1
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Li M, Zhao Y, Yang Y, Zhang R, Wang Y, Teng Y, Su Z, Zhang J. High-Efficiency Photocatalytic Oxidation of Benzyl Alcohol by NH 2-UiO-66-(Indole-2,3-Dione)-Fe. Chem Asian J 2024; 19:e202400346. [PMID: 38878296 DOI: 10.1002/asia.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Indexed: 08/06/2024]
Abstract
The photocatalytic oxidation of biomass-derived benzyl alcohol provides a promising way for the synthesis of benzoic acid, which is an important intermediate with wide applications. To improve the efficiency of photocatalytic benzyl alcohol oxidation to benzoic acid is of great interest. In this work, we propose the utilization of NH2-UiO-66-ID-Fe catalyst for photocatalytic oxidation of benzyl alcohol to benzoic acid, where NH2-UiO-66 is a typically used metal-organic framework, ID is indole-2,3-dione (ID) that has biocompatibility, light absorption property and can be covalently combined with amino-functionalized substances. The NH2-UiO-66-ID-Fe catalyst exhibits improved light absorption and photo-generated electron-hole separation ability compared with NH2-UiO-66. The photocatalytic performance of NH2-UiO-66-ID-Fe was examined for the oxidation of bio-based benzyl alcohol under mild conditions of air atmosphere, room temperature and no additive or additional oxidant involved. The results show that the conversion of benzyl alcohol and the selectivity to benzoic acid could both reach over 99 % in 6 h, and the generation rate of benzoic acid per gram of catalyst is 3.36 mmol g-1 h-1. The reaction mechanism was detected by radical trapping method and in situ electron paramagnetic resonance. This study presents an efficient and environmentally benign avenue for the synthesis of carboxylic acid compounds.
Collapse
Affiliation(s)
- Meiling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjie Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunan Teng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Li C, Gu S, Xiao Y, Lin X, Lin X, Zhao X, Nan J, Xiao X. Single-crystal oxygen-rich bismuth oxybromide nanosheets with highly exposed defective {10-1} facets for the selective oxidation of toluene under blue LED irradiation. J Colloid Interface Sci 2024; 668:426-436. [PMID: 38688181 DOI: 10.1016/j.jcis.2024.04.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Reactive radicals are crucial for activating inert and low-polarity C(sp3)-H bonds for the fabrication of high value-added products. Herein, novel single-crystal oxygen-rich bismuth oxybromide nanosheets (Bi4O5Br2 SCNs) with more than 85 % {10-1} facets exposure and oxygen defects were synthesized via a facile solvothermal route. The Bi4O5Br2 SCNs demonstrated excellent photocatalytic performance in the selective oxidation of toluene under blue light. The yield of benzaldehyde was 1876.66 μmol g-1 h-1, with a selectivity of approximately 90 %. Compared to that of polycrystalline Bi4O5Br2 nanosheets (Bi4O5Br2 PCNs), the activity of Bi4O5Br2 SCNs exhibit a 21-fold increase. Experimental studies and density functional theory (DFT) calculations have demonstrated that the defect Bi4O5Br2 (10-1) facets exhibits exceptional adsorption properties for O2 molecules. In addition, the single-crystal structure in the presence of surface defects significantly increases the separation and transport of photogenerated carriers, resulting in the effective activation of adsorbed O2 into superoxide radicals (•O2-). Subsequently, the positively charged phenylmethyl H is readily linked to the negatively charged superoxide radical anion, thereby activating the CH bond. This study offers a fresh perspective and valuable insights into the development of efficient molecular oxygen-activated photocatalysts and their application in the selective catalytic conversion of aromatic C(sp3)-H bonds.
Collapse
Affiliation(s)
- Chenyu Li
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Songting Gu
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yingxi Xiao
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xiaotong Lin
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xinyan Lin
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xiaoyang Zhao
- Department of Environmental Engineering, Henan Polytechnic Institute, Nanyang 473009, PR China
| | - Junmin Nan
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Xin Xiao
- School of Chemistry, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Hou C, Cheng D, Zou S, Fu T, Wang J, Wang Y. A photo-active hollow covalent organic frameworks microcapsule imparts highly efficient photoredox catalysis of gaseous volatile organic compounds. J Colloid Interface Sci 2024; 662:903-913. [PMID: 38382374 DOI: 10.1016/j.jcis.2024.02.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Covalent organic frameworks (COFs) with controlled porosity, high crystallinity, diverse designability and excellent stability are very attractive in metal-free heterogeneous photocatalysis of volatile organic compounds (VOCs) degradation. In order to construct the high optimal performance COFs under feasible and universal conditions, herein, the visible light-driven hollow COFTAPB-PDA (H-COFTAPB-PDA) microcapsule was designed by a facile dual-ligand regulated sacrificial template method. The H-COFTAPB-PDA microcapsule possesses improved surface area, high crystallinity, broad absorption range and high stability, which enables enhanced substrates and visible light adsorption, photogenerated electrons-holes separation and transfer, and facilitate the generation of reactive radicals. Importantly, it was found to be a highly efficient photocatalyst for toluene degradation under visible-light irradiation compared with the solid COFTAPB-PDA, and the degradation efficiency of toluene reached 91.8 % within 180 min with the conversion rate of CO2 was 68.9 %. Additionally, the H-COFTAPB-PDA presented good recyclability and long-term stability after multiple photocatalytic reuses. Furthermore, the active sites of H-COFTAPB-PDA in photocatalytic degradation of toluene was proposed by XPS and DFT calculations, and the degradation pathway and mechanism was proposed and analyzed. The result presented great prospect of morphologic design of hollow COFs in metal-free heterogeneous photocatalysis for VOCs degradation.
Collapse
Affiliation(s)
- Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Daozhen Cheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Shengyang Zou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Tao Fu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianzhi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yang Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| |
Collapse
|
5
|
Li S, Huber N, Huang W, Wei W, Landfester K, Ferguson CTJ, Zhao Y, Zhang KAI. Triazine Frameworks for the Photocatalytic Selective Oxidation of Toluene. Angew Chem Int Ed Engl 2024; 63:e202400101. [PMID: 38407424 DOI: 10.1002/anie.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Investigations into the selective oxidation of inert sp3 C-H bonds using polymer photocatalysts under mild conditions have been limited. Additionally, the structure-activity relationship of photocatalysts often remains insufficiently explored. Here, a series of thiophene-based covalent triazine frameworks (CTFs) are used for the efficient and selective oxidation of hydrocarbons to aldehydes or ketones under ambient aerobic conditions. Spectroscopic methods conducted in situ and density functional theory (DFT) calculations revealed that the sulfur atoms within the thiophene units play a pivotal role as oxidation sites due to the generation of photogenerated holes. The effect of photogenerated holes on photocatalytic toluene oxidation was investigated by varying the length of the spacer in a CTF donor-acceptor based photocatalyst. Furthermore, the manipulation of reactive oxygen species was employed to enhance selectivity by weakening the peroxidative capacity. As an illustrative example, this study successfully demonstrated the synthesis of a precursor of the neurological drug AMG-579 using a photocatalytic protocol.
Collapse
Affiliation(s)
- Sizhe Li
- Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
| | - Niklas Huber
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Wei Huang
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Wenxin Wei
- Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
| | | | | | - Yan Zhao
- Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| |
Collapse
|
6
|
Hu Y, Zhang S, Zhang Z, Zhou H, Li B, Sun Z, Hu X, Yang W, Li X, Wang Y, Liu S, Wang D, Lin J, Chen W, Wang S. Enhancing Photocatalytic-Transfer Semi-Hydrogenation of Alkynes Over Pd/C 3 N 4 Through Dual Regulation of Nitrogen Defects and the Mott-Schottky Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304130. [PMID: 37403556 DOI: 10.1002/adma.202304130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The selective hydrogenation of alkynes is an important reaction; however, the catalytic activity and selectivity in this reaction are generally conflicting. In this study, ultrafine Pd nanoparticles (NPs) loaded on a graphite-like C3 N4 structure with nitrogen defects (Pd/DCN) are synthesized. The resulting Pd/DCN exhibits excellent photocatalytic performance in the transfer hydrogenation of alkynes with ammonia borane. The reaction rate and selectivity of Pd/DCN are superior to those of Pd/BCN (bulk C3 N4 without nitrogen defects) under visible-light irradiation. The characterization results and density functional theory calculations show that the Mott-Schottky effect in Pd/DCN can change the electronic density of the Pd NPs, and thus enhances the hydrogenation selectivity toward phenylacetylene. After 1 h, the hydrogenation selectivity of Pd/DCN reaches 95%, surpassing that of Pd/BCN (83%). Meanwhile, nitrogen defects in the supports improve the visible-light response and accelerate the transfer and separation of photogenerated charges to enhance the catalytic activity of Pd/DCN. Therefore, Pd/DCN exhibits higher efficiency under visible light, with a turnover frequency (TOF) of 2002 min-1 . This TOF is five times that of Pd/DCN under dark conditions and 1.5 times that of Pd/BCN. This study provides new insights into the rational design of high-performance photocatalytic transfer hydrogenation catalysts.
Collapse
Affiliation(s)
- Yaning Hu
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shuo Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hexin Zhou
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Bing Li
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuemin Hu
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Wenxiu Yang
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoyan Li
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yu Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Shuhu Liu
- Beijing Synchrontron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering, Ningbo, 315201, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuo Wang
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
7
|
Yi J, Ke S, Lu S, Weng B, Shen L, Yang X, Xue H, Yang MQ, Qian Q. High-efficiency visible-light-driven oxidation of primary C-H bonds in toluene over a CsPbBr 3 perovskite supported by hierarchical TiO 2 nanoflakes. NANOSCALE 2023; 15:14584-14594. [PMID: 37610823 DOI: 10.1039/d3nr03282e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Photocatalytic oxidation of toluene to valuable fine chemicals is of great significance, yet faces challenges in the development of advanced catalysts with both high activity and selectivity for the activation of inert C(sp3)-H bonds. Halide perovskites with remarkable optoelectronic properties have shown to be prospective photoactive materials, but the bulky structure with a small surface area and severe recombination of photogenerated electron-hole pairs are obstacles to application. Here, we fabricate a hierarchical nanoflower-shaped CsPbBr3/TiO2 heterojunction by assembling CsPbBr3 nanoparticles on 2D TiO2 nanoflake subunits. The design significantly downsizes the size of CsPbBr3 from micrometers to nanometers, and forms a type II heterojunction with intimate interfacial contact between CsPbBr3 and TiO2 nanoflakes, thereby accelerating the separation and transfer of photogenerated charges. Moreover, the formed hierarchical heterojunction increaseslight absorption by refraction and scattering, offers a large surface area and enhances the adsorption of toluene molecules. Consequently, the optimized CsPbBr3/TiO2 exhibits a high performance (10 200 μmol g-1 h-1) for photocatalytic toluene oxidation with high selectivity (85%) for benzaldehyde generation under visible light. The photoactivity is about 20 times higher than that of blank CsPbBr3, and is among the best photocatalytic performances reported for selective oxidation of toluene under visible light irradiation.
Collapse
Affiliation(s)
- Jiayu Yi
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Sunzai Ke
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Suwei Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Lijuan Shen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Xuhui Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Hun Xue
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| |
Collapse
|
8
|
Li Y, Chen S, Duan W, Nan Y, Ding D, Xiao G. Research progress of vanadium pentoxide photocatalytic materials. RSC Adv 2023; 13:22945-22957. [PMID: 37529363 PMCID: PMC10387825 DOI: 10.1039/d3ra03648k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 08/03/2023] Open
Abstract
Photocatalytic reactions convert solar energy into chemical energy through a clean and green reaction process. Photocatalytic technology based on semiconductor materials provides us with a new idea in energy utilization and environmental governance. It was found that vanadium pentoxide (V2O5) has a narrow band gap, wide response range in the visible region, high oxygen density in the V2O5 lattice, high oxidation state of V5+, small energy requirement, and superior catalytic activity in partial oxidation. Therefore, the utilization rate of sunlight and photocatalytic oxidation can be greatly improved using V2O5 materials. However, the narrow band gap of V2O5 also makes it easier for the photogenerated electrons and holes to recombine in the excited state, and the stored energy is instantly consumed by carrier recombination. Therefore, how to promote the carrier separation of V2O5 and improve the photocatalytic efficiency are the key problems to be solved. Herein, several methods to improve the photocatalytic performance of V2O5 are reviewed, including metallic ion doping, non-metallic ion doping, semiconductor recombination, and noble metal deposition. Finally, it is suggested that future research directions should focus on a variety of modification methods simultaneously to promote photocatalytic efficiency and lower the cost, which will enable V2O5 to have a broad development prospect in the field of photocatalysis.
Collapse
Affiliation(s)
- Yanlin Li
- School of Materials Science and Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| | - Shenghua Chen
- School of Materials Science and Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| | - Wenyuan Duan
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University Xi'an 710123 China
| | - Yanli Nan
- School of Materials Science and Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| | - Donghai Ding
- School of Materials Science and Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| | - Guoqing Xiao
- School of Materials Science and Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| |
Collapse
|
9
|
Liu Y, Liu C, Zhou H, Qin G, Li S. Steering photocatalytic selectivity of Au/γ-Al2O3 for benzyl alcohol oxidation via direct photoexcitation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Zhang X, Zhao Z, Zhao S, Xiang S, Gao W, Wang L, Xu J, Wang Y. The promoting effect of alkali metal and H2O on Mn-MOF derivatives for toluene oxidation: A combined experimental and theoretical investigation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Ding YF, Pan LY, Wan Q, Yin SF, Cai MQ. Recognition of Water-Induced Double-Edged Sword Effects in Photocatalytic Selective Oxidation of Toluene on Titanium Dioxide Clusters with Density Functional Theory Calculations. J Org Chem 2022; 88:6304-6312. [PMID: 36001795 DOI: 10.1021/acs.joc.2c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Recently, water promotion effects in the selective oxidation of benzyl alcohol to benzaldehyde have been experimentally recognized and identified. However, the effects of water on the photocatalytic selective oxidation of toluene into benzaldehyde remain elusive. In this work, the Ti3O9H6 clusters in different solvents (water and toluene solvent) are used to study the water-induced effects in photocatalytic oxidation reactions in kinetics and thermodynamics using density functional theory (DFT) calculations. In addition, the influences of the OH groups on catalysts (Ti-OH bonds) from photocatalytic water splitting are also considered. The results clearly demonstrate the water-induced double-edged sword effects in the photocatalytic selective oxidation of toluene. We expect that our work can not only shed light on the mechanisms of photocatalytic selective oxidation of toluene into benzaldehyde and other activation reactions of sp3 C-H bonds but also design and modulate highly efficient photocatalysts.
Collapse
Affiliation(s)
- Yu-Feng Ding
- School of Physics and Electronics Science, Hunan University, Changsha 410082, P.R. China
| | - Ling-Yu Pan
- School of Physics and Electronics Science, Hunan University, Changsha 410082, P.R. China
| | - Qiang Wan
- School of Physics and Electronics Science, Hunan University, Changsha 410082, P.R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, Hunan University, Changsha 410082, Hunan Province, P.R. China
| | - Meng-Qiu Cai
- School of Physics and Electronics Science, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
12
|
Baruah MJ, Bora TJ, Gogoi G, Hoque N, Gour NK, Bhargava SK, Guha AK, Nath JK, Das B, Bania KK. Chirally modified cobalt-vanadate grafted on battery waste derived layered reduced graphene oxide for enantioselective photooxidation of 2-naphthol: Asymmetric induction through non-covalent interaction. J Colloid Interface Sci 2022; 608:1526-1542. [PMID: 34742071 DOI: 10.1016/j.jcis.2021.10.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
The cobalt oxide-vanadium oxide (Co3O4-V2O5) combined with reduced graphene oxide (rGO) having band gap of ∼ 3.3 eV appeared as a suitable photocatalyst for selective oxidation of 2-naphthol to BINOL. C2-symmetric BINOL was achieved with good yield using hydrogen peroxide as the oxidant under UV-light irradiation. The same catalyst was chirally modified with cinchonidine and a newly synthesized chiral Schiff base ligand having a sigma-hole center. The strong interaction of the chiral modifiers with the cobalt-vanadium oxide was truly evident from various spectroscopic studies and DFT calculations. The chirally modified mixed metal oxide transformed the oxidative CC coupling reaction with high enantioselectivity. High enantiomeric excess upto 92 % of R-BINOL was obtained in acetonitrile solvent and hydrogen peroxide as the oxidant. A significant achievement was the formation of S-BINOL in the case of the cinchonidine modified catalyst and R-BINOL with the Schiff base ligand anchored chiral catalyst. The UV-light induced catalytic reaction was found to involve hydroxyl radical as the active reactive species. The spin trapping ESR and fluorescence experiment provided relevant evidence for the formation of such species through photodecomposition of hydrogen peroxide on the catalyst surface. The chiral induction to the resultant product was found to induce through supramolecular interaction like OH…π, H…Br interaction. The presence of sigma hole center was believed to play significant role in naphtholate ion recognition during the catalytic cycle.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Tonmoy J Bora
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Gautam Gogoi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Nazimul Hoque
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Nand K Gour
- Department of Chemical Sciences, Tezpur University, Assam 784028, India
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Ankur K Guha
- Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Jayanta K Nath
- Department of Chemistry, S. B. Deorah College, Bora Service, Ulubari, Guwahati 781007, Assam, India
| | - Biraj Das
- Department of Chemistry, Dakha Devi Rasiwasia College, Dibrugarh, Assam 786184, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| |
Collapse
|
13
|
Jiao J, Yan X, Xing S, Zhang T, Han Q. Design of a Polyoxometalate-Based Metal-Organic Framework for Photocatalytic C(sp 3)-H Oxidation of Toluene. Inorg Chem 2022; 61:2421-2427. [PMID: 35076213 DOI: 10.1021/acs.inorgchem.1c03150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A powerful and promising route for developing novel photocatalysts for light-driven toluene oxidation in water under mild conditions is presented. Herein, a novel polyoxometalate-based metal-organic framework (POMOF), {Co4W22-DPNDI}, is prepared by incorporating the unusual Co4-sandwiched POM anion [Co4(μ-OH)2(SiW11O39)2]10- ({Co4W22}) and the photoactive organic bridging link N,N'-bis(4-pyridylmethyl)naphthalene diimide (DPNDI) into a framework. {Co4W22} is a good candidate for photocatalytic water oxidation. DPNDI is easily excited to form the radical species DPNDI* in the presence of an electron donor, which is beneficial for activation of the inert O2. Anion···π interactions and covalent bonds between {Co4W22} and DPNDI facilitate electron-hole separation and electron transfer. {Co4W22-DPNDI} displays high catalytic activity for the activation of the C(sp3)-H bond of toluene using light as a driving force and inexpensive water as an oxygen source under mild conditions. In particular, the yield and selectivity are improved by replacing oxygen with water, which may be ascribed to the release of protons during the water oxidation process that facilitate the generation of •OH.
Collapse
Affiliation(s)
- Jiachen Jiao
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiaomei Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Songzhu Xing
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ting Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
14
|
Preeyanghaa M, Vinesh V, Neppolian B. Construction of S-scheme 1D/2D rod-like g-C 3N 4/V 2O 5 heterostructure with enhanced sonophotocatalytic degradation for Tetracycline antibiotics. CHEMOSPHERE 2022; 287:132380. [PMID: 34600002 DOI: 10.1016/j.chemosphere.2021.132380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutically active compounds are an emerging water contaminant that resists conventional wastewater treatments. Herein, the sonophotocatalytic degradation of Tetracycline (TC) antibiotics as a model contaminant was carried out over a rod-like g-C3N4/V2O5 (RCN-VO) nanocomposite. RCN-VO nanocomposite was synthesized via ultrasound-assisted thermal polycondensation method. The results showed that the RCN-VO nanocomposite could completely remove the TC in water within 60 min under simultaneous irradiation of visible light and ultrasound. Moreover, the sonophotocatalytic TC degradation (a synergy index of ∼1.5) was superior to the sum of individual sonocatalytic and photocatalytic degradation using RCN-VO nanocomposite. Besides, the enhanced sonophotocatalytic activity of RCN-VO can be attributed to the 1D/2D nanostructure and the S-scheme heterojunction formation between RCN and VO where the electrons migrated from RCN to VO across the RCN-VO interface. Under irradiation, the built-in electric field, band edge bending and Coulomb interaction can synergistically facilitate the unavailing electron-hole pair recombination. Thereby, the cumulative electron in RCN and holes in VO can actively take part in the redox reaction which generates free radicals and attack the TC molecules. This study provides insight into a novel S-Scheme heterojunction photocatalyst for the removal of various refractory contaminants via sonophotocatalytic degradation.
Collapse
Affiliation(s)
- Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vasudevan Vinesh
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Bernaurdshaw Neppolian
- Department of Physics and Nanotechnology, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| |
Collapse
|
15
|
Liu J, Xin Y, Bai Y, She W, Wang J, Li G. A self-assembly solvothermal synthesis of SiMoV n@[Cu 6O(TZI) 3(H 2O) 6] 4· nH 2O for the efficient selective oxidation of various alkylbenzenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj00308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of SiMoVn@rht-MOF-1 were isolated via a one-pot self-assembly solvothermal synthesis, exhibiting effective catalytic activity and excellent recyclability.
Collapse
Affiliation(s)
- Jiabin Liu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yuxiang Xin
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yiyang Bai
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wei She
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Jing Wang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Gaungming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| |
Collapse
|
16
|
Li X, Deng Y, Zhao Z, Liu Y, Zhang C, Fu Z. A green catalyst-free concomitant air oxidation of DMSO and cumene to form methylsulfonylmethane (dimethylsulfone). J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1982943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaolong Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Youer Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Zhiying Zhao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Yachun Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Chao Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Zaihui Fu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| |
Collapse
|
17
|
Li Y, Pan C, Wang G, Leng Y, Jiang P, Dong Y, Zhu Y. Improving the photocatalytic activity of benzyl alcohol oxidation by Z-scheme SnS/g-C 3N 4. NEW J CHEM 2021. [DOI: 10.1039/d1nj00923k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of the Z-scheme heterojunction between SnS and g-C3N4 facilitates the separation of electrons and holes, thereby increasing the conversion of benzyl alcohol.
Collapse
Affiliation(s)
- Yan Li
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Chengsi Pan
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Guangli Wang
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Yan Leng
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Pingping Jiang
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Yuming Dong
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Yongfa Zhu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|