1
|
Pons Royo MDC, Jungbauer A. Polyethylene glycol precipitation: fundamentals and recent advances. Prep Biochem Biotechnol 2025:1-20. [PMID: 40084924 DOI: 10.1080/10826068.2025.2470220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Downstream processing continues to face significant bottlenecks due to current purification technologies and improvements in upstream. Chromatography systems have been the primary method for purification due to their high yields and purities. However, the use of high-titer-producing strains has highlighted limitations in chromatographic steps, including mass transfer limitations, low capacity, and scalability issues. These challenges, combined with the growing interest in fully continuous manufacturing processes, have led to a widespread interest in alternative to affinity chromatography systems. Polyethylene glycol precipitation has been demonstrated to be a powerful, flexible, easily scalable, and titer-independent methodology for purifying therapeutic proteins such as monoclonal antibodies, achieving yields and purities comparable to chromatography systems. Furthermore, it also holds great potential for simplifying the current purification processes of new modalities and overcome current bottlenecks in downstream processing. Herein, we discuss the latest advances in polyethylene glycol precipitation as a purification technology and explore its future research directions and potential applications.
Collapse
Affiliation(s)
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| |
Collapse
|
2
|
Lowe CD, Larson HC, Cai Y, Chiang HT, Pozzo LD, Baneyx F, Cossairt BM. Induced Chirality in QDs Using Thermoresponsive Elastin-like Polypeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1047-1056. [PMID: 39737696 DOI: 10.1021/acs.langmuir.4c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate. Successful conjugation of the ELPs onto the QDs is confirmed by the diagnostic CD response corresponding to the QD electronic transitions in the visible range. The resulting ELP:CdS conjugates demonstrate thermally reversible coacervation, as observed through dynamic light scattering, small-angle X-ray scattering, and electron microscopy. This research provides a foundation for using induced chirality in QD electronic transitions to probe QD conjugation to complex peptides and proteins, opening pathways for designing dynamic, stimuli-responsive hybrid nanomaterials.
Collapse
Affiliation(s)
- Christopher D Lowe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Helen C Larson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Huat Thart Chiang
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Yoshida K, Suyama K, Matsushita S, Maeda I, Nose T. Development of the efficient preparation method for thermoresponsive elastin-like peptides using liquid-phase synthesis combined with fragment condensation strategy. J Pept Sci 2023; 29:e3528. [PMID: 37340996 DOI: 10.1002/psc.3528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Elastin-like peptides (ELPs) are synthetic peptides that mimic the characteristic hydrophobic amino acid repeat sequences of elastin and exhibit temperature-dependent reversible self-assembly properties. ELPs are expected to be used as temperature-responsive biomolecular materials across diverse industrial and research fields, and there is a requirement for a straightforward method to mass-produce them. Previously, we demonstrated that phenylalanine-containing ELP analogs, namely, (FPGVG)n , can undergo coacervation with short chains (n = 5). The Fmoc solid-phase peptide synthesis method is one strategy used to synthesize these short ELPs. However, owing to its low reaction efficiency, an efficient method for preparing ELPs is required. In this study, efficient preparation of ELPs was investigated using a liquid-phase synthesis method with a hydrophobic benzyl alcohol support (HBA-tag). Because HBA-tags are highly hydrophobic, they can be easily precipitated by the addition of poor solvents and recovered by filtration. This property allows the method to combine the advantages of the simplicity of solid-phase methods and the high reaction efficiency of liquid-phase methods. By utilizing liquid-phase fragment condensation with HBA-tags, short ELPs were successfully obtained in high yield and purity. Finally, the temperature-dependent response of the ELPs generated through fragment condensation was assessed using turbidity measurements, which revealed a reversible phase transition. Consequently, the ELPs exhibited a reversible phase transition, indicating successful synthesis of ELPs via fragment preparation with tags. These findings provide evidence of the potential for mass production of ELPs using this approach.
Collapse
Affiliation(s)
- Kohei Yoshida
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Keitaro Suyama
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Shin Matsushita
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Fukuoka, Japan
| | - Takeru Nose
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, Japan
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Suyama K, Murashima M, Maeda I, Nose T. Enhancement of Aggregate Formation Through Aromatic Compound Adsorption in Elastin-like Peptide (FPGVG) 5 Analogs. Biomacromolecules 2023; 24:5265-5276. [PMID: 37865930 DOI: 10.1021/acs.biomac.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Elastin-like peptides (ELPs) exhibit temperature-dependent reversible self-assembly. Repetitive sequences derived from elastin, such as Val-Pro-Gly-Val-Gly (VPGVG), are essential for the self-assembly of ELPs. Previously, we developed (FPGVG)5 (F5), in which the first valine residue in the VPGVG sequence was replaced with phenylalanine, which showed strong self-aggregation ability. This suggests that interactions through the aromatic amino acid residues of ELPs could play an important role in self-assembly. In this study, we investigated the thermoresponsive behavior of F5 analogs in the presence of aromatic compounds. Turbidimetry, spectroscopy, and fluorescence measurements demonstrated that aromatic compounds interacted with F5 analogs below the transition temperature and enhanced the self-assembly ability of ELPs by stabilizing amyloid-like structures. Furthermore, quantitative high-performance liquid chromatography analyses showed that the F5 analogs could adsorb and remove hydrophobic aromatic compounds from aqueous solutions during aggregate formation. These results suggested that the F5 analogs can be applicable as scavengers of aromatic compounds.
Collapse
Affiliation(s)
- Keitaro Suyama
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Masayuki Murashima
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka 820-8502, Fukuoka, Japan
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Leonhardt F, Gennari A, Paludo GB, Schmitz C, da Silveira FX, Moura DCDA, Renard G, Volpato G, Volken de Souza CF. A systematic review about affinity tags for one-step purification and immobilization of recombinant proteins: integrated bioprocesses aiming both economic and environmental sustainability. 3 Biotech 2023; 13:186. [PMID: 37193330 PMCID: PMC10182917 DOI: 10.1007/s13205-023-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
The present study reviewed and discussed the promising affinity tags for one-step purification and immobilization of recombinant proteins. The approach used to structure this systematic review was The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) methodology. The Scopus and Web of Science databases were used to perform the bibliographic survey by which 267 articles were selected. After the inclusion/exclusion criteria and the screening process, from 25 chosen documents, we identified 7 types of tags used in the last 10 years, carbohydrate-binding module tag (CBM), polyhistidine (His-tag), elastin-like polypeptides (ELPs), silaffin-3-derived pentalysine cluster (Sil3k tag), N-acetylmuramidase (AcmA tag), modified haloalkane dehalogenase (HaloTag®), and aldehyde from a lipase polypeptide (Aldehyde tag). The most used bacterial host for expressing the targeted protein was Escherichia coli and the most used expression vector was pET-28a. The results demonstrated two main immobilization and purification methods: the use of supports and the use of self-aggregating tags without the need of support, depending on the tag used. Besides, the chosen terminal for cloning the tag proved to be very important once it could alter enzyme activity. In conclusion, the best tag for protein one-step purification and immobilization was CBM tag, due to the eco-friendly supports that can be provided from industry wastes, the fast immobilization with high specificity, and the reduced cost of the process.
Collapse
Affiliation(s)
- Fernanda Leonhardt
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Adriano Gennari
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Graziela Barbosa Paludo
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Caroline Schmitz
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| | - Filipe Xerxeneski da Silveira
- Federal Institute of Education, Science, and Technology of Rio Grande do Sul, IFRS, Porto Alegre Campus, Porto Alegre, RS Brazil
| | | | - Gaby Renard
- Quatro G Pesquisa & Desenvolvimento Ltda, Porto Alegre, RS Brazil
| | - Giandra Volpato
- Federal Institute of Education, Science, and Technology of Rio Grande do Sul, IFRS, Porto Alegre Campus, Porto Alegre, RS Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari, Univates, Av. Avelino Tallini, 171, Lajeado, RS ZC 95914-014 Brazil
| |
Collapse
|
7
|
Li Z, Chen J, Martinez-Fonts K, Rauscher M, Rivera S, Welsh J, Kandula S. Cationic polymer precipitation for enhanced impurity removal in downstream processing. Biotechnol Bioeng 2023. [PMID: 37148495 DOI: 10.1002/bit.28416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Precipitation can be used for the removal of impurities early in the downstream purification process of biologics, with the soluble product remaining in the filtrate through microfiltration. The objective of this study was to examine the use of polyallylamine (PAA) precipitation to increase the purity of product via higher host cell protein removal to enhance polysorbate excipient stability to enable a longer shelf life. Experiments were performed using three monoclonal antibodies (mAbs) with different properties of isoelectric point and IgG subclass. High throughput workflows were established to quickly screen precipitation conditions as a function of pH, conductivity and PAA concentrations. Process analytical tools (PATs) were used to evaluate the size distribution of particles and inform the optimal precipitation condition. Minimal pressure increase was observed during depth filtration of the precipitates. The precipitation was scaled up to 20L size and the extensive characterization of precipitated samples after protein A chromatography showed >75% reduction of host cell protein (HCP) concentrations (by ELISA), >90% reduction of number of HCP species (by mass spectrometry), and >99.8% reduction of DNA. The stability of polysorbate containing formulation buffers for all three mAbs in the protein A purified intermediates was improved at least 25% after PAA precipitation. Mass spectrometry was used to obtain additional understanding of the interaction between PAA and HCPs with different properties. Minimal impact on product quality and <5% yield loss after precipitation were observed while the residual PAA was <9 ppm. These results expand the toolbox in downstream purification to solve HCP clearance issues for programs with purification challenges, while also providing important insights into the integration of precipitation-depth filtration and the current platform process for the purification of biologics.
Collapse
Affiliation(s)
- Zhao Li
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Justin Chen
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Kirby Martinez-Fonts
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Michael Rauscher
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Shannon Rivera
- Analytical Research and Development Mass Spectrometry, Merck & Co., Inc., Rahway, New Jersey, USA
| | - John Welsh
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sunitha Kandula
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
8
|
Fang S, Huang W, Wu J, Han J, Wang L, Wang Y. Separation and Purification of Recombinant β-Glucosidase with Hydrophobicity and Thermally Responsive Property from Cell Lysis Solution by Foam Separation and Further Purification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3362-3372. [PMID: 36749912 DOI: 10.1021/acs.jafc.2c07405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aim of this study was to separate and purify recombinant β-glucosidase (GLEGB) with elastin-like polypeptide (ELP) and graphene-binding peptide (GB) from cell lysis solution by foam separation and further purification. The study of foam property of GLEGB cell lysis solution indicated that it had excellent foaming property and foam stability, which was suitable for foam separation. This could be due to the GB tag with hydrophobicity, which made the recombinant β-glucosidase with GB preferentially adsorb on the surface of bubbles. At optimum operating conditions of foam separation, the enzyme activity recovery of GLEGB could reach 95.63 ± 1.0%. The foam solution of GLEGB was further purified based on the thermally responsive property of the ELP tag, and the purification fold of GLEGB could reach 29.6 ± 0.5 at the optimum operating conditions. The prominent purification effect indicates that this technique is a simple and efficient technique for the separation and purification of recombinant enzymes.
Collapse
Affiliation(s)
- Sihan Fang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenrui Huang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiacong Wu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Wang H, Sun H, Gao C, Chen Q, Dong W, Chang Y, Luo H. A phase separation process induced by pH change for purification of His-tagged protein at low salt concentration. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
11
|
Development of truncated elastin-like peptide analogues with improved temperature-response and self-assembling properties. Sci Rep 2022; 12:19414. [PMID: 36371418 PMCID: PMC9653453 DOI: 10.1038/s41598-022-23940-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Functional peptides, which are composed of proteinogenic natural amino acids, are expected to be used as biomaterials with minimal environmental impact. Synthesizing a functional peptide with a shorter amino acid sequence while retaining its function is a easy and economical strategy. Furthermore, shortening functional peptides helps to elucidate the mechanism of their functional core region. Truncated elastin-like peptides (ELPs) are peptides consisting of repetitive sequences, derived from the elastic protein tropoelastin, that show the thermosensitive formation of coacervates. In this study, to obtain shortened ELP analogues, we synthesized several (Phe-Pro-Gly-Val-Gly)n (FPGVG)n analogues with one or two amino acid residues deleted from each repeat sequence, such as the peptide analogues consisting of FPGV and/or FPG sequences. Among the novel truncated ELP analogues, the 16-mer (FPGV)4 exhibited a stronger coacervation ability than the 25-mer (FPGVG)5. These results indicated that the coacervation ability of truncated ELPs was affected by the amino acid sequence and not by the peptide chain length. Based on this finding, we prepared Cd2+-binding sequence-conjugated ELP analogue, AADAAC-(FPGV)4, and found that it could capture Cd2+. These results indicated that the 16-mer (FPGV)4 only composed of proteinogenic amino acids could be a new biomaterial with low environmental impact.
Collapse
|
12
|
Marín Viegas VS, Ocampo CG, Restucci FE, Vignolles F, Mazzini FN, Candreva ÁM, Petruccelli S. Synthesis of single-chain antibody fragment fused to the elastin-like polypeptide in Nicotiana benthamiana and its application in affinity precipitation of difficult to produce proteins. Biotechnol Bioeng 2022; 119:2505-2517. [PMID: 35689353 DOI: 10.1002/bit.28158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022]
Abstract
Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this study, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)-elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in Nicotiana benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by coaggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this study showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low-yield proteins.
Collapse
Affiliation(s)
- Vanesa S Marín Viegas
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Carolina G Ocampo
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Fernando E Restucci
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Florencia Vignolles
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Flavia N Mazzini
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ángela M Candreva
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Silvana Petruccelli
- CIDCA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
13
|
Suyama K, Shimizu M, Maeda I, Nose T. Flexible customization of the self-assembling abilities of short elastin-like peptide Fn analogs by substituting N-terminal amino acids. Biopolymers 2022; 113:e23521. [PMID: 35830538 DOI: 10.1002/bip.23521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/06/2022]
Abstract
Elastin-like peptides (ELPs) are thermoresponsive biopolymers inspired by the characteristic repetitive sequences of natural elastin. As ELPs exhibit temperature-dependent reversible self-assembly, they are expected to be biocompatible thermoresponsive materials for drug delivery carriers. One of the most widely studied ELPs in this field is the repetitive pentapeptide, (VPGXG)n . We previously reported that phenylalanine-containing ELP (Fn) analogs, in which the former Val residue of the repetitive sequence (VPGVG)n is replaced by Phe, show coacervation with a short chain length (n = 5). Owing to their short sequences, Fn analogs are easily modified in amino acid sequences via simple chemical synthesis, and are useful for investigating the relationship between peptide sequences and temperature responsiveness. In this study, we developed Fn analogs by replacing Phe residue(s) with other amino acids or introducing another amino acid at the N-terminus. The temperature responsiveness of the Fn analogs changed drastically with the substitution of a single Phe residue, suggesting that aromatic amino acids play an important role in their self-assembly. In addition, the self-assembling ability of Fn was enhanced by increasing the bulkiness of the N-terminal amino acids. Therefore, the N-terminal residue was considered to be important for hydrophobicity-induced intermolecular interactions between the peptides during coacervation.
Collapse
Affiliation(s)
- Keitaro Suyama
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Marin Shimizu
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan.,Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Nagano H, Mannen T, Kikuchi Y, Shiraki K. Solution design to extend the pH range of the pH-responsive precipitation of a CspB fusion protein. Protein Expr Purif 2022; 195-196:106091. [PMID: 35338005 DOI: 10.1016/j.pep.2022.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Cell surface protein B (CspB) from Corynebacterium glutamicum has been developed as a reversible pH-responsive tag for protein purification. CspB fusion proteins precipitate at acidic pH, after that they completely dissolve at neutral pH. This property has been used in a non-chromatographic protein purification method named pH-responsive Precipitation-Redissolution of CspB tag Purification (pPRCP). However, it is difficult to apply pPRCP to proteins that are unstable under acidic conditions. In an effort to shift the precipitation pH to a milder range, we investigated the solution conditions of CspB-fused Teriparatide (CspB50TEV-Teriparatide) during the process of pH-responsive precipitation using pPRCP. The purified CspB50TEV-Teriparatide in buffer without additives precipitated at pH 5.3. By contrast, CspB50TEV-Teriparatide in buffer with 0.5 M Na2SO4 precipitated at pH 6.6 because of the kosmotropic effect. Interestingly, the pH at which precipitation occurred was independent of the protein concentration. The precipitated CspB50TEV-Teriparatide was fully redissolved at above pH 8.0 in the presence or absence of salt. The discovery that proteins can be precipitated at a mild pH will allow pPRCP to be applied to acid-sensitive proteins.
Collapse
Affiliation(s)
- Hayato Nagano
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co, Inc., 1-1, Suzuki-cho, Kawasaki, 2108681, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Teruhisa Mannen
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co, Inc., 1-1, Suzuki-cho, Kawasaki, 2108681, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co, Inc., 1-1, Suzuki-cho, Kawasaki, 2108681, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
15
|
Sumiyoshi S, Suyama K, Tatsubo D, Tanaka N, Tomohara K, Taniguchi S, Maeda I, Nose T. Metal ion scavenging activity of elastin-like peptide analogues containing a cadmium ion binding sequence. Sci Rep 2022; 12:1861. [PMID: 35115613 PMCID: PMC8814041 DOI: 10.1038/s41598-022-05695-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The development of simple and safe methods for recovering environmental pollutants, such as heavy metals, is needed for sustainable environmental management. Short elastin-like peptide (ELP) analogues conjugated with metal chelating agents are considered to be useful as metal sequestering agents as they are readily produced, environment friendly, and the metal binding domain can be selected based on any target metal of interest. Due to the temperature dependent self-assembly of ELP, the peptide-based sequestering agents can be transformed from the solution state into the particles that chelate metal ions, which can then be collected as precipitates. In this study, we developed a peptide-based sequestering agent, AADAAC-(FPGVG)4, by introducing the metal-binding sequence AADAAC on the N-terminus of a short ELP, (FPGVG)4. In turbidity measurements, AADAAC-(FPGVG)4 revealed strong self-assembling ability in the presence of metal ions such as Cd2+ and Zn2+. The results from colorimetric analysis indicated that AADAAC-(FPGVG)4 could capture Cd2+ and Zn2+. Furthermore, AADAAC-(FPGVG)4 that bound to metal ions could be readily recycled by treatment with acidic solution without compromising its metal binding affinity. The present study indicates that the fusion of the metal-binding sequence and ELP is a useful and powerful strategy to develop cost-effective heavy metal scavenging agents with low environmental impacts.
Collapse
Affiliation(s)
- Shogo Sumiyoshi
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keitaro Suyama
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daiki Tatsubo
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Naoki Tanaka
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keisuke Tomohara
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Suguru Taniguchi
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Takeru Nose
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan.
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
16
|
Freitas AI, Domingues L, Aguiar TQ. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 2022; 36:249-264. [PMID: 35127175 PMCID: PMC8799874 DOI: 10.1016/j.jare.2021.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Collapse
Affiliation(s)
- Ana I. Freitas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q. Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Han J, Fang S, He X, Wang L, Li C, Wu J, Cai Y, Wang Y. Combination of aqueous two-phase flotation and inverse transition cycling: Strategies for separation and purification of recombinant β-glucosidase from cell lysis solution. Food Chem 2021; 373:131543. [PMID: 34782214 DOI: 10.1016/j.foodchem.2021.131543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023]
Abstract
This work was developed to solve the problems of the restriction of non-specific adsorption and time-dependent denaturation in the purification of recombinant proteins by multistage chromatographic procedures. A novel purification method (ATPF-ITC) which combining aqueous two-phase flotation (ATPF) with inverse transition cycling (ITC) was established and used to efficiently purify recombinant β-glucosidase (GLEGB) from cell lysis solution. First, GLEGB would preferentially adsorb on the nitrogen bubble interface relied on the hydrophobic property of the graphene-binding (GB) tag and enter into the top phase of ATPF. Second, GLEGB was achieved further purification by one-round ITC method based on the thermosensitive of the elastin-like polypeptide (ELP) tag. Consequently, the enzymatic activity recovery of GLEGB was 124.92% ± 0.83%, and the purification factor reached 24.26 ± 0.22. The purification results remained stable after six polymer cycles, and the process of ATPF-ITC had no negative effect on the structure of recombinant protein.
Collapse
Affiliation(s)
- Juan Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sihan Fang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xingchen He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunfeng Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
18
|
Zhou Y, Zeng B, Zhou R, Li X, Zhang G. One-Pot Synthesis of Multiple Stimuli-Responsive Magnetic Nanomaterials Based on the Biomineralization of Elastin-like Polypeptides. ACS OMEGA 2021; 6:27946-27954. [PMID: 34722994 PMCID: PMC8552364 DOI: 10.1021/acsomega.1c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of multiple stimuli-responsive magnetic nanomaterials in a green way remains as a big challenge currently. Herein, temperature-responsive elastin-like polypeptides (ELPs) were designed to involve in the biomimetic mineralization and successfully prepared magnetic nanoparticles (MNPs) (named ELPs-MNPs) with multiple responsiveness (temperature, magnetic, and biomimetic silicification responsiveness) in one pot. ELPs-MNPs were identified as cubic nanomaterials with an average size of about 32 nm and in line with the classic ferromagnetic behavior. Interestingly, ELPs-MNPs show clearly lower critical solution temperature phase behavior with a transition temperature of 36 °C. Moreover, ELPs-MNPs can spontaneously trigger the biosilicification of tetramethyl orthosilicate (TMOS) to entrap themselves into silicon oxide as proved by the Fourier transform infrared spectra (FTIR) and elemental mapping of transmission electron microscopy (TEM), with an average size of about 62 nm. The possible role of ELPs in the biomimetic preparation of the multiple stimuli-responsive MNPs was also addressed. The proposed novel and simple one-pot strategy to synthesize multifunctional nanomaterials with higher effectiveness is the first report for preparing MNPs with multiple stimuli response. This strategy conforms to the concept of green chemistry and will pave a new way for the design of smart biomaterials, which may have great potentials for different fields.
Collapse
|
19
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
20
|
Shapiro DM, Ney M, Eghtesadi SA, Chilkoti A. Protein Phase Separation Arising from Intrinsic Disorder: First-Principles to Bespoke Applications. J Phys Chem B 2021; 125:6740-6759. [PMID: 34143622 DOI: 10.1021/acs.jpcb.1c01146] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phase separation of biomolecules has become the focus of intense research in the past decade, with a growing body of research implicating this phenomenon in essentially all biological functions, including but not limited to homeostasis, stress responses, gene regulation, cell differentiation, and disease. Excellent reviews have been published previously on the underlying physical basis of liquid-liquid phase separation (LLPS) of biological molecules (Nat. Phys. 2015, 11, 899-904) and LLPS as it occurs natively in physiology and disease (Science 2017, 357, eaaf4382; Biochemistry 2018, 57, 2479-2487; Chem. Rev. 2014, 114, 6844-6879). Here, we review how the theoretical physical basis of LLPS has been used to better understand the behavior of biomolecules that undergo LLPS in natural systems and how this understanding has also led to the development of novel synthetic systems that exhibit biomolecular phase separation, and technologies that exploit these phenomena. In part 1 of this Review, we explore the theory behind the phase separation of biomolecules and synthetic macromolecules and introduce a few notable phase-separating biomolecules. In part 2, we cover experimental and computational methods used to study phase-separating proteins and how these techniques have uncovered the mechanisms underlying phase separation in physiology and disease. Finally, in part 3, we cover the development and applications of engineered phase-separating polypeptides, ranging from control of their self-assembly to create defined supramolecular architectures to reprogramming biological processes using engineered IDPs that exhibit LLPS.
Collapse
Affiliation(s)
- Daniel Mark Shapiro
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Seyed Ali Eghtesadi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
21
|
Suyama K, Mawatari M, Tatsubo D, Maeda I, Nose T. Simple Regulation of the Self-Assembling Ability by Multimerization of Elastin-Derived Peptide (FPGVG) n Using Nitrilotriacetic Acid as a Building Block. ACS OMEGA 2021; 6:5705-5716. [PMID: 33681610 PMCID: PMC7931394 DOI: 10.1021/acsomega.0c06140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Elastin comprises hydrophobic repetitive sequences, such as Val-Pro-Gly-Val-Gly, which are thought to be important for the temperature-dependent reversible self-association (coacervation). Elastin and elastin-like peptides (ELPs), owing to their characteristics, are expected to be applied as base materials for the development of new molecular tools, such as drug-delivery system carrier and metal-scavenging agents. Recently, several studies have been reported on the dendritic or branching ELP analogues. Although the topological difference of the branched ELPs compared to their linear counterparts may lead to useful properties in biomaterials, the available information regarding the effect of branching on molecular architecture and thermoresponsive behavior of ELPs is scarce. To obtain further insight into the thermoresponsive behavior of branched ELPs, novel ELPs, such as nitrilotriacetic acid (NTA)-(FPGVG) n conjugates, that is, (NTA)-Fn analogues possessing 1-3 (FPGVG) n (n = 3, 5) molecule(s), were synthesized and investigated for their coacervation ability. Turbidity measurement of the synthesized peptide analogues revealed that (NTA)-Fn analogues showed strong coacervation ability with various strengths. The transition temperature of NTA-Fn analogues exponentially decreased with increasing number of residues. In the circular dichroism measurements, trimerization did not alter the secondary structure of each peptide chain of the NTA-Fn analogue. In addition, it was also revealed that the NTA-Fn analogue possesses one peptide chain that could be utilized as metal-scavenging agents. The study findings indicated that multimerization of short ELPs via NTA is a useful and powerful strategy to obtain thermoresponsive molecules.
Collapse
Affiliation(s)
- Keitaro Suyama
- Laboratory
of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mika Mawatari
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| | - Daiki Tatsubo
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| | - Iori Maeda
- Department
of Physics and Information Technology, Kyushu
Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Takeru Nose
- Laboratory
of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
- Department
of Chemistry, Faculty and Graduate School
of Science, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Li Z, Chen TH, Andini E, Coffman JL, Przybycien T, Zydney AL. Enhanced filtration performance using feed-and-bleed configuration for purification of antibody precipitates. Biotechnol Prog 2020; 37:e3082. [PMID: 32940015 DOI: 10.1002/btpr.3082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 11/10/2022]
Abstract
Precipitation can be used for the initial purification of monoclonal antibodies (mAbs), with the soluble host cell proteins removed in the permeate by tangential flow microfiltration. The objective of this study was to examine the use of a feed-and-bleed configuration to increase the effective conversion (ratio of permeate to feed flow rates) in the hollow fiber module to enable more effective washing of the precipitate. Experiments were performed using human serum Immunoglobulin G (IgG) precipitates formed with 10 mM zinc chloride and 7 wt% polyethylene glycol. The critical flux was evaluated as a function of the shear rate and IgG concentration, with the resulting correlation used to predict conditions that can achieve 90% conversion in a single pass with minimal fouling. Experimental data for both the start-up and steady-state performance are in good agreement with model calculations. These results were used to analyze the performance of an enhanced continuous precipitation-microfiltration process using the feed-and-bleed configuration for the initial capture / purification of a mAb product.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ting-Hsi Chen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erha Andini
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jonathan L Coffman
- BioProcess Technologies and Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | - Todd Przybycien
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
23
|
Peprah Addai F, Wang T, Kosiba AA, Lin F, Zhen R, Chen D, Gu J, Shi H, Zhou Y. Integration of elastin-like polypeptide fusion system into the expression and purification of Lactobacillus sp. B164 β-galactosidase for lactose hydrolysis. BIORESOURCE TECHNOLOGY 2020; 311:123513. [PMID: 32417661 DOI: 10.1016/j.biortech.2020.123513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
An elastin-like polypeptide (ELP) sequence fused with Lactobacillus sp. B164 β-galactosidase modified with 6x-Histidine (β-Gal-LH) to produce recombinant β-Gal-Linker-ELP-His (β-Gal-LEH) was expressed in E. coli and purified via inverse thermal cycling (ITC) and nickel-nitrilotriacetic acid (Ni-NTA) resin. The β-galactosidase integrated with ELP-system showed an improved purification at 1.75 M (NH4)2SO4 after 1 round ITC (95.66% recovery rate and 13.04 purification fold) with better enzyme activity parameters compared to Ni-NTA. The enzyme maintained an optimal temperature (40 °C) and pH (7.5) for both β-Gal-LEH and β-Gal-LH. The results further showed that the ELP-fusion system improved the enzyme's thermal and storage stability. Moreover, the enzyme secondary structure was not changed by ELP-tag. Enzyme activity was completely inactivated by Hg2+, Cd2+ and Cu2+, unaffected by Ca2+, EDTA and urea, but partially activated by Mn2+ at lower concentration. Compared to commercial β-galactosidases, β-Gal-LEH exhibited similar biocatalytic efficiency on lactose and could potentially catalyze transgalactosylation.
Collapse
Affiliation(s)
- Frank Peprah Addai
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Taotao Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Ren Zhen
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Dongfeng Chen
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
24
|
Mullerpatan A, Kane E, Ghosh R, Nascimento A, Andersen H, Cramer S, Karande P. Single-step purification of a small non-mAb biologic by peptide-ELP-based affinity precipitation. Biotechnol Bioeng 2020; 117:3775-3784. [PMID: 32813285 DOI: 10.1002/bit.27539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Affinity precipitation using stimulus-responsive biopolymers such as elastin-like polypeptides (ELPs) have been successfully employed for the purification of monoclonal antibodies. In the current work, we extend these studies to the development of an ELP-peptide fusion for the affinity precipitation of the therapeutically relevant small non-mAb biologic, AdP. A 12-mer affinity peptide ligand (P10) was identified by a primary phage biopanning followed by a secondary in-solution fluorescence polarization screen. Peptide P10 and AdP interacted with a KD of 19.5 µM. A fusion of P10 with ELP was then shown to be successful in selectively capturing the biologic from a crude mixture. While pH shifts alone were not sufficient for product elution, the use of pH in concert with fluid-phase modifiers such as NaCl, arginine, or ethylene glycol was effective. In particular, the use of pH 8.5 and an arginine concentration of 500 mM enabled >80% product recovery. The overall process performance evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reversed-phase ultra-performance liquid chromatography analyses indicated successful single-step purification of the biologic from an Escherichia coli lysate resulting in ∼90% purity and >80% recovery. These results demonstrate that phage display can be readily employed to identify a peptide ligand capable of successfully carrying out the purification of a non-antibody biological product using ELP-based affinity precipitation.
Collapse
Affiliation(s)
- Akshat Mullerpatan
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| | - Erin Kane
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| | - Ronit Ghosh
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| | - André Nascimento
- Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York.,iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Henrik Andersen
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts
| | - Steven Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| | - Pankaj Karande
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
25
|
Yang CG, Lang MF, Fu X, Lin H, Zhang LC, Ge GS, Sun J, Hu XJ. Application of short hydrophobic elastin-like polypeptides for expression and purification of active proteins. 3 Biotech 2020; 10:156. [PMID: 32181118 DOI: 10.1007/s13205-020-2139-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/15/2020] [Indexed: 02/02/2023] Open
Abstract
To investigate the application of short elastin-like polypeptides (ELPs) in the purification of bioactive proteins, short hydrophobic ELP[I] n (n = 30, 40, 50) tags were constructed. Both the ELP[I] n tags and the ELP[I] n -Trx fusion proteins could be stably expressed in Escherichia coli and purified by inverse transition cycling, respectively. Total protein concentrations determined by BCA protein assay showed that the yield of the fusion proteins decreased with increasing ELP length. Measurements of the inverse transition temperature (T t) of the ELP[I] n -Trx under different salts or PEG8000 concentrations showed decreased T t upon elevated concentrations; while, all the T ts were suitable for generating proteins from 4 to 37.5 ºC. Furthermore, to identify a linker peptide for bioactive protein production without the need to remove the ELP[I] n tag, the activity of eGFP protein fused with ELP[I]30 tag by either a poly-N or a G4S linker was quantified using a fluorescence spectrophotometer. The results indicated that the ELP[I]30-eGFP fusion proteins with the poly-N linker showed higher fluorescence levels than those with the G4S linker. Our results demonstrated that short ELP[I] n tags with low T t were useful in protein expression and purification, and poly-N linker played the key role in producing bioactive proteins without the need to remove the ELPs.
Collapse
Affiliation(s)
- Chun-Guang Yang
- Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Ming-Fei Lang
- Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Xin Fu
- Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Heng Lin
- Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Li-Chao Zhang
- Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Gao-Shun Ge
- Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Jing Sun
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622 Liaoning China
| | - Xue-Jun Hu
- Medical College, Dalian University, Dalian, 116622 Liaoning China
| |
Collapse
|