1
|
Wang Z, Wu P, Huang W, Yang K, Lu K, Hong Z. Integrating Ni(OH) 2 Nanoparticles on CdS for Efficient Noble-Metal-Free Photocatalytic H 2 Evolution. Molecules 2024; 29:5821. [PMID: 39769909 PMCID: PMC11677877 DOI: 10.3390/molecules29245821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Photocatalytic hydrogen evolution using inexhaustible clean solar energy is considered as a promising strategy. In order to build an efficient photocatalytic hydrogen production system to satisfy the demands of practical applications, it is of great significance to design photocatalysts that offer high activity, low cost, and high stability. Herein, a series of cheap CdS/Ni(OH)2 composite photocatalysts were designed and synthesized using the hydrothermal method. The introduction of a Ni(OH)2 cocatalyst multiplied the reactive active site of cadmium sulfide and promoted the transfer of photoinduced electrons in a semiconductor. Therefore, CdS/Ni(OH)2 composites demonstrate significantly better photocatalytic performance, and the hydrogen production rate of an optimal CdS/5%Ni(OH)2 composite is 6.9 times higher than that of blank CdS. Furthermore, the stability test also showed that CdS/Ni(OH)2 had good stability. This study aims to serve as a rewarding reference for the development of high-performance composite photocatalysts.
Collapse
Affiliation(s)
- Zemeng Wang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (Z.W.); (P.W.); (W.H.); (K.Y.)
| | - Piaopiao Wu
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (Z.W.); (P.W.); (W.H.); (K.Y.)
| | - Weiya Huang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (Z.W.); (P.W.); (W.H.); (K.Y.)
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (Z.W.); (P.W.); (W.H.); (K.Y.)
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; (Z.W.); (P.W.); (W.H.); (K.Y.)
| | - Zhaoguo Hong
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
2
|
Wang Z, Lu D, Kondamareddy KK, He Y, Gu W, Li J, Fan H, Wang H, Ho W. Recent Advances and Insights in Designing Zn xCd 1-xS-Based Photocatalysts for Hydrogen Production and Synergistic Selective Oxidation to Value-Added Chemical Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48895-48926. [PMID: 39235068 DOI: 10.1021/acsami.4c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Combining the hydrogen (H2) extraction process and organic oxidation synthesis in photooxidation-reduction reactions mediated by semiconductors is a desirable strategy because rich chemicals are evolved as byproducts along with hydrogen in trifling conditions upon irradiation, which is the only effort. The bifunctional photocatalytic strategy facilitates the feasible formation of a C═O/C─C bond from a large number of compounds containing a X-H (X = C, O) bond; therefore, the production of H2 can be easily realized without support from third agents like chemical substances, thus providing an eco-friendly and appealing organic synthesis strategy. Among the widely studied semiconductor nanomaterials, ZnxCd1-xS has been continuously studied and explored by researchers over the years, and it has attracted much consideration owing to its unique advantages such as adjustable band edge position, rich elemental composition, excellent photoelectric properties, and ability to respond to visible light. Therefore, nanostructures based on ZnxCd1-xS have been widely studied as a feasible way to efficiently prepare hydrogen energy and selectively oxidize it into high-value fine chemicals. In this Review, first, the crystal and energy band structures of ZnxCd1-xS, the model of twin nanocrystals, the photogenerated charge separation mechanism of the ZB-WZ-ZB homojunction with crisscross bands, and the Volmer-Weber growth mechanism of ZnxCd1-xS are described. Second, the morphology, structure, modification, synthesis, and vacancy engineering of ZnxCd1-xS are surveyed, summarized, and discussed. Then, the research progress in ZnxCd1-xS-based photocatalysis in photocatalytic hydrogen extraction (PHE) technology, the mechanism of PHE, organic substance (benzyl alcohol, methanol, etc.) dehydrogenation, the factors affecting the efficiency of photocatalytic discerning oxidation of organic derivatives, and selective C-H activation and C-C coupling for synergistic efficient dehydrogenation of photocatalysts are described. Conclusively, the challenges in the applicability of ZnxCd1-xS-based photocatalysts are addressed for further research development along this line.
Collapse
Affiliation(s)
- Zhennan Wang
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
| | - Dingze Lu
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong 999077, P. R. China
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Kiran Kumar Kondamareddy
- School of Pure Science, College of Engineering and Technical Vocational Education and Training (CETVET), Fiji National University, Lautoka, Fiji
| | - Yang He
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
| | - Wenju Gu
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
| | - Jing Li
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hongmei Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong 999077, P. R. China
| |
Collapse
|
3
|
Han C, Zeng Z, Zhang X, Liang Y, Kundu BK, Yuan L, Tan CL, Zhang Y, Xu YJ. All-in-One: Plasmonic Janus Heterostructures for Efficient Cooperative Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408527. [PMID: 38958191 DOI: 10.1002/anie.202408527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Janus heterostructures consisting of multiple jointed components with distinct properties have gained growing interest in the photoredox catalytic field. Herein, we have developed a facile low-temperature method to gain anisotropic one-dimensional Au-tipped CdS (Au-CdS) nanorods (NRs), followed by assembling Ru molecular co-catalyst (RuN5) onto the surface of the NRs. The CdS NRs decorated with plasmonic Au nanoparticles and RuN5 complex harness the virtues of metal-semiconductor and inorganic-organic interface, giving directional charge transfer channels, spatially separated reaction sites, and enhanced local electric field distribution. As a result, the Au-CdS-RuN5 can act as an efficient dual-function photocatalyst for simultaneous H2 evolution and valorization of biomass-derived alcohols. Benefiting from the interfacial charge decoupling and selective chemical bond activation, the optimal all-in-one Au-CdS-RuN5 heterostructure shows greatly enhanced photoactivity and selectivity as compared to bare CdS NRs, along with a remarkable apparent quantum yield of 40.2 % at 400 nm. The structural evolution and working mechanism of the heterostructures are systematically analyzed based on experimental and computational results.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zikang Zeng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaorui Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Lan Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chang-Long Tan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yi Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
4
|
Chen Q, Mao B, Liu Y, Zhou Y, Huang H, Wang S, Li L, Yan WC, Shi W, Kang Z. Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution. Nat Commun 2024; 15:8052. [PMID: 39277627 PMCID: PMC11401949 DOI: 10.1038/s41467-024-52406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The coupled green energy and chemical production by photocatalysis represents a promising sustainable pathway, which poses great challenges for the multifunction integration of catalytic systems. Here we show a promising green photocatalyst design using Cu-ZnIn2S4 nanosheets and carbon dots as building units, which enables the integration of reaction, mass transfer, and separation functions in the nano-space, mimicking a nanoreactor. This function integration results in great activity promotion for benzyl alcohol oxidation coupled H2 production, with H2/benzaldehyde production rates of 45.95/46.47 mmol g-1 h-1, 36.87 and 36.73 times to pure ZnIn2S4, respectively, owning to the enhanced charge accumulation and mass transfer according to in-situ spectroscopies and computational simulations of the built-in electrical field. Near-unity selectivity of benzaldehyde is achieved via the effective separation enabled by the Cu(II)-mediated conformation flipping of the intermediates and subsequent π-π conjugation. This work demonstrates an inspiring proof-of-concept nanoreactor design of photocatalysts for coupled sustainable systems.
Collapse
Affiliation(s)
- Qitao Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yanhong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yunjie Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Song Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Wei-Cheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|
5
|
Jiang D, Li Z, Li H, Cheng Y, Du H, Zhu C, Meng L, Fang Y, Zhao C, Lou Z, Lu Z, Yuan Y. Achieving Long-Lived Charge Separated State through Ultrafast Interfacial Hole Transfer in Redox Sites-Isolated CdS Nanorods for Enhanced Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310414. [PMID: 38294968 DOI: 10.1002/smll.202310414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Indexed: 02/02/2024]
Abstract
As opposed to natural photosynthesis, a significant challenge in a semiconductor-based photocatalyst is the limited hole extraction efficiency, which adversely affects solar-to-fuel efficiency. Recent studies have demonstrated that photocatalysts featuring spatially isolated dual catalytic oxidation/reduction sites can yield enhanced hole extraction efficiencies. However, the decay dynamics of excited states in such photocatalysts have not been explored. Here a ternary barbell-shaped CdS/MoS2/Cu2S heterostructure is prepared, comprising CdS nanorods (NRs) interfaced with MoS2 nanosheets at both ends and Cu2S nanoparticles on the sidewall. By using transient absorption (TA) spectra, highly efficient charge separation within the CdS/MoS2/Cu2S heterostructure are identified. This is achieved through directed electron transfer to the MoS2 tips at a rate constant of >8.3 × 109 s-1 and rapid hole transfer to the Cu2S nanoparticles on the sidewall at a rate of >6.1 × 1010 s-1, leading to an exceptional overall charge transfer constant of 2.3 × 1011 s-1 in CdS/MoS2/Cu2S. The enhanced hole transfer efficiency results in a remarkably prolonged charge-separated state, facilitating efficient electron accumulation within the MoS2 tips. Consequently, the ternary CdS/MoS2/Cu2S heterostructure demonstrates a 22-fold enhancement in visible-light-driven H2 generation compare to pure CdS nanorods. This work highlights the significance of efficient hole extraction in enhancing the solar-to-H2 performance of semiconductor-based heterostructure.
Collapse
Affiliation(s)
- Daochuan Jiang
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Zhongfei Li
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Hao Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yingpeng Cheng
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Haiwei Du
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Chuhong Zhu
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Lingchen Meng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yuetong Fang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Chunyi Zhao
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, P. R. China
| | - Zhou Lu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yupeng Yuan
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
6
|
Yu G, Gong K, Li X, Guo L, Li X, Wang D. S-vacancy-assisted fast charge transport and oriented ReS 2 growth in twin crystal Zn xCd 1-xS: an atomic-level heterostructure for dual-functional photocatalytic conversion. MATERIALS HORIZONS 2024; 11:768-780. [PMID: 37997176 DOI: 10.1039/d3mh01568h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The achievement of dual-functional photocatalytic technology requires a photocatalyst with accelerated charge flow and purposeful active-site arrangement. In this study, we developed an oriented embedding strategy to induce ReS2 growth at the S vacancy in twin-crystal Zn0.5Cd0.5S solid solution (Sv-ZCS), obtaining an atomic-level heterostructure (ReS2/Sv-ZCS). The electronic structure calculations demonstrate that the charge density of the Zn atom around the S vacancy is higher than for other Zn atoms and the introduced S vacancy establishes a high-speed channel for electron transport via formed Zn-S-Re bonds at the interface between ReS2 and Sv-ZCS. Photogenerated electrons and holes gathered on Re atoms and Sv-ZCS, respectively, which achieves spatial charge separation and separated arrangement for redox sites. As a result, the optimized ReS2/Sv-ZCS heterostructure possesses high efficiency of electron injection (2.6-fold) and charge separation (8.44-fold), as well as excellent conductivity capability (20.16-fold). The photocatalytic performance of the ReS2/Sv-ZCS composite exhibits highly improved dual-functional activity with simultaneous H2 evolution and selective oxidation of benzyl alcohol. The reaction rate of benzaldehyde and H2 evolution reaches 125 mmol gcat-1 h-1 and 159 mmol gcat-1 h-1, which is the highest efficiency achieved so far for simultaneous coproduction of H2 fuel and organic chemicals on ReS2-based composites. This work enriches the application of ReS2-modified composites in a dual-functional photoredox system and also gives insight into the role of defects in electronic structure modification and activity improvement.
Collapse
Affiliation(s)
- Guiyang Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
| | - Ke Gong
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
| | - Luyang Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Debao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
| |
Collapse
|
7
|
Lv X, Pan D, Zheng S, Zeeshan Shahid M, Jiang G, Wang J, Li Z. In-situ producing CsPbBr 3 nanocrystals on (001)-faceted TiO 2 nanosheets as S‑scheme heterostructure for bifunctional photocatalysis. J Colloid Interface Sci 2023; 652:673-679. [PMID: 37524620 DOI: 10.1016/j.jcis.2023.07.174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Fabricating a cost-effective yet highly active photocatalyst to reduce CO2 to CO and oxidize benzyl alcohol to benzaldehyde simultaneously, is challenging. Herein, we construct an S-scheme 0D/2D CsPbBr3/TiO2 heterostructure for bifunctional photocatalysis. An in-situ synthetic route is used, which enables the precise integration between CsPbBr3 nanocrystals and ultrathin TiO2 nanosheets exposed with (001) facets (termed as TiO2-001), resulting in a tightly coupled heterointerface and desirable band offsets. The as-prepared CsPbBr3/TiO2-001heterojunctions exhibit boosted charge carrier kinetics, particularly, quick carrier separation/transfer and efficient utilization. Experimental results and theoretical calculations validate the S-scheme route in CsPbBr3/TiO2-001, which allows the enrichment of strongly conserved electrons-holes at conduction and valence bands of CsPbBr3 and TiO2-001, respectively. Consequently, compared to its counterparts, an excellent bifunctional activity (with 24 h reusability) is realized over CsPbBr3/TiO2-001, where the production rate of CO and benzaldehyde reach up to 78.06 μmol g-1h-1 and 1.77 mmol g-1h-1 respectively, without employing any sacrificial agents. This work highlights the development of perovskite-based heterostructures and describes the efficient harnessing of redox potentials and charge carriers towards combined photocatalytic systems.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Danrui Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Song Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Malik Zeeshan Shahid
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China.
| | - Guocan Jiang
- Zhejiang Institute of Photoelectronics, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China; Zhejiang Institute of Photoelectronics, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China.
| |
Collapse
|
8
|
Xu D, Zhai L, Mu Z, Tao CL, Ge F, Zhang H, Ding M, Cheng F, Wu XJ. Versatile synthesis of nano-icosapods via cation exchange for effective photocatalytic conversion of biomass-relevant alcohols. Chem Sci 2023; 14:10167-10175. [PMID: 37772115 PMCID: PMC10530866 DOI: 10.1039/d3sc02493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Branched metal chalcogenide nanostructures with well-defined composition and configuration are appealing photocatalysts for solar-driven organic transformations. However, precise design and controlled synthesis of such nanostructures still remain a great challenge. Herein, we report the construction of a variety of highly symmetrical metal sulfides and heterostructured icosapods based on them, in which twenty branches were radially grown in spatially ordered arrangement, with a high degree of structure homogeneity. Impressively, the as-obtained CdS-PdxS icosapods manifest a significantly improved photocatalytic activity for the selective oxidation of biomass-relevant alcohols into corresponding aldehydes coupled with H2 evolution under visible-light irradiation (>420 nm), and the apparent quantum yield of the benzyl alcohol reforming can be achieved as high as 31.4% at 420 nm. The photoreforming process over the CdS-PdxS icosapods is found to be directly triggered by the photogenerated electrons and holes without participation of radicals. The enhanced photocatalytic performance is attributed to the fast charge separation and abundant active sites originating from the well-defined configuration and spatial organization of the components in the branched heterostructures.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Li Zhai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Zhangyan Mu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Han Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Du R, Wang C, Guo L, Soomro RA, Xu B, Yang C, Fu F, Wang D. NiS/Cd 0.6 Zn 0.4 S Schottky Junction Bifunctional Photocatalyst for Sunlight-Driven Highly Selective Catalytic Oxidation of Vanillyl Alcohol Towards Vanillin Coupled with Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302330. [PMID: 37259262 DOI: 10.1002/smll.202302330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Selective oxidation of biomass-based molecules to high-value chemicals in conjunction with hydrogen evolution reaction (HER) is an innovative photocatalysis strategy. The key challenge is to design bifunctional photocatalysts with suitable band structures, which can achieve highly efficient generation of high-value chemicals and hydrogen. Herein, NiS/Cd0.6 Zn0.4 S Schottky junction bifunctional catalysts are constructed for sunlight-driven catalytic vanillyl alcohol (VAL) selective oxidation towards vanillin (VN) coupling HER. At optimal conditions, the 8% NiS/Cd0.6 Zn0.4 S photocatalyst achieves high activity of VN production (3.75 mmol g-1 h-1 ) and HER (3.84 mmol g-1 h-1 ). It also exhibits remarkable VAL conversion (66.9%), VN yield (52.1%), and selectivity (77.8%). The photocatalytic oxidation of VAL proceeds a carbon-centered radical mechanism via the cleavage of αC-H bond. Experimental results and theoretical calculations show that NiS with metallic properties enhances the electron transfer capability. Importantly, a Ni-S-Cd "electron bridge" formed at the interface of NiS/Cd0.6 Zn0.4 S further improves the separation/transfer of electrone/h+ pairs and also furnishes HER active sites due to its smaller the |ΔGH* | value, thereby resulting in a remarkably HER activity. This work sheds new light on the selective catalytic oxidation VAL to VN coupling HER, with a new pathway towards achieving its efficient HER efficiency.
Collapse
Affiliation(s)
- Rui Du
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Chuantao Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Li Guo
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bin Xu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
- State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chunming Yang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Feng Fu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Danjun Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| |
Collapse
|
10
|
Kumar P, Vahidzadeh E, Alam KM, Laishram D, Cui K, Shankar K. Radial Nano-Heterojunctions Consisting of CdS Nanorods Wrapped by 2D CN:PDI Polymer with Deep HOMO for Photo-Oxidative Water Splitting, Dye Degradation and Alcohol Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091481. [PMID: 37177028 PMCID: PMC10180281 DOI: 10.3390/nano13091481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Solar energy harvesting using semiconductor photocatalysis offers an enticing solution to two of the biggest societal challenges, energy scarcity and environmental pollution. After decades of effort, no photocatalyst exists which can simultaneously meet the demand for excellent absorption, high quantum efficiency and photochemical resilience/durability. While CdS is an excellent photocatalyst for hydrogen evolution, pollutant degradation and organic synthesis, photocorrosion of CdS leads to the deactivation of the catalyst. Surface passivation of CdS with 2D graphitic carbon nitrides (CN) such as g-C3N4 and C3N5 has been shown to mitigate the photocorrosion problem but the poor oxidizing power of photogenerated holes in CN limits the utility of this approach for photooxidation reactions. We report the synthesis of exfoliated 2D nanosheets of a modified carbon nitride constituted of tris-s-triazine (C6N7) linked pyromellitic dianhydride polydiimide (CN:PDI) with a deep oxidative highest occupied molecular orbital (HOMO) position, which ensures sufficient oxidizing power for photogenerated holes in CN. The heterojunction formed by the wrapping of mono-/few layered CN:PDI on CdS nanorods (CdS/CN:PDI) was determined to be an excellent photocatalyst for oxidation reactions including photoelectrochemical water splitting, dye decolorization and the photocatalytic conversion of benzyl alcohol to benzaldehyde. Extensive structural characterization using HR-TEM, Raman, XPS, etc., confirmed wrapping of few-layered CN:PDI on CdS nanorods. The increased photoactivity in CdS/CN:PDI catalyst was ascribed to facile electron transfer from CdS to CN:PDI in comparison to CdS/g-C3N4, leading to an increased electron density on the surface of the photocatalyst to drive chemical reactions.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Ehsan Vahidzadeh
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
| | - Kazi M Alam
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
- Nanotechnology Research Centre, National Research Council of Canada, Edmonton, AB T6G 2M9, Canada
| | - Devika Laishram
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 34201, India
| | - Kai Cui
- Nanotechnology Research Centre, National Research Council of Canada, Edmonton, AB T6G 2M9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St., Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
11
|
Zhang M, Li K, Hu C, Ma K, Sun W, Huang X, Ding Y. Co nanoparticles modified phase junction CdS for photoredox synthesis of hydrobenzoin and hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(23)64393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
12
|
Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63939-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Chen R, Bai X, Ma M, Luo Y, Qian L, She X. Highly efficient simultaneous hydrogen evolution and organic pollutants removal using CdS decorated with CoP nanosheet under visible light. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Zhao S, Song S, You Y, Zhang Y, Luo W, Han K, Ding T, Tian Y, Li X. Tuning redox ability of Zn3In2S6 with surfactant modification for highly efficient and selective photocatalytic C-C coupling. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64105-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
|
17
|
Tayyab M, Liu Y, Min S, Muhammad Irfan R, Zhu Q, Zhou L, Lei J, Zhang J. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63997-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Zhang H, Yang G, Sun Y, Kang S, Dou M, Yang H, Li D, Dou J. A novel cobalt complex of bptd and cobalt lactate complex to synergistically enhance photocatalytic HER activity and stability on CdS nanorods. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Roeffaers MBJ, Wang C, Weng B, Liao Y, Liu B, Keshavarz M, Ding Y, Huang H, Verhaeghe D, Steele J, Feng W, Su BL, Hofkens J. Simultaneous photocatalytic H2 generation and organic synthesis over crystalline-amorphous Pd nanocube decorated Cs3Bi2Br9. Chem Commun (Camb) 2022; 58:10691-10694. [DOI: 10.1039/d2cc02453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cs3Bi2Br9 decorated with crystalline-amorphous Pd nanocubes as cocatalyst is reported to photocatalytically coproduce ca. 1400 μmol h−1 g−1 of H2 and benzaldehyde from the selective benzyl alcohol oxidation. This route...
Collapse
|
20
|
Qi MY, Conte M, Anpo M, Tang ZR, Xu YJ. Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. Chem Rev 2021; 121:13051-13085. [PMID: 34378934 DOI: 10.1021/acs.chemrev.1c00197] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Merging hydrogen (H2) evolution with oxidative organic synthesis in a semiconductor-mediated photoredox reaction is extremely attractive because the clean H2 fuel and high-value chemicals can be coproduced under mild conditions using light as the sole energy input. Following this dual-functional photocatalytic strategy, a dreamlike reaction pathway for constructing C-C/C-X (X = C, N, O, S) bonds from abundant and readily available X-H bond-containing compounds with concomitant release of H2 can be readily fulfilled without the need of external chemical reagents, thus offering a green and fascinating organic synthetic strategy. In this review, we begin by presenting a concise overview on the general background of traditional photocatalytic H2 production and then focus on the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal. Thereafter, we put dedicated emphasis on recent key progress of cooperative photoredox coupling of H2 production and various selective organic transformations, including selective alcohol oxidation, selective methane conversion, amines oxidative coupling, oxidative cross-coupling, cyclic alkanes dehydrogenation, reforming of lignocellulosic biomass, and so on. Finally, the remaining challenges and future perspectives in this flourishing area have been critically discussed. It is anticipated that this review will provide enlightening guidance on the rational design of such dual-functional photoredox reaction system, thereby stimulating the development of economical and environmentally benign solar fuel generation and organic synthesis of value-added fine chemicals.
Collapse
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Masakazu Anpo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
21
|
Zheng Z, Wang T, Han F, Yang Q, Li B. Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light. J Colloid Interface Sci 2021; 606:47-56. [PMID: 34388572 DOI: 10.1016/j.jcis.2021.07.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The development of visible light responsive photocatalysts for simultaneous production of hydrogen (H2) fuel and value-added chemicals is greatly promising to solve the energy and environmental issues by improving the utilization efficiency of solar energy. Herein, the three-component Ni/(Au@CdS) core-shell nanostructures were constructed by the hydrothermal synthesis followed with photodeposition. The intimate integration of plasmonic Au nanospheres and visible-light responsive CdS shells modified with Ni cocatalyst facilitated the generation and separation of electron-hole pairs as well as reduced the overpotential of hydrogen evolution. The Ni/(Au@CdS) photocatalyst exhibited excellent performance toward the selective transformation of benzyl alcohol under anaerobic conditions, and the yields of H2 and benzaldehyde reached up to 3882 and 4242 μmol·g-1·h-1, respectively. The apparent quantum efficiency (AQE) was determined to be 4.09% under the irradiation of 420 nm. The systematic studies have verified the synergy of plasmonic effect and metal cocatalyst on enhancing the photocatalysis. This work highlights the desirable design and potential application of plasmonic photocatalysts for solar-driven coproduction of H2 fuel and high-value chemicals.
Collapse
Affiliation(s)
- Ziqiang Zheng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fang Han
- Anhui Entry-Exit Inspection and Quarantine Technical Center, 329 Tunxi Road, Hefei, Anhui 230029, China
| | - Qing Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
22
|
Photocatalytic H2 evolution integrated with selective amines oxidation promoted by NiS2 decorated CdS nanosheets. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Li B, Hong J, Ai Y, Hu Y, Shen Z, Li S, Zou Y, Zhang S, Wang X, Zhao G, Xu X. Visible-near-infrared-light-driven selective oxidation of alcohols over nanostructured Cu doped SrTiO3 in water under mild condition. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Wang T, Yang L, Jiang D, Cao H, Minja AC, Du P. CdS Nanorods Anchored with Crystalline FeP Nanoparticles for Efficient Photocatalytic Formic Acid Dehydrogenation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23751-23759. [PMID: 33988354 DOI: 10.1021/acsami.1c04178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photocatalytic dehydrogenation of formic acid is a promising strategy for H2 generation. In this work, we report the use of crystalline iron phosphide (FeP) nanoparticles as an efficient and robust cocatalyst on CdS nanorods (FeP@CdS) for highly efficient photocatalytic formic acid dehydrogenation. The optimal H2 evolution rate can reach ∼556 μmol·h-1 at pH 3.5, which is more than 37 times higher than that of bare CdS. Moreover, the photocatalyst demonstrates excellent stability; no significant decrease of the catalytic activity was observed during continuous testing for more than four days. The apparent quantum yield is ∼54% at 420 nm, which is among the highest values obtained using noble-metal-free photocatalysts for formic acid dehydrogenation. This work provides a novel strategy for designing highly efficient and economically viable photocatalysts for formic acid dehydrogenation.
Collapse
Affiliation(s)
- Taotao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Lechen Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Daochuan Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Hongyun Cao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Antony Charles Minja
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
25
|
Zhang HH, Zhan GP, Liu ZK, Wu CD. Photocatalytic Hydrogen Evolution Coupled with Production of Highly Value-Added Organic Chemicals by a Composite Photocatalyst CdIn 2 S 4 @MIL-53-SO 3 Ni 1/2. Chem Asian J 2021; 16:1499-1506. [PMID: 33871155 DOI: 10.1002/asia.202100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Indexed: 11/08/2022]
Abstract
Photocatalytic water splitting coupled with the production of highly value-added organic chemicals is of significant importance, which represents a very promising pathway for transforming green solar energy into chemical energy. Herein, we report a composite photocatalyst CdIn2 S4 @MIL-53-SO3 Ni1/2 , which is highly efficient on prompting water splitting for the production of H2 in the reduction half-reaction and selective oxidation of organic molecules for the production of highly value-added organic chemicals in the oxidation half-reaction under visible light irradiation. The superior photocatalytic properties of the composite photocatalyst CdIn2 S4 @MIL-53-SO3 Ni1/2 should be ascribed to coating suspended ion catalyst (SIC), consisting of redox-active NiII ions in the anionic pores of coordination network MIL-53-SO3 - , on the surface of photoactive CdIn2 S4 , which endows photogenerated electron-hole pairs separate more efficiently for high rate production of H2 and selective production of highly value-added organic products, demonstrating great potential for practical applications.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guo-Peng Zhan
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zi-Kun Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chuan-De Wu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
26
|
Navakoteswara Rao V, Malu TJ, Cheralathan KK, Sakar M, Pitchaimuthu S, Rodríguez-González V, Mamatha Kumari M, Shankar MV. Light-driven transformation of biomass into chemicals using photocatalysts - Vistas and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:111983. [PMID: 33529884 DOI: 10.1016/j.jenvman.2021.111983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass has become an important sustainable resource for fuels, chemicals and energy. It is an attractive source for alternative fuels and green chemicals because it is non-edible and widely available in the planet in huge volumes. The use of biomass as starting material to produce fuels and chemicals leads to closed carbon cycle and promotes circular economy. Although there are many thermo-chemical methods such as pyrolysis, liquefaction and gasification close at hand for processing lignocellulosic biomass and transforming the derived compounds into valuable chemicals and fuels, the photocatalytic method is more advantageous as it utilizes light and ambient conditions for reforming the said compounds. Appraisal of recent literature indicates a variety of photocatalytic systems involving different catalysts, reactors and conditions studied for this purpose. This article reviews the recent developments on the photocatalytic oxidation of biomass and its derivatives into value-added chemicals. The nature of the biomass and derived molecules, nature of the photocatalysts, efficiency of the photocatalysts in terms of conversion and selectivity, influence of reaction conditions and light sources, effect of additives and mechanistic pathways are discussed. Importance has been given also to discuss the complementary technologies that could be coupled with photocatalysis for better conversion of biomass and biomass-derived molecules to value-added chemicals. A summary of these aspects, conclusions and future prospects are given in the end.
Collapse
Affiliation(s)
- Vempuluru Navakoteswara Rao
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Thayil Jayakumari Malu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | | | - Mohan Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, Karnataka, India
| | - Sudhagar Pitchaimuthu
- Multifunctional Photocatalyst and Coatings Group, SPECIFIC, Materials Research Centre, College of Engineering, Swansea University (Bay Campus), Fabian Way, Crymlyn Burrows, Swansea, SA1 8EN, Wales, United Kingdom
| | - Vicente Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica, División de Materiales Avanzados, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, S.L.P., Mexico
| | - Murikinati Mamatha Kumari
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Muthukonda Venkatakrishnan Shankar
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| |
Collapse
|
27
|
Shang W, Li Y, Huang H, Lai F, Roeffaers MBJ, Weng B. Synergistic Redox Reaction for Value-Added Organic Transformation via Dual-Functional Photocatalytic Systems. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04815] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weike Shang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, No. 58, YanTa Road, Xi’an 710054, People’s Republic of China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, No. 58, YanTa Road, Xi’an 710054, People’s Republic of China
| | - Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B. J. Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
28
|
Spherical Mesoporous SBA‐15‐Supported CoP Nanoparticles as Robust Selective CO
2
Reduction and H
2
‐Generating Catalyst under Visible Light. ChemCatChem 2020. [DOI: 10.1002/cctc.202000905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Sun D, Li P, Wang X, Wang Y, Wang J, Wang Y, Lu Y, Duan L, Sarina S, Zhu H, Liu J. Heterogeneous photocatalytic anaerobic oxidation of alcohols to ketones by Pt-mediated hole oxidation. Chem Commun (Camb) 2020; 56:11847-11850. [PMID: 33021248 DOI: 10.1039/d0cc03325a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report a platinum nanocluster/graphitic carbon nitride (Pt/g-C3N4) composite solid catalyst with a photocatalytic anaerobic oxidation function for highly active and selective transformation of alcohols to ketones. The desirable products were successfully obtained in good to excellent yields from various functionalized alcohols at room temperature, including unactivated alcohols. Mechanistic studies indicated that the reaction could proceed through a Pt-mediated hole oxidation initiating an α-alcohol radical intermediate followed by a two-electron oxidation pathway. The merit of this strategy offers a general approach towards green and sustainable organic synthetic chemistry.
Collapse
Affiliation(s)
- Danhui Sun
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities Tongliao, 028000, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wei Z, Liu J, Shangguan W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63448-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Klarner M, Hammon S, Feulner S, Kümmel S, Kador L, Kempe R. Visible Light‐driven Dehydrogenation of Benzylamine under Liberation of H
2. ChemCatChem 2020. [DOI: 10.1002/cctc.202000329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mara Klarner
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Sebastian Hammon
- Theoretical Physics IV University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Sebastian Feulner
- Institute of Physics, Bayreuth Institute of Macromolecule Research (BIMF) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Stephan Kümmel
- Theoretical Physics IV University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Lothar Kador
- Institute of Physics, Bayreuth Institute of Macromolecule Research (BIMF) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Rhett Kempe
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
32
|
Li JY, Li YH, Qi MY, Lin Q, Tang ZR, Xu YJ. Selective Organic Transformations over Cadmium Sulfide-Based Photocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01567] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing-Yu Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yue-Hua Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Qiong Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
33
|
Wei Z, Xu M, Liu J, Guo W, Jiang Z, Shangguan W. Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@Zn Cd1-S: Solid-solution-assisted photocatalysis. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63479-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Li JY, Xin X, Li YH, Zhang F, Anpo M, Xu YJ. Visible light-induced conversion of biomass-derived chemicals integrated with hydrogen evolution over 2D Ni2P–graphene–TiO2. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04011-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Hu Y, Zhao G, Pan Q, Wang H, Shen Z, Peng B, Busser GW, Wang X, Muhler M. Highly Selective Anaerobic Oxidation of Alcohols Over Fe‐doped SrTiO
3
Under Visible Light. ChemCatChem 2019. [DOI: 10.1002/cctc.201901451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yezi Hu
- College of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
| | - Guixia Zhao
- College of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
- Laboratory of Industrial Chemistry Faculty of Chemistry and BiochemistryRuhr-Universität Bochum 44780 Bochum Germany
| | - Qiushi Pan
- Laboratory of Industrial Chemistry Faculty of Chemistry and BiochemistryRuhr-Universität Bochum 44780 Bochum Germany
| | - Huihui Wang
- College of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
| | - Zewen Shen
- College of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry Faculty of Chemistry and BiochemistryRuhr-Universität Bochum 44780 Bochum Germany
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - G. Wilma Busser
- Laboratory of Industrial Chemistry Faculty of Chemistry and BiochemistryRuhr-Universität Bochum 44780 Bochum Germany
| | - Xiangke Wang
- College of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
| | - Martin Muhler
- Laboratory of Industrial Chemistry Faculty of Chemistry and BiochemistryRuhr-Universität Bochum 44780 Bochum Germany
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
36
|
Zhu T, Ye X, Zhang Q, Hui Z, Wang X, Chen S. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn 2S 4 hybrid. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:277-285. [PMID: 30597372 DOI: 10.1016/j.jhazmat.2018.12.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
In this study, a new photocatalytic reaction system for simultaneous selective oxidation of aromatic alcohols to corresponding aldehydes and reduction of protons to H2 has been developed. The results reveal that compared with pure ZnIn2S4, the ZnIn2S4 photocatalysts modified with noble metal gold (Au/ZnIn2S4) significantly promote the photocatalytic performance. Among them, the 0.5% Au/ZnIn2S4 nanosheets shows the highest photocatalytic activity for selective oxidation of benzyl alcohol to benzaldehyde and hydrogen production, and the yields of H2 and benzaldehyde are 326.68 and 352.04 μmol under visible light irradiation for 4 h, respectively. Those are about 4.4 and 3.6 times higher than those of pure ZnIn2S4 sample (74.0 μmol H2 and 98.04 μmol benzaldehyde), respectively. The utilization ratio of photogenerated electrons to holes can achieve 92.8%. Additionally, the control experiments demonstrate that the photogenerated electrons and holes play significant roles during the reaction process. It is hoped that the current work can offer an avenue to utilize the photogenerated carriers more efficiently and to develop other photocatalytic reaction systems, such as nitrogen fixation and reduction of carbon dioxide.
Collapse
Affiliation(s)
- Taotao Zhu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Anhui, Bengbu, 233030, PR China; Key Lab of Clean Energy and Green Circulation, Huaibei Normal University, Huaibei, 235000, PR China
| | - Xiangju Ye
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Anhui, Bengbu, 233030, PR China.
| | - Qiaoqiao Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Anhui, Bengbu, 233030, PR China; Key Lab of Clean Energy and Green Circulation, Huaibei Normal University, Huaibei, 235000, PR China
| | - Zhenzhen Hui
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Anhui, Bengbu, 233030, PR China
| | - Xuchun Wang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Anhui, Bengbu, 233030, PR China
| | - Shifu Chen
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Anhui, Bengbu, 233030, PR China; Key Lab of Clean Energy and Green Circulation, Huaibei Normal University, Huaibei, 235000, PR China.
| |
Collapse
|
37
|
Han C, Tang ZR, Liu J, Jin S, Xu YJ. Efficient photoredox conversion of alcohol to aldehyde and H 2 by heterointerface engineering of bimetal-semiconductor hybrids. Chem Sci 2019; 10:3514-3522. [PMID: 30996942 PMCID: PMC6432391 DOI: 10.1039/c8sc05813j] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 12/03/2022] Open
Abstract
Controllable and precise design of bimetal- or multimetal-semiconductor nanostructures with efficient light absorption, charge separation and utilization is strongly desired for photoredox catalysis applications in solar energy conversion. Taking advantage of Au nanorods, Pt nanoparticles, and CdS as the plasmonic metal, nonplasmonic co-catalyst and semiconductor respectively, we report a steerable approach to engineer the heterointerface of bimetal-semiconductor hybrids. We show that the ingredient composition and spatial distribution between the bimetal and semiconductor significantly influence the redox catalytic activity. CdS deposited anisotropic Pt-tipped Au nanorods, which feature improved light absorption, structure-enhanced electric field distribution and spatially regulated multichannel charge transfer, show distinctly higher photoactivity than blank CdS and other metal-CdS hybrids for simultaneous H2 and value-added aldehyde production from one redox cycle.
Collapse
Affiliation(s)
- Chuang Han
- State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou , 350116 , China .
- College of Chemistry , Fuzhou University , New Campus , Fuzhou , 350116 , China
| | - Zi-Rong Tang
- College of Chemistry , Fuzhou University , New Campus , Fuzhou , 350116 , China
| | - Junxue Liu
- State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , Liaoning 116023 , China .
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , Liaoning 116023 , China .
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou , 350116 , China .
- College of Chemistry , Fuzhou University , New Campus , Fuzhou , 350116 , China
| |
Collapse
|
38
|
Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts 2019. [DOI: 10.3390/catal9030276] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Photocatalytic water splitting is a sustainable technology for the production of clean fuel in terms of hydrogen (H2). In the present study, hydrogen (H2) production efficiency of three promising photocatalysts (titania (TiO2-P25), graphitic carbon nitride (g-C3N4), and cadmium sulfide (CdS)) was evaluated in detail using various sacrificial agents. The effect of most commonly used sacrificial agents in the recent years, such as methanol, ethanol, isopropanol, ethylene glycol, glycerol, lactic acid, glucose, sodium sulfide, sodium sulfite, sodium sulfide/sodium sulfite mixture, and triethanolamine, were evaluated on TiO2-P25, g-C3N4, and CdS. H2 production experiments were carried out under simulated solar light irradiation in an immersion type photo-reactor. All the experiments were performed without any noble metal co-catalyst. Moreover, photolysis experiments were executed to study the H2 generation in the absence of a catalyst. The results were discussed specifically in terms of chemical reactions, pH of the reaction medium, hydroxyl groups, alpha hydrogen, and carbon chain length of sacrificial agents. The results revealed that glucose and glycerol are the most suitable sacrificial agents for an oxide photocatalyst. Triethanolamine is the ideal sacrificial agent for carbon and sulfide photocatalyst. A remarkable amount of H2 was produced from the photolysis of sodium sulfide and sodium sulfide/sodium sulfite mixture without any photocatalyst. The findings of this study would be highly beneficial for the selection of sacrificial agents for a particular photocatalyst.
Collapse
|
39
|
Ge J, Liu Y, Jiang D, Zhang L, Du P. Integrating non-precious-metal cocatalyst Ni3N with g-C3N4 for enhanced photocatalytic H2 production in water under visible-light irradiation. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63283-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Hao H, Lang X. Metal Sulfide Photocatalysis: Visible‐Light‐Induced Organic Transformations. ChemCatChem 2019. [DOI: 10.1002/cctc.201801773] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huimin Hao
- College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| | - Xianjun Lang
- College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 China
| |
Collapse
|
41
|
Wei Z, Liu J, Fang W, Guo W, Zhu Y, Xu M, Jiang Z, Shangguan W. Photocatalytic hydrogen energy evolution from antibiotic wastewater via metallic bi nanosphere doped g-C3N4: performances and mechanisms. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01375j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, bismuth nanosphere doped polymeric carbon nitride (Bi/g-C3N4) was applied for photocatalytically converting antibiotic wastewater into hydrogen energy.
Collapse
Affiliation(s)
- Zhidong Wei
- Research Center for Combustion and Environmental Technology
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Center of Hydrogen Science
| | - Junying Liu
- Research Center for Combustion and Environmental Technology
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Center of Hydrogen Science
| | - Wenjian Fang
- Research Center for Combustion and Environmental Technology
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Center of Hydrogen Science
| | - Weiqi Guo
- Research Center for Combustion and Environmental Technology
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Center of Hydrogen Science
| | - Yong Zhu
- Research Center for Combustion and Environmental Technology
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Center of Hydrogen Science
| | - Meiqi Xu
- Research Center for Combustion and Environmental Technology
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Center of Hydrogen Science
| | - Zhi Jiang
- Research Center for Combustion and Environmental Technology
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Center of Hydrogen Science
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology
- Shanghai Jiao Tong University
- Shanghai 200240
- People's Republic of China
- Center of Hydrogen Science
| |
Collapse
|
42
|
Meng S, Ye X, Zhang J, Fu X, Chen S. Effective use of photogenerated electrons and holes in a system: Photocatalytic selective oxidation of aromatic alcohols to aldehydes and hydrogen production. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Jing X, Peng X, Cao Y, Wang W, Wang S. Enhanced photocarriers separation of novel CdS/pt/Mo 2C heterostructure for visible-light-driven hydrogen evolution. RSC Adv 2018; 8:33993-33999. [PMID: 35548809 PMCID: PMC9086742 DOI: 10.1039/c8ra05473h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022] Open
Abstract
The production of H2 from water using photocatalysts is a promising way of generating clean, renewable and alternative energy. The key issue is to develop active and stable photocatalysts. Here, we report a novel CdS/Pt/Mo2C heterostructure photocatalyst, where Pt nanoparticles are closely supported on CdS/Mo2C. The UV-vis spectrum and EIS Nyquist plots show that Mo2C can boost the absorption in the UV-vis region and improve the separation of the photogenerated electron-hole pairs from CdS. The Pt nanoparticles act as the active co-catalyst that promotes the transient photocurrent response. As a result, the CdS/Pt/Mo2C photocatalyst exhibits an excellent H2 evolution activity up to 1828.82 μmol h-1 g-1 under visible-light irradiation, 8.5 and 16.2 times higher than that of pristine CdS and CdS/Mo2C, respectively. Moreover, a high apparent quantum yield (AQY) of 9.39% is obtained at 400 nm for the CdS/Pt/Mo2C heterostructure photocatalyst.
Collapse
Affiliation(s)
- Xinbo Jing
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832000 China
| | - Xueying Peng
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832000 China
| | - Youzhi Cao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832000 China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832000 China
| | - Shufen Wang
- College of Sciences, Shihezi University Shihezi 832000 China
| |
Collapse
|
44
|
Li H, Sun B, Xu Y, Qiao P, Wu J, Pan K, Tian G, Wang L, Zhou W. Surface defect-mediated efficient electron-hole separation in hierarchical flower-like bismuth molybdate hollow spheres for enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci 2018; 531:664-671. [PMID: 30075318 DOI: 10.1016/j.jcis.2018.07.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
It is desirable to develop an efficient visible-light-driven photocatalyst for practical application to degrade highly-noxious pollutants. Herein, the hydrogenation hierarchical flower-like Bi2MoO6 hollow spheres (H-BMO-X, where X represents the different hydrogen calcination temperatures) have been successfully fabricated by a solvothermal-surface hydrogenation process. The as-prepared nano-photocatalyst H-BMO-300 clearly exhibits a photocatalytic reaction apparent rate constant k for high-noxious pollutants by ∼3-times higher than pristine Bi2MoO6. Moreover, the resultant H-BMO-300 sample with a narrow bandgap of ∼2.70 eV possesses surface oxygen vacancy defects. Based on the scanning Kelvin probe and surface photovoltage spectroscopy, it is deduced that the photocatalytic activities are attributed to the surface oxygen vacancy of H-BMO-X favoring the electron-hole pair's separation. The enhanced photocatalytic performance can be ascribed to the synergistic effect of surface defects favoring efficient electron-hole separation and the hollow hierarchical structure benefiting the utilization of visible light, which provides more surface-active sites. This work provides a viable route to perceptibly enhance the photocatalytic activities of H-BMO-300 for environmental remediation with good mineralization properties.
Collapse
Affiliation(s)
- Haoze Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Bojing Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Yachao Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Panzhe Qiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Jiaxing Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Kai Pan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Wei Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
45
|
You B, Han G, Sun Y. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. Chem Commun (Camb) 2018; 54:5943-5955. [DOI: 10.1039/c8cc01830h] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have summarized the recent progress in electrocatalytic and photocatalytic water splitting integrated with organic oxidation for efficient H2 generation, which features no formation of explosive H2/O2 mixtures and reactive oxygen species, higher efficiency compared to conventional water splitting and potential co-production of value-added organic products.
Collapse
Affiliation(s)
- Bo You
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| | - Guanqun Han
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| | - Yujie Sun
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|