1
|
Wei H, Wang Y, Zeng Y, Yang N, Jiang Y, Suo Y. Enhanced tolerance of Clostridium tyrobutyricum to lignin-derived phenolic acids by overexpressing native reductases. J Biotechnol 2025; 404:9-17. [PMID: 40185369 DOI: 10.1016/j.jbiotec.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/01/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Ferulic acid (Fer) and p-coumaric acid (Coum) are major phenolic inhibitors in lignocellulosic hydrolysates that severely hinder the growth and metabolism of Clostridia species. This study demonstrates that the reduction of Fer and Coum to dihydroferulic acid and phloretic acid by Clostridium tyrobutyricum significantly alleviates their toxicity. Overexpression of the dho1 and sdr1 genes, encoding Fer and Coum reductases, respectively, in C. tyrobutyricum can significantly enhance tolerance to these phenolic acids. As a result, the recombinant strain ATCC 25755/ds, which co-overexpresses dho1 and sdr1, exhibited a marked increase in butyrate production compared to the wild-type strain under phenolic acid stress. In fed-batch fermentation with a 1.0 g/L mixture of Fer and Coum (1:1, w/w), ATCC 25755/ds showed a 35.1 % increase in butyrate production and a 61.1 % higher productivity. These results indicate that enhancing phenolic acid reduction can significantly improve Clostridia's tolerance to phenolic acids, thereby strengthening the biotransformation of lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Hailing Wei
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yuexin Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yu Zeng
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Na Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China
| | - Yuntao Jiang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - Yukai Suo
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming 650504, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| |
Collapse
|
2
|
Liang J, Liu S, Du Z, Zhang R, Lv L, Sun L, Nabi M, Zhang G, Zhang P. Recent advances in methane and hydrogen production from lignocellulosic degradation with anaerobic fungi. BIORESOURCE TECHNOLOGY 2024; 413:131544. [PMID: 39341426 DOI: 10.1016/j.biortech.2024.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Anaerobic fungi (AF) efficiently degrade lignocellulosic biomass with unique pseudoroot system and enzymatic properties that can remove polysaccharides and some lignified components from plant cell walls, further releasing acetate, lactate, ethanol, hydrogen (H2), etc. As research on AF for bioengineering has become a hot topic, a review of lignocellulosic conversion with AF for methane (CH4) and H2 production is needed. Efficient degradation of lignocellulose with AF mainly relies on multiple free carbohydrate-active enzymes and cellulosomes in the free and bound state. Meanwhile, co-cultivation of AF and methanogens significantly improves the lignocellulose degradation and CH4 production, and the maximum CH4 yield reached 315 mL/g. Bioaugmentation of AF in anaerobic digestion increases the maximum CH4 yield by 330 %. Also, AF show H2 production potential, however, H2 yield from anaerobic fungal fermentation of lignocellulose remains low. Therefore, anaerobic fungi have great potential in the conversion of lignocellulosic biomass to CH4 and H2.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shiqi Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zhangping Du
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Longyi Lv
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Li Sun
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Sun Z, Liu Q, Li Y, Mazarji M, Feng L, Pan J. Deciphering the Impact of Lignin on Anaerobic Digestion: Focus on Inhibition Mechanisms and Methods for Alleviating Inhibition. ACS OMEGA 2024; 9:44033-44041. [PMID: 39524670 PMCID: PMC11541797 DOI: 10.1021/acsomega.4c04375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
China has abundant lignocellulosic biomass resources. These resources are converted into biogas by anaerobic digestion (AD), which not only realizes the comprehensive utilization of waste resources but also obtains abundant biomass energy. However, the low biodegradability of lignocellulosic biomass caused by the complex structure has seriously hindered its utilization by enzymes and microorganisms, resulting in low biogas production and limited development of biogas engineering. The purpose of this work is to analyze the mechanism of lignin inhibiting AD and summarize the main methods for alleviating inhibition. Based on this, this review examines the factors influencing lignin's inhibition of methane production during AD from two key perspectives: (1) discussing lignin's biodegradability challenges, with a focus on its structure, functional groups, and the impact of lignin content in lignocellulosic biomass on its methanogenic potential, and (2) analyzing lignin's impact on each stage of AD. In addition, we provide insights into future research directions in this field.
Collapse
Affiliation(s)
- Ziyan Sun
- Shandong
Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China
- State
Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of
Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Qiang Liu
- State
Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of
Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Yeqing Li
- Shandong
Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying 257061, China
- State
Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of
Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Mahmoud Mazarji
- State
Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable
Land in Northern China, Institute of Agricultural
Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Feng
- NIBIO,
Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway
| | - Junting Pan
- State
Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable
Land in Northern China, Institute of Agricultural
Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Ahuja V, Chauhan S, Purewal SS, Mehariya S, Patel AK, Kumar G, Megharaj M, Yang YH, Bhatia SK. Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation. Crit Rev Biotechnol 2024; 44:1367-1385. [PMID: 38163946 DOI: 10.1080/07388551.2023.2286430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.
Collapse
Affiliation(s)
- Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Sukhvinder Singh Purewal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Norway
| | - Mallavarapu Megharaj
- Global Centre for Environmental remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
| | - Yung-Hun Yang
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Magwaza B, Amobonye A, Pillai S. Microbial β-glucosidases: Recent advances and applications. Biochimie 2024; 225:49-67. [PMID: 38734124 DOI: 10.1016/j.biochi.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The global β-glucosidase market is currently estimated at ∼400 million USD, and it is expected to double in the next six years; a trend that is mainly ascribed to the demand for the enzyme for biofuel processing. Microbial β-glucosidase, particularly, has thus garnered significant attention due to its ease of production, catalytic efficiency, and versatility, which have all facilitated its biotechnological potential across different industries. Hence, there are continued efforts to screen, produce, purify, characterize and evaluate the industrial applicability of β-glucosidase from actinomycetes, bacteria, fungi, and yeasts. With this rising demand for β-glucosidase, various cost-effective and efficient approaches are being explored to discover, redesign, and enhance their production and functional properties. Thus, this present review provides an up-to-date overview of advancements in the utilization of microbial β-glucosidases as "Emerging Green Tools" in 21st-century industries. In this regard, focus was placed on the use of recombinant technology, protein engineering, and immobilization techniques targeted at improving the industrial applicability of the enzyme. Furthermore, insights were given into the recent progress made in conventional β-glucosidase production, their industrial applications, as well as the current commercial status-with a focus on the patents.
Collapse
Affiliation(s)
- Buka Magwaza
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
6
|
Dhiman S, Kaur P, Narang J, Mukherjee G, Thakur B, Kaur S, Tripathi M. Fungal bioprocessing for circular bioeconomy: Exploring lignocellulosic waste valorization. Mycology 2024; 15:538-563. [PMID: 39678640 PMCID: PMC11636145 DOI: 10.1080/21501203.2024.2316824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 12/17/2024] Open
Abstract
The rising global demand for sustainable and eco-friendly practices has led to a burgeoning interest in circular bioeconomy, wherein waste materials are repurposed into valuable resources. Lignocellulosic waste, abundant in agricultural residues and forestry by-products, represents a significant untapped resource. This article explores the potential of fungal-mediated processes for the valorisation of lignocellulosic waste, highlighting their role in transforming these recalcitrant materials into bio-based products. The articles delve into the diverse enzymatic and metabolic capabilities of fungi, which enable them to efficiently degrade and metabolise lignocellulosic materials. The paper further highlights key fungal species and their mechanisms involved in the breakdown of complex biomass, emphasising the importance of understanding their intricate biochemical pathways for optimising waste conversion processes. The key insights of the article will significantly contribute to advancing the understanding of fungal biotechnology for circular bioeconomy applications, fostering a paradigm shift towards a more resource-efficient and environmentally friendly approach to waste management and bio-based product manufacturing.
Collapse
Affiliation(s)
- Sunny Dhiman
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Pardeep Kaur
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Jasjeet Narang
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Babita Thakur
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Sukhminderjit Kaur
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
7
|
Heyer R, Hellwig P, Maus I, Walke D, Schlüter A, Hassa J, Sczyrba A, Tubbesing T, Klocke M, Mächtig T, Schallert K, Seick I, Reichl U, Benndorf D. Breakdown of hardly degradable carbohydrates (lignocellulose) in a two-stage anaerobic digestion plant is favored in the main fermenter. WATER RESEARCH 2024; 250:121020. [PMID: 38128305 DOI: 10.1016/j.watres.2023.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The yield and productivity of biogas plants depend on the degradation performance of their microbiomes. The spatial separation of the anaerobic digestion (AD) process into a separate hydrolysis and a main fermenter should improve cultivation conditions of the microorganisms involved in the degradation of complex substrates like lignocellulosic biomass (LCB) and, thus, the performance of anaerobic digesters. However, relatively little is known about such two-stage processes. Here, we investigated the process performance of a two-stage agricultural AD over one year, focusing on chemical and technical process parameters and metagenome-centric metaproteomics. Technical and chemical parameters indicated stable operation of the main fermenter but varying conditions for the open hydrolysis fermenter. Matching this, the microbiome in the hydrolysis fermenter has a higher dynamic than in the main fermenter. Metaproteomics-based microbiome analysis revealed a partial separation between early and common steps in carbohydrate degradation and primary fermentation in the hydrolysis fermenter but complex carbohydrate degradation, secondary fermentation, and methanogenesis in the main fermenter. Detailed metagenomics and metaproteomics characterization of the single metagenome-assembled genomes showed that the species focus on specific substrate niches and do not utilize their full genetic potential to degrade, for example, LCB. Overall, it seems that a separation of AD in a hydrolysis and a main fermenter does not improve the cleavage of complex substrates but significantly improves the overall process performance. In contrast, the remaining methanogenic activity in the hydrolysis fermenter may cause methane losses.
Collapse
Affiliation(s)
- Robert Heyer
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Patrick Hellwig
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Research Center Jülich GmbH, Institute of Bio- and Geosciences (IBG), IBG-5: Computational Metagenomics, Leo-Brandt-Str., 52428 Jülich, Germany.
| | - Daniel Walke
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Otto von Guericke University, Database and Software Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Research Center Jülich GmbH, Institute of Bio- and Geosciences (IBG), IBG-5: Computational Metagenomics, Leo-Brandt-Str., 52428 Jülich, Germany; Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Tom Tubbesing
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP), Philippstraße 13, 10115 Berlin, Germany.
| | - Torsten Mächtig
- Christian-Albrechts-Universität Kiel, Institute of Agricultural Engineering, Olshausenstr. 40, 24098 Kiel, Germany.
| | - Kay Schallert
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany.
| | - Ingolf Seick
- Urban Water Management/Wastewater, Hochschule Magdeburg-Stendal, Breitscheidstrasse 2, 39114 Magdeburg, Germany.
| | - Udo Reichl
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - Dirk Benndorf
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany; Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Microbiology, Bernburger Straße 55, 06354 Köthen, Germany.
| |
Collapse
|
8
|
Navina BK, Velmurugan NK, Senthil Kumar P, Rangasamy G, Palanivelu J, Thamarai P, Vickram AS, Saravanan A, Shakoor A. Fungal bioremediation approaches for the removal of toxic pollutants: Mechanistic understanding for biorefinery applications. CHEMOSPHERE 2024; 350:141123. [PMID: 38185426 DOI: 10.1016/j.chemosphere.2024.141123] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings.
Collapse
Affiliation(s)
- Bala Krishnan Navina
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - Nandha Kumar Velmurugan
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, West Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
9
|
Kubiak A, Pilarska AA, Wolna-Maruwka A, Niewiadomska A, Panasiewicz K. The Use of Fungi of the Trichoderma Genus in Anaerobic Digestion: A Review. Int J Mol Sci 2023; 24:17576. [PMID: 38139408 PMCID: PMC10743432 DOI: 10.3390/ijms242417576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Plant waste biomass is the most abundant renewable energy resource on Earth. The main problem with utilising this biomass in anaerobic digestion is the long and costly stage of degrading its complex structure into simple compounds. One of the promising solutions to this problem is the application of fungi of the Trichoderma genus, which show a high capacity to produce hydrolytic enzymes capable of degrading lignocellulosic biomass before anaerobic digestion. This article discusses the structure of plant waste biomass and the problems resulting from its structure in the digestion process. It presents the methods of pre-treatment of lignocellulose with a particular focus on biological solutions. Based on the latest research findings, key parameters related to the application of Trichoderma sp. as a pre-treatment method are discussed. In addition, the possibility of using the digestate from agricultural biogas plants as a carrier for the multiplication of the Trichoderma sp. fungi, which are widely used in many industries, is discussed.
Collapse
Affiliation(s)
- Adrianna Kubiak
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznań, Poland; (A.K.); (A.W.-M.); (A.N.)
| | - Agnieszka A. Pilarska
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznań, Poland
| | - Agnieszka Wolna-Maruwka
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznań, Poland; (A.K.); (A.W.-M.); (A.N.)
| | - Alicja Niewiadomska
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznań, Poland; (A.K.); (A.W.-M.); (A.N.)
| | - Katarzyna Panasiewicz
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| |
Collapse
|
10
|
Ulukardesler AH. Anaerobic co-digestion of grass and cow manure: kinetic and GHG calculations. Sci Rep 2023; 13:6320. [PMID: 37072450 PMCID: PMC10113394 DOI: 10.1038/s41598-023-33169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Grass is a highly desirable substrate for anaerobic digestion because of its higher biodegradability and biogas/methane yield. In this study, anaerobic co-digestion of grass, cow manure and sludge was studied under mesophilic conditions for 65 days. Experiments were performed on a feed ratio of grass/manure from 5 to 25%, respectively. The maximum cumulative biogas and methane yield was obtained as 331.75 mLbiogas/gVS and 206.64 mLCH4/gVS for 25% ratio. Also, the results of the experiments were tested on the three different kinetics model which are the first order kinetic model, modified Gompertz model and Logistics model. As a result of the study, it was found that by using grass nearly 480 × 106 kWh/year electricity may be produced and 0.5 × 106 tons/year CO2 greenhouse gas emission mitigation may be reached.
Collapse
|