1
|
Huang XL, Xu ZH, Qiu JB, Ou XL, Yu S, Zhang HY, Huang D, Wu SW, Huang YT, Zou LG, Yang WD, Li HY, Ou LJ, Li DW. Understanding the Molecular Mechanisms of Pyrene in Governing the Critical Metabolic Circuits of Alexandrium pacificum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1112-1120. [PMID: 39782680 DOI: 10.1021/acs.est.4c08647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on Alexandrium pacificum, a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, A. pacificum effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater. Furthermore, the study noted a significant reduction in the synthesis of GTX4, GTX1, NEO, and GTX3 toxins in A. pacificum cells exposed to 50 and 200 μg/L of pyrene. Concurrently, exposure to pyrene resulted in marked declines in the growth and photosynthetic efficiency of A. pacificum. Proteomics analysis results showed an upregulation of proteins related to endocytosis, such as HSPA and Arf, while proteins associated with paralytic shellfish toxin (PST) synthesis, specifically SxtU and SxtH, showed a downregulation trend. In summary, the findings of this study preliminarily elucidate the molecular mechanisms underlying A. pacificum's response to pyrene, reveal the impact of pyrene on PST synthesis, and suggest that A. pacificum holds significant potential for pyrene biodegradation.
Collapse
Affiliation(s)
- Xue-Ling Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhen-Hao Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiang-Bing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao-Li Ou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuang Yu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao-Yun Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Si-Wei Wu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin-Jian Ou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Sun W, Shahrajabian MH, Wang N. A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:267. [PMID: 39861620 PMCID: PMC11768469 DOI: 10.3390/plants14020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. Azospirillum is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions. Different species of Bacillus spp. can increase the growth, yield, and biomass of plants by increasing the availability of nutrients; enhancing the solubilization and subsequent uptake of nutrients; synthesizing indole-3-acetic acid; fixing nitrogen; solubilizing phosphorus; promoting the production of phytohormones; enhancing the growth, production, and quality of fruits and crops via enhancing the production of carotenoids, flavonoids, phenols, and antioxidants; and increasing the synthesis of indoleacetic acid (IAA), gibberellins, siderophores, carotenoids, nitric oxide, and different cell surface components. The aim of this manuscript is to survey the effects of Azospirillum spp. and Bacillus spp. by presenting case studies and successful paradigms in several horticultural and agricultural plants.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-4260-83836
| | | | | |
Collapse
|
3
|
Xu Y, Wu M, Cao J, Wang Y, Zhang L, Yan X, Li Y, Xu J. Enhancement of Docosahexaenoic Acid and Eicosapentaenoic Acid Biosynthesis in Isochrysis galbana by Bacillus jeotgali. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:991-999. [PMID: 39122812 DOI: 10.1007/s10126-024-10337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/09/2024] [Indexed: 08/12/2024]
Abstract
Isochrysis galbana is valuable in aquaculture due to its production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, achieving high yields of polyunsaturated fatty acids (PUFAs) presents challenges, leading to exploration of innovative approaches. This study investigated the influence of Bacillus jeotgali on the growth of I. galbana and its fatty acid composition. Co-culturing I. galbana with B. jeotgali significantly increased chlorophyll a content and cell abundance, particularly at higher bacterial population densities (algae-to-bacteria ratio of 1:10). Physiological and biochemical analyses found elevated soluble protein content in microalgae co-cultured with B. jeotgali, accompanied by decreased superoxide dismutase (SOD) activity. Fatty acid composition analysis demonstrated a distinctive profile in co-cultured I. galbana, characterized by increased PUFAs, especially EPA and DHA. Gene expression analysis indicated an upregulation of desaturase genes (d4FAD, d5FAD, d6FAD, and d8FAD) associated with PUFA synthesis pathway in I. galbana during co-culturing with B. jeotgali. This study advances our understanding of bacteria-microalgae interactions and presents a promising strategy for enhancing the production of DHA and EPA.
Collapse
Affiliation(s)
- Yijun Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Minnan Wu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Jiayi Cao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China.
| | - Yingying Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Lin Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Xiaojun Yan
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo, Zhejiang, 315832, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, 315832, China.
- Fujian Dalai Seed Science and Technology Co., Ltd., Ningde, Fujian, 352101, China.
| |
Collapse
|
4
|
Zaheer MS, Aijaz N, Hameed A, Buttar NA, Rehman S, Riaz MW, Ahmad A, Manzoor MA, Asaduzzaman M. Cultivating resilience in wheat: mitigating arsenic toxicity with seaweed extract and Azospirillum brasilense. Front Microbiol 2024; 15:1441719. [PMID: 39228378 PMCID: PMC11368767 DOI: 10.3389/fmicb.2024.1441719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Arsenic (As) toxicity is a serious hazard to agricultural land due to growing industrialization, which has a negative effect on wheat crop yields. To address this issue, using seaweed extract and Azospirillum brasilense has emerged as an effective strategy for improving yield under stress conditions. However, the combined application of A. brasilense and seaweed extract in wheat crops under As toxicity has not been fully explored. The effectiveness of combining A. brasilense and seaweed extract in reducing As toxicity in wheat production was examined in this study through a 2-year pot experiment with nine treatments. These treatments included a control with no additives and two As concentrations (50 and 70 μM). At 50 and 70 μM, As was tested alone, with seaweed extract, with A. brasilense, and both. Significant results were achieved in reducing As toxicity in wheat crops. Arsenic at 70 μM proved more harmful than at 50 μM. The application of A. brasilense and seaweed extract was more effective in improving crop growth rates, chlorophyll levels, and stomatal conductance. The combined application notably decreased As concentration in wheat plants. It was concluded that applying A. brasilense and seaweed extract not only improves wheat growth but can also improve soil parameters under As toxicity conditions by increasing organic matter contents, boosting nutrient availability, and increasing the production of antioxidant enzymes.
Collapse
Affiliation(s)
- Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Nazish Aijaz
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Akhtar Hameed
- Institute of Plant Protection, MNS University of Agriculture, Multan, Pakistan
| | - Noman Ali Buttar
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- Fundación CEAM, c/ Charles R. Darwin 14, Parque Tecnológico, Paterna, Valencia, Spain
| | - Shamsur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ajaz Ahmad
- Department of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Asaduzzaman
- Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Guendouzi S, Benmati M, Bounabi H, Vicente Carbajosa J. Application of response surface Methodology coupled with Artificial Neural network and genetic algorithm to model and optimize symbiotic interactions between Chlorella vulgaris and Stutzerimonas stutzeri strain J3BG for chlorophyll accumulation. BIORESOURCE TECHNOLOGY 2024; 394:130148. [PMID: 38086458 DOI: 10.1016/j.biortech.2023.130148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Research on microalgae has surged due to its diverse biotechnological applications and capacity for accumulating bioactive compounds. Despite considerable advancements, microalgal cultivation remains costly, prompting efforts to reduce expenses while enhancing productivity. This study proposes a cost-effective approach through the coculture of microalgae and bacteria, exploiting mutualistic interactions. An engineered consortium of Chlorella vulgaris and Stutzerimonas stutzeri strain J3BG demonstrated biofilm-like arrangements, indicative of direct cell-to-cell interactions and metabolite exchange. Strain J3BG's enzymatic characterization revealed amylase, lipase, and protease production, sustaining mutual growth. Employing Response Surface Methodology (RSM), Artificial Neural Network (ANN), and Genetic Algorithm (GA) in a hybrid modeling approach resulted in a 2.1-fold increase in chlorophyll production. Optimized conditions included a NaNO3 concentration of 128.52 mg/l, a 1:2 (Algae:Bacteria) ratio, a 6-day cultivation period, and a pH of 5.4, yielding 10.92 ± 0.88 mg/l chlorophyll concentration.
Collapse
Affiliation(s)
- Salma Guendouzi
- Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; Laboratory of Biotechnology, Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria.
| | - Mahbouba Benmati
- Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria
| | - Hadjira Bounabi
- Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; Laboratory of Biotechnology, Higher National School of Biotechnology Taoufik KHAZNADAR, nouveau Pôle universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria
| | | |
Collapse
|
6
|
Shen XF, Xu YP, Jiang YF, Gao LJ, Tong XQ, Gong J, Yang YF, Zeng RJ. Evaluating nutrient limitation in co-culture of Chlorella pyrenoidosa and Rhodobacter sphaeroides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167706. [PMID: 37820812 DOI: 10.1016/j.scitotenv.2023.167706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The influence of nitrogen deficiency on microalgae-bacteria co-culture has been studied mostly with nitrogen-fixing bacteria. Photosynthetic bacteria (PSB), which are non-nitrogen-fixing bacteria, the impact of N deficiency on its co-culture with microalgae is unknown. In this study, Chlorella pyrenoidosa and Rhodobacter sphaeroides co-culture was cultivated photoheterotrophically with acetate. The impact of N starvation and different P supply levels on oil production were examined. When phosphorus was sufficient, N starvation increased the fatty acid methyl ester (FAME) content from 21.7 % to 28.2 %, and also increased the FAME yield (g CODFAME/g CODAcetate) from 0.17 to 0.22. However, the biomass and FAME productivities decreased. Sufficient phosphorus was also essential for a high growth rate and FAME productivity. Deficiencies in either N or P led to a decrease in the proportion of unsaturated FAMEs. iTRAQ analysis indicated N starvation promoted oil accumulation by driving the carbon flow to fatty acid synthesis in microalgae from co-culture. This study improves the understanding of biomass and lipid production via microalgae-PSB co-culture in photoheterotrophic cultivation. The mechanism of interaction between microalgae and bacteria needs further study.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Ya-Ping Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Yi-Fan Jiang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Lin-Jun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiao-Qin Tong
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Jing Gong
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Yan-Fang Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
7
|
Llamas A, Leon-Miranda E, Tejada-Jimenez M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2476. [PMID: 37447037 PMCID: PMC10346606 DOI: 10.3390/plants12132476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Microalgae are used in various biotechnological processes, such as biofuel production due to their high biomass yields, agriculture as biofertilizers, production of high-value-added products, decontamination of wastewater, or as biological models for carbon sequestration. The number of these biotechnological applications is increasing, and as such, any advances that contribute to reducing costs and increasing economic profitability can have a significant impact. Nitrogen fixing organisms, often called diazotroph, also have great biotechnological potential, mainly in agriculture as an alternative to chemical fertilizers. Microbial consortia typically perform more complex tasks than monocultures and can execute functions that are challenging or even impossible for individual strains or species. Interestingly, microalgae and diazotrophic organisms are capable to embrace different types of symbiotic associations. Certain corals and lichens exhibit this symbiotic relationship in nature, which enhances their fitness. However, this relationship can also be artificially created in laboratory conditions with the objective of enhancing some of the biotechnological processes that each organism carries out independently. As a result, the utilization of microalgae and diazotrophic organisms in consortia is garnering significant interest as a potential alternative for reducing production costs and increasing yields of microalgae biomass, as well as for producing derived products and serving biotechnological purposes. This review makes an effort to examine the associations of microalgae and diazotrophic organisms, with the aim of highlighting the potential of these associations in improving various biotechnological processes.
Collapse
Affiliation(s)
- Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain; (E.L.-M.); (M.T.-J.)
| | | | | |
Collapse
|
8
|
Gureeva MV, Gureev AP. Molecular Mechanisms Determining the Role of Bacteria from the Genus Azospirillum in Plant Adaptation to Damaging Environmental Factors. Int J Mol Sci 2023; 24:ijms24119122. [PMID: 37298073 DOI: 10.3390/ijms24119122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Agricultural plants are continuously exposed to environmental stressors, which can lead to a significant reduction in yield and even the death of plants. One of the ways to mitigate stress impacts is the inoculation of plant growth-promoting rhizobacteria (PGPR), including bacteria from the genus Azospirillum, into the rhizosphere of plants. Different representatives of this genus have different sensitivities or resistances to osmotic stress, pesticides, heavy metals, hydrocarbons, and perchlorate and also have the ability to mitigate the consequences of such stresses for plants. Bacteria from the genus Azospirillum contribute to the bioremediation of polluted soils and induce systemic resistance and have a positive effect on plants under stress by synthesizing siderophores and polysaccharides and modulating the levels of phytohormones, osmolytes, and volatile organic compounds in plants, as well as altering the efficiency of photosynthesis and the antioxidant defense system. In this review, we focus on molecular genetic features that provide bacterial resistance to various stress factors as well as on Azospirillum-related pathways for increasing plant resistance to unfavorable anthropogenic and natural factors.
Collapse
Affiliation(s)
- Maria V Gureeva
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Artem P Gureev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| |
Collapse
|
9
|
Heavy Metals Exacerbate the Effect of Temperature on the Growth of Chlorella sp.: Implications on Algal Blooms and Management. Processes (Basel) 2022. [DOI: 10.3390/pr10122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the accelerated urbanization and rapid development of the industrial and agricultural sectors, concern about the pollution of water environments is becoming more widespread. Algal blooms of varying sizes are becoming increasingly frequent in lakes and reservoirs; temperatures, nutrients, heavy metals, and dissolved oxygen are the factors that influence algal bloom occurrence. However, knowledge of the combined effect of heavy metals and temperature on algal growth remains limited. Thus, this study investigated how specific concentrations of heavy metals affect algal growth at different temperatures; to this end, two heavy metals were used (0.01 mg/L Pb2+ and 0.05 mg/L Cr6+) at three incubation temperatures (15, 25, and 30 °C) with the alga Chlorella sp. A higher incubation temperature contributed to a rise in soluble proteins, which promoted algal growth. The density of algal cells increased with temperature, and catalase (CAT) decreased with increasing temperature. Chlorella sp. growth and catalase activity were optimal at 30 °C (algal cell density: 1.46 × 107 cell/L; CAT activity: 29.98 gprot/L). Pb2+ and Cr6+ significantly promoted Chlorella sp. growth during incubation at 25 and 30 °C, respectively. At specific temperatures, 0.01 mg/L Pb2+ and 0.05 mg/L Cr6+ promoted the production of soluble proteins and, hence, the growth of Chlorella sp. The results provide a useful background for the mitigation and prevention of algal blooms.
Collapse
|
10
|
Ma H, Li P, Xiao N, Xia T. Poly-γ-glutamic acid promoted maize root development by affecting auxin signaling pathway and the abundance and diversity of rhizosphere microbial community. BMC PLANT BIOLOGY 2022; 22:521. [PMID: 36352394 PMCID: PMC9647955 DOI: 10.1186/s12870-022-03908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The root systems of higher plants play an important role in plant growth and development. In our present study, it was found that poly-γ-glutamic acid (γ-PGA), an environmentally friendly biomacromolecule, significantly improved root development in maize. RESULTS After treatment with γ-PGA for 7 days, the fresh weight of maize roots was significantly increased and the differences between γ-PGA treated group and control group were mainly caused by the number (higher by 71.87% compared to the control) and length of lateral roots. RNAseq and RT-PCR analyses showed that γ-PGA treatment upregulated the expression of genes related to the synthesis of auxins and auxin signal in maize roots. In addition, γ-PGA promoted the accumulation of plant growth-promoting bacteria, such as Azospirillum, Azohydromonas, Ramlibacter, and Sphingobium (Proteobacteria), Streptomyces (Actinobacteria), Parasegetibacter (Bacteroidetes), and Gemmatimonas (Gemmatimonadetes) in rhizosphere soil and the secretion of auxins. The results of this study deepened our understanding of the effects and mechanism of γ-PGA on maize root development, and as well as highlighted the possibility of using γ-PGA to improve crop growth and soil environment. CONCLUSIONS γ-PGA promotes early growth and development of maize roots by inducing the secretion and accumulation of auxin in roots and in rhizosphere soil, and increasing the abundance of plant growth promoting bacteria.
Collapse
Affiliation(s)
- Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Panpan Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Ning Xiao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China.
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China.
| |
Collapse
|
11
|
Mohebi Najafabadi M, Naeimpoor F. Boosting β-carotene and storage materials productivities by two-stage mixed and monochromatic exposure stresses on Dunaliella salina. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:609-620. [PMID: 35815399 DOI: 10.1080/15226514.2022.2095976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Growth and product formation of Dunaliella salina, a potent β-carotene source, were investigated under single and two-stage monochromic and mixed illuminations using two LEDs, each emitting red (R), blue (B), or white (W) light. Targeting cell growth in single-stage, WW, RR, and BB, as well as RB illumination, were compared and mixed RB illumination was found most supportive showing the highest cell growth of 1.81 ± 0.008 g/L. Subsequently, new two-stage illuminations (RB-BB and RB-RR) were designed to investigate growth and bio-product formation using RB illumination similarly in the 1st stage followed by separate BB and RR illuminations within the 2nd stage. RB-BB strategy resulted in enhanced productivities of lipid (7.6 mg/L/day), starch (20 mg/L/day), and β-carotene (0.4 mg/L/day) which were respectively higher by 80, 70, and 81% compared to single-stage control (WW). RB-RR strategy stimulated cell growth while it resulted in decreased productivities of products (other than chlorophyll). The highest biomass level of 2.2 g/L and nitrate removal of 80% were obtained in RB-RR while RB-BB resulted in the lowest values of 1.2 g/L and 48%, respectively. Appropriate selection of illuminations in two-stage strategies, therefore, functions to enhance the productivity of important metabolites or cell growth which can have generic applications in other microalgae.NOVELTY STATEMENTAlthough the effects of a variety of stressful conditions on microalgae product lines have been investigated so far, the effects of two-stage mixed and monochromatic exposure as a light management strategy have not yet been considered. This strategy was inspired by the fact that cell mass alongside the cell content of a product contributes to product productivity. Accordingly, the growth of Dunaliella salina was first examined under single-stage mixed and monochromatic exposure where mixed red-blue light led to the highest biomass formation. Shifting from mixed to different monochromatic exposures was then examined as a stress factor to stimulate product formation. Higher cell factories obtained under mixed exposure in the 1st stage escalated product productivities within the 2nd stage when exposed to monochromatic light.
Collapse
Affiliation(s)
- Mojgan Mohebi Najafabadi
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Fereshteh Naeimpoor
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
12
|
Co-culturing of microalgae and bacteria in real wastewaters alters indigenous bacterial communities enhancing effluent bioremediation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Perković L, Djedović E, Vujović T, Baković M, Paradžik T, Čož-Rakovac R. Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend? Mar Drugs 2022; 20:142. [PMID: 35200671 PMCID: PMC8880515 DOI: 10.3390/md20020142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The diversity of algal species is a rich source of many different bioactive metabolites. The compounds extracted from algal biomass have various beneficial effects on health. Recently, co-culture systems between microalgae and bacteria have emerged as an interesting solution that can reduce the high contamination risk associated with axenic cultures and, consequently, increase biomass yield and synthesis of active compounds. Probiotic microorganisms also have numerous positive effects on various aspects of health and represent potent co-culture partners. Most studies consider algae as prebiotics that serve as enhancers of probiotics performance. However, the extreme diversity of algal organisms and their ability to produce a plethora of metabolites are leading to new experimental designs in which these organisms are cultivated together to derive maximum benefit from their synergistic interactions. The future success of these studies depends on the precise experimental design of these complex systems. In the last decade, the development of high-throughput approaches has enabled a deeper understanding of global changes in response to interspecies interactions. Several studies have shown that the addition of algae, along with probiotics, can influence the microbiota, and improve gut health and overall yield in fish, shrimp, and mussels aquaculture. In the future, such findings can be further explored and implemented for use as dietary supplements for humans.
Collapse
Affiliation(s)
- Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Elvis Djedović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tina Paradžik
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Fallahi A, Rezvani F, Asgharnejad H, Khorshidi Nazloo E, Hajinajaf N, Higgins B. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. CHEMOSPHERE 2021; 272:129878. [PMID: 35534965 DOI: 10.1016/j.chemosphere.2021.129878] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 05/09/2023]
Abstract
Nitrogen and phosphorus pollution can cause eutrophication, resulting in ecosystem disruption. Wastewater treatment systems employing microalgae-bacteria consortia have the potential to enhance the nutrient removal efficiency from wastewater through mutual interaction and synergetic effects. The knowledge and control of the mechanisms involved in microalgae-bacteria interaction could improve the system's ability to transform and recover nutrients. In this review, a critical evaluation of recent literature was carried out to synthesize knowledge related to mechanisms of interaction between microalgae and bacteria consortia for nutrient removal from wastewater. It is now established that microalgae can produce oxygen through photosynthesis for bacteria and, in turn, bacteria supply the required metabolites and inorganic carbon source for algae growth. Here we highlight how the interaction between microalgae and bacteria is highly dependent on the nitrogen species in the wastewater. When the nitrogen source is ammonium, the generated oxygen by microalgae has a positive influence on nitrifying bacteria. When the nitrogen source is nitrate, the oxygen can have an inhibitory effect on denitrifying bacteria. However, some strains of microalgae have the capability to supply hydrogen gas for hydrogenotrophic denitrifiers as an energy source. Recent literature on biogranulation of microalgae and bacteria and its application for nutrient removal and biomass recovery is also discussed as a promising approach. Significant research challenges remain for the integration of microalgae-bacteria consortia into wastewater treatment processes including microbial community control and process stability over long time horizons.
Collapse
Affiliation(s)
- Alireza Fallahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Rezvani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Hashem Asgharnejad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ehsan Khorshidi Nazloo
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Nima Hajinajaf
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|