1
|
Shilova SA, Matyuta IO, Petrova ES, Nikolaeva AY, Rakitina TV, Minyaev ME, Boyko KM, Popov VO, Bezsudnova EY. Expanded Substrate Specificity in D-Amino Acid Transaminases: A Case Study of Transaminase from Blastococcus saxobsidens. Int J Mol Sci 2023; 24:16194. [PMID: 38003383 PMCID: PMC10671532 DOI: 10.3390/ijms242216194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Enzymes with expanded substrate specificity are good starting points for the design of biocatalysts for target reactions. However, the structural basis of the expanded substrate specificity is still elusive, especially in the superfamily of pyridoxal-5'-phosphate-dependent transaminases, which are characterized by a conserved organization of both the active site and functional dimer. Here, we analyze the structure-function relationships in a non-canonical D-amino acid transaminase from Blastococcus saxobsidens, which is active towards D-amino acids and primary (R)-amines. A detailed study of the enzyme includes a kinetic analysis of its substrate scope and a structural analysis of the holoenzyme and its complex with phenylhydrazine-a reversible inhibitor and analogue of (R)-1-phenylethylamine-a benchmark substrate of (R)-selective amine transaminases. We suggest that the features of the active site of transaminase from B. saxobsidens, such as the flexibility of the R34 and R96 residues, the lack of bulky residues in the β-turn at the entrance to the active site, and the short O-pocket loop, facilitate the binding of substrates with and without α-carboxylate groups. The proposed structural determinants of the expanded substrate specificity can be used for the design of transaminases for the stereoselective amination of keto compounds.
Collapse
Affiliation(s)
- Sofia A. Shilova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
| | - Ilya O. Matyuta
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
| | - Elizaveta S. Petrova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alena Y. Nikolaeva
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Tatiana V. Rakitina
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail E. Minyaev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia;
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina Yu. Bezsudnova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (S.A.S.); (I.O.M.); (E.S.P.); (A.Y.N.); (T.V.R.); (K.M.B.); (V.O.P.)
| |
Collapse
|
2
|
Metagenomic Type IV Aminotransferases Active toward (R)-Methylbenzylamine. Catalysts 2023. [DOI: 10.3390/catal13030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate-dependent enzymes that catalyze the reversible transfer of an amino group from an amino donor to a keto substrate. ATs are promising biocatalysts that are replacing traditional chemical routes for the production of chiral amines. In this study, an in silico-screening of a metagenomic library isolated from the Curonian Lagoon identified 11 full-length fold type IV aminotransferases that were successfully expressed and used for substrate profiling. Three of them (AT-872, AT-1132, and AT-4421) were active toward (R)-methylbenzylamine. Purified proteins showed activity with L- and D-amino acids and various aromatic compounds such as (R)-1-aminotetraline. AT-872 and AT-1132 exhibited thermostability and retained about 55% and 80% of their activities, respectively, even after 24 h of incubation at 50 °C. Active site modeling revealed that AT-872 and AT-4421 have an unusual active site environment similar to the AT of Haliscomenobacter hydrossis, while AT-1132 appeared to be structurally related to the AT from thermophilic archaea Geoglobus acetivorans. Thus, we have identified and characterized PLP fold type IV ATs that were active toward both amino acids and a variety of (R)-amines.
Collapse
|
3
|
Wang C, Tang K, Dai Y, Jia H, Li Y, Gao Z, Wu B. Identification, Characterization, and Site-Specific Mutagenesis of a Thermostable ω-Transaminase from Chloroflexi bacterium. ACS OMEGA 2021; 6:17058-17070. [PMID: 34250363 PMCID: PMC8264935 DOI: 10.1021/acsomega.1c02164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we have identified an ω-transaminase (ω-TA) from Chloroflexi bacterium from the genome database by using two ω-TA sequences (ATA117 Arrmut11 from Arthrobacter sp. KNK168 and amine transaminase from Aspergillus terreus NIH2624) as templates in a BLASTP search and motif sequence alignment. The protein sequence of the ω-TA from C. bacterium (CbTA) shows 38% sequence identity to that of ATA117 Arrmut11. The gene sequence of CbTA was inserted into pRSF-Duet1 and functionally expressed in Escherichia coli BL21(DE3). The results showed that the recombinant CbTA has a specific activity of 1.19 U/mg for (R)-α-methylbenzylamine [(R)-MBA] at pH 8.5 and 45 °C. The substrate acceptability test showed that CbTA has significant reactivity to aromatic amino donors and amino receptors. More importantly, CbTA also exhibited good affinity toward some cyclic substrates. The homology model of CbTA was built by Discovery Studio, and docking was performed to describe the relative activity toward some substrates. CbTA evolved by site-specific mutagenesis and found that the Q192G mutant increased the activity to (R)-MBA by around 9.8-fold. The Q192G mutant was then used to convert two cyclic ketones, N-Boc-3-pyrrolidinone and N-Boc-3-piperidone, and both the conversions were obviously improved compared to that of the parental CbTA.
Collapse
|
4
|
Telzerow A, Paris J, Håkansson M, González‐Sabín J, Ríos‐Lombardía N, Gröger H, Morís F, Schürmann M, Schwab H, Steiner K. Expanding the Toolbox of R-Selective Amine Transaminases by Identification and Characterization of New Members. Chembiochem 2021; 22:1232-1242. [PMID: 33242357 PMCID: PMC8048526 DOI: 10.1002/cbic.202000692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Indexed: 12/16/2022]
Abstract
Amine transaminases (ATAs) are used to synthesize enantiomerically pure amines, which are building blocks for pharmaceuticals and agrochemicals. R-selective ATAs belong to the fold type IV PLP-dependent enzymes, and different sequence-, structure- and substrate scope-based features have been identified in the past decade. However, our knowledge is still restricted due to the limited number of characterized (R)-ATAs, with additional bias towards fungal origin. We aimed to expand the toolbox of (R)-ATAs and contribute to the understanding of this enzyme subfamily. We identified and characterized four new (R)-ATAs. The ATA from Exophiala sideris contains a motif characteristic for d-ATAs, which was previously believed to be a disqualifying factor for (R)-ATA activity. The crystal structure of the ATA from Shinella is the first from a Gram-negative bacterium. The ATAs from Pseudonocardia acaciae and Tetrasphaera japonica are the first characterized (R)-ATAs with a shortened/missing N-terminal helix. The active-site charges vary significantly between the new and known ATAs, correlating with their diverging substrate scope.
Collapse
Affiliation(s)
- Aline Telzerow
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
- InnoSyn B.V.Urmonderbaan 226167RDGeleenThe Netherlands
| | - Juraj Paris
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
- EntreChem SLVivero Ciencias de la Salud33011OviedoSpain
| | | | | | | | - Harald Gröger
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
| | | | | | - Helmut Schwab
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Kerstin Steiner
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
5
|
Structural and Functional Analysis of the Only Two Pyridoxal 5′-Phosphate-Dependent Fold Type IV Transaminases in Bacillus altitudinis W3. Catalysts 2020. [DOI: 10.3390/catal10111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aminotransferases are employed as industrial biocatalysts to produce chiral amines with high enantioselectivity and yield. BpTA-1 and BpTA-2 are the only two pyridoxal 5′-phosphate-dependent fold type IV transaminase enzymes in Bacillus altitudinis W3. Herein, we compared the structures and biochemical characteristics of BpTA-1 and BpTA-2 using bioinformatic analysis, circular dichroism spectroscopy, atomic force microscopy and other approaches. BpTA-1 and BpTA-2 are similar overall; both form homodimers and utilize a catalytic lysine. However, there are distinct differences in the substrate cofactor-binding pocket, molecular weight and the proportion of the secondary structure. Both enzymes have the same stereoselectivity but different enzymatic properties. BpTA-2 is more active under partial alkaline and ambient temperature conditions and BpTA-1 is more sensitive to pH and temperature. BpTA-2 as novel enzyme not only fills the building blocks of transaminase but also has broader industrial application potential for (R)-α-phenethylamines than BpTA-1. Structure-function relationships were explored to assess similarities and differences. The findings lay the foundation for modifying these enzymes via protein engineering to enhance their industrial application potential.
Collapse
|
6
|
Voss M, Xiang C, Esque J, Nobili A, Menke MJ, André I, Höhne M, Bornscheuer UT. Creation of ( R)-Amine Transaminase Activity within an α-Amino Acid Transaminase Scaffold. ACS Chem Biol 2020; 15:416-424. [PMID: 31990173 DOI: 10.1021/acschembio.9b00888] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enzymatic transamination of ketones into (R)-amines represents an important route for accessing a range of pharmaceuticals or building blocks. Although many publications have dealt with enzyme discovery, protein engineering, and the application of (R)-selective amine transaminases [(R)-ATA] in biocatalysis, little is known about the actual in vivo role and how these enzymes have evolved from the ubiquitous α-amino acid transaminases (α-AATs). Here, we show the successful introduction of an (R)-transaminase activity in an α-amino acid aminotransferase with one to six amino acid substitutions in the enzyme's active site. Bioinformatic analysis combined with computational redesign of the d-amino acid aminotransferase (DATA) led to the identification of a sextuple variant having a specific activity of 326 milliunits mg-1 in the conversion of (R)-phenylethylamine and pyruvate to acetophenone and d-alanine. This value is similar to those of natural (R)-ATAs, which typically are in the range of 250 milliunits mg-1. These results demonstrate that (R)-ATAs can evolve from α-AAT as shown here for the DATA scaffold.
Collapse
Affiliation(s)
- Moritz Voss
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Chao Xiang
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Jérémy Esque
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135, Avenue de Rangueil, F-31077 Toulouse cedex 04, France
| | - Alberto Nobili
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Marian J. Menke
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Isabelle André
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135, Avenue de Rangueil, F-31077 Toulouse cedex 04, France
| | - Matthias Höhne
- Protein Biochemistry, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| |
Collapse
|
7
|
Bezsudnova EY, Popov VO, Boyko KM. Structural insight into the substrate specificity of PLP fold type IV transaminases. Appl Microbiol Biotechnol 2020; 104:2343-2357. [PMID: 31989227 DOI: 10.1007/s00253-020-10369-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Pyridoxal-5'-phosphate-dependent transaminases of fold type IV (class IV) are promising enzymes for (R)-selective amination of organic compounds. Transaminases of fold type IV exhibit either strict (R)-selectivity or (S)-selectivity that is implemented within geometrically similar active sites of different amino acid compositions. Based on substrate specificity, class IV comprises three large families of transaminases: (S)-selective branched-chain L-amino acid aminotransferases and (R)-selective D-amino acid aminotransferases and (R)-amine:pyruvate transaminases. In this review, we aim to analyze the substrate profiles and correlations between the substrate specificity and organization of the active site in transaminases from these structurally related families. New transaminases with an expanded substrate specificity are also discussed. An analysis of the structural features of substrate binding and comparisons of structural determinants of chiral discrimination between members of the class IV transaminases could be helpful in identifying new biocatalytically relevant enzymes as well as rational protein engineering.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, Russian Federation, 123182
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071
| |
Collapse
|
8
|
Marchenkova MA, Konarev PV, Rakitina TV, Timofeev VI, Boikova AS, Dyakova YA, Ilina KB, Korzhenevskiy DA, Yu Nikolaeva A, Pisarevsky YV, Kovalchuk MV. Dodecamers derived from the crystal structure were found in the pre-crystallization solution of the transaminase from the thermophilic bacterium Thermobaculum terrenum by small-angle X-ray scattering. J Biomol Struct Dyn 2019; 38:2939-2944. [PMID: 31347457 DOI: 10.1080/07391102.2019.1649195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pre-crystallization solution of the transaminase from Thermobaculum terrenum (TaTT) has been studied by small-angle X-ray scattering (SAXS). Regular changes in the oligomeric composition of the protein were observed after the addition of the precipitant. Comparison of the observed oligomers with the crystal structure of TaTT (PDB ID 6GKR) shows that dodecamers may act as building blocks in the growth of transaminase single crystals. Correlating of these results to the similar X-ray studies of other proteins suggests that SAXS may be a valuable tool for searching optimum crystallization conditions. AbbreviationSAXSsmall-angle X-ray scatteringTatransaminaseTaTTtransaminase from Thermobaculum terrenumPLPpyridoxal-5'-phosphateR-PEAR-(þ)-1-phenylethylamineBCATbranched-chain amino acid aminotransferaseDAATD-aminoacid aminotransferaseR-TAR-amine:pyruvate transaminaseCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Margarita A Marchenkova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Petr V Konarev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Tatiana V Rakitina
- National Research Centre 'Kurchatov Institute', Moscow, Russian Federation.,Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Hormonal Regulation Proteins, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Anastasiia S Boikova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Yulia A Dyakova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Kseniia B Ilina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | | | - Alena Yu Nikolaeva
- National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Yurii V Pisarevsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Mikhail V Kovalchuk
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation.,St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
9
|
Zeifman YS, Boyko KM, Nikolaeva AY, Timofeev VI, Rakitina TV, Popov VO, Bezsudnova EY. Functional characterization of PLP fold type IV transaminase with a mixed type of activity from Haliangium ochraceum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:575-585. [PMID: 30902765 DOI: 10.1016/j.bbapap.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 12/11/2022]
Abstract
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are industrially important enzymes catalyzing the stereoselective amination of ketones and keto acids. Transaminases of PLP fold type IV are characterized by (R)- or (S)-stereoselective transfer of amino groups, depending on the substrate profile of the enzyme. PLP fold type IV transaminases include branched-chain amino acid transaminases (BCATs), D-amino acid transaminases and (R)-amine:pyruvate transaminases. Recently, transaminases with a mixed type of activity were identified and characterized. Here, we report biochemical and structural characterization of a transaminase from myxobacterium Haliangium ochraceum (Hoch3033), which is active towards keto analogs of branched-chain amino acids (specific substrates for BCATs) and (R)-(+)-α-methylbenzylamine (specific substrate for (R)-amine:pyruvate transaminases). The enzyme is characterized by an alkaline pH optimum (pH 10.0-10.5) and a tolerance to high salt concentrations (up to 2 M NaCl). The structure of Hoch3033 was determined at 2.35 Å resolution. The overall fold of the enzyme was similar to those of known enzymes of PLP fold type IV. The mixed type of activity of Hoch3033 was implemented within the BCAT-like active site. However, in the active site of Hoch3033, we observed substitutions of specificity-determining residues that are important for substrate binding in canonical BCATs. We suggest that these changes result in the loss of activity towards α-ketoglutarate and increase the affinity towards (R)-(+)-α-methylbenzylamine. These results complement our knowledge of the catalytic diversity of transaminases and indicate the need for further research to understand the structural basis of substrate specificity in these enzymes.
Collapse
Affiliation(s)
- Yulia S Zeifman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Alena Yu Nikolaeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Vladimir I Timofeev
- Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation; FSRC «Crystallography and Photonics» RAS, Leninskiy Prospekt 59, 119333 Moscow, Russian Federation
| | - Tatiana V Rakitina
- Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation; Shemyakin&Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation; Kurchatov Complex of NBICS-Technologies, National Research Center "Kurchatov Institute", Akad. Kurchatova sqr 1, 123182 Moscow, Russian Federation
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russian Federation
| |
Collapse
|
10
|
Bezsudnova EY, Boyko KM, Nikolaeva AY, Zeifman YS, Rakitina TV, Suplatov DA, Popov VO. Biochemical and structural insights into PLP fold type IV transaminase from Thermobaculum terrenum. Biochimie 2018; 158:130-138. [PMID: 30599183 DOI: 10.1016/j.biochi.2018.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
The high catalytic efficiency of enzymes under reaction conditions is one of the main goals in biocatalysis. Despite the dramatic progress in the development of more efficient biocatalysts by protein design, the search for natural enzymes with useful properties remains a promising strategy. The pyridoxal 5'-phosphate (PLP)-dependent transaminases represent a group of industrially important enzymes due to their ability to stereoselectively transfer amino groups between diverse substrates; however, the complex mechanism of substrate recognition and conversion makes the design of transaminases a challenging task. Here we report a detailed structural and kinetic study of thermostable transaminase from the bacterium Thermobaculum terrenum (TaTT) using the methods of enzyme kinetics, X-ray crystallography and molecular modeling. TaTT can convert L-branched-chain and L-aromatic amino acids as well as (R)-(+)-1-phenylethylamine at a high rate and with high enantioselectivity. The structures of TaTT in complex with the cofactor pyridoxal 5'-phosphate covalently bound to enzyme and in complex with its reduced form, pyridoxamine 5'-phosphate, were determined at resolutions of 2.19 Å and 1.5 Å, and deposited in the Protein Data Bank as entries 6GKR and 6Q8E, respectively. TaTT is a fold type IV PLP-dependent enzyme. In terms of structural similarity, the enzyme is close to known branched-chain amino acid aminotransferases, but differences in characteristic sequence motifs in the active site were observed in TaTT compared to canonical branched-chain amino acid aminotransferases, which can explain the improved binding of aromatic amino acids and (R)-(+)-1-phenylethylamine. This study has shown for the first time that high substrate specificity towards both various l-amino acids and (R)-primary amines can be implemented within one pyridoxal 5'-phosphate-dependent active site of fold type IV. These results complement our knowledge of the catalytic diversity of transaminases and indicate the need for further biochemical and bioinformatic studies to understand the sequence-structure-function relationship in these enzymes.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Alena Yu Nikolaeva
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Yulia S Zeifman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Tatiana V Rakitina
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation; Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str. 16/10, 117997, Moscow, Russian Federation
| | - Dmitry A Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskiye Gory 1-73, Moscow, 119991, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| |
Collapse
|