to create economically valuable compounds with fewer harmful effects. For example, gaseous alkenes are precursor molecules that can be polymerized into a variety of industrially significant compounds and have biological production pathways. Production levels, however, remain low, thus enhancing bio-production of gaseous petrochemicals for chemical precursors is critical. This review covers the metabolic pathways and production levels of the gaseous alkenes ethylene, isoprene, and isobutene. Techniques needed to drive production to higher levels are also discussed.
Collapse
Affiliation(s)
- James Wilson
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Sarah Gering
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Jessica Pinard
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Ryan Lucas
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| |
Collapse
|
48
|
Vickers CE, Williams TC, Peng B, Cherry J. Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 2017. [DOI: 10.1016/j.cbpa.2017.05.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Zhu Y, Lu W, Ye L, Chen Z, Hu W, Wang C, Chen J, Yu H. Enhanced synthesis of Coenzyme Q 10 by reducing the competitive production of carotenoids in Rhodobacter sphaeroides. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Paramasivan K, Mutturi S. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Crit Rev Biotechnol 2017; 37:974-989. [DOI: 10.1080/07388551.2017.1299679] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Sarma Mutturi
- CSIR-Central Food Technological Research Institute, Mysore, India
| |
Collapse
|