1
|
Wannawilai S, Palasak T, Chamkhuy W, Khongto B, Jeennor S, Laoteng K. Lipid production by robust Aspergillus oryzae BCC7051 and a mathematical model describing its growth and lipid phenotypic traits. J Appl Microbiol 2024; 135:lxae229. [PMID: 39231805 DOI: 10.1093/jambio/lxae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
AIMS To identify the promising oleaginous Aspergillus oryzae strain and leverage its lipid and biomass production through a mathematical model. METHODS AND RESULTS Comparative profiling of the cell growth and total fatty acid (TFA) content among 13 strains of A. oryzae was performed to explore the discrimination in their lipid productions. The oleaginicity of A. oryzae was found to be strain dependent, where the fungal strain BCC7051 exhibited superior performance in producing lipid-rich biomass by submerged fermentation. The TFA contents of the strain BCC7051 were comparable when cultivated at a range of pH values (pH 3.5-6.5) and temperatures (24-42°C). The mathematical model was generated, well describing and predicting the fungal growth and lipid phenotypic traits at various temperatures and carbon substrates. CONCLUSION The A. oryzae strain BCC7051 was a robust cell factory, acquiring economically feasible options for producing valuable lipid-based products.
Collapse
Affiliation(s)
- Siwaporn Wannawilai
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thanaporn Palasak
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Warinthon Chamkhuy
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Bhimabol Khongto
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sukanya Jeennor
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Abdul Manaf SF, Indera Luthfi AA, Md Jahim J, Harun S, Tan JP, Mohd Shah SS. Sequential detoxification of oil palm fronds hydrolysate with coconut shell activated charcoal and pH controlled in bioreactor for xylitol production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Rudrangi SSR, West TP. Effect of pH on xylitol production by Candida species from a prairie cordgrass hydrolysate. ACTA ACUST UNITED AC 2020; 75:489-493. [PMID: 32817585 DOI: 10.1515/znc-2020-0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/14/2020] [Indexed: 11/15/2022]
Abstract
Using hydrolysates of the North American prairie grass prairie cordgrass buffered at pH 4.5, 5.0, 5.5 or 6.0, xylitol production, xylitol yield, cell biomass production and productivity were investigated for three strains of yeast Candida. Of the three strains, the highest xylitol concentration of 20.19 g xylitol (g xylose consumed)-1 and yield of 0.89 g xylitol (g xylose consumed)-1 were produced by Candida mogi ATCC 18364 when grown for 120 h at 30° C on the pH 5.5-buffered hydrolysate-containing medium. The highest biomass level being 7.7 g cells (kg biomass)-1 was observed to be synthesized by Candida guilliermondii ATCC 201935 after 120 h of growth at 30° C on a pH 5.5-buffered hydrolysate-containing medium. The highest xylitol specific productivity of 0.73 g xylitol (g cells h)-1 was determined for C. guilliermondii ATCC 20216 after 120 h of growth at 30°C on a pH 5.0-buffered hydrolysate-containing medium. Xylitol production and yield by the three Candida strains was higher on prairie cordgrass than what was previously observed for the same strains after 120 h at 30° C when another North American prairie grass big bluestem served as the plant biomass hydrolysate indicating that prairie cordgrass may be a superior plant biomass substrate.
Collapse
Affiliation(s)
- Samatha S R Rudrangi
- Department of Chemistry, Texas A&M University-Commerce, Commerce, 75429, TX, USA
| | - Thomas P West
- Department of Chemistry, Texas A&M University-Commerce, Commerce, 75429, TX, USA
| |
Collapse
|
4
|
Model of acetic acid-affected growth and poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545. J Biotechnol 2018; 268:12-20. [DOI: 10.1016/j.jbiotec.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 01/14/2023]
|
5
|
Kieliszek M, Kot AM, Bzducha-Wróbel A, BŁażejak S, Gientka I, Kurcz A. Biotechnological use of Candida yeasts in the food industry: A review. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Wannawilai S, Chisti Y, Sirisansaneeyakul S. A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|