1
|
Wang P, Rong J, Fan QG, Li X, Wang L, Zhang Y, Chong R, Chang Z. Hematite decorated with Ni metal-organic framework for sensitive photoelectrochemical sensing of glucose. Talanta 2025; 289:127758. [PMID: 39993365 DOI: 10.1016/j.talanta.2025.127758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/12/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Photoelectrochemical (PEC) sensor is a simple and practical detection device with the advantages of low background signals and high sensitivity. In this work, a simple two-step post-calcination method was adopted to prepare α-Fe2O3 photoelectrode, followed by a Ni metal-organic framework (Ni-MOF) was deposited via a one-step solvothermal process, to obtain Ni-MOF/α-Fe2O3 photoelectrode, which was finally used for glucose sensing. The linear sweep voltammetry for glucose oxidation over Ni-MOF/α-Fe2O3 displayed a 0.24 V negative shift of initial potential and a significant photocurrent increase compared to bare α-Fe2O3, suggesting an accelerated glucose oxidation kinetics caused by Ni-MOF. (Photo)electrochemical characterizations revealed Ni-MOF could not only promote the charge separation but also provide active sites for glucose oxidation. As a result, Ni-MOF/α-Fe2O3 demonstrated a superior sensing performance toward glucose in the concentration range of 0.002-1.6 mM at 0 V vs. SCE. Specially, when the concentration of glucose was 1 mM, the photocurrent of Ni-MOF/α-Fe2O3 was increased by 18-fold compared to α-Fe2O3. The Ni-MOF/α-Fe2O3 sensors also offered good selectivity, excellent reproducibility and remarkable long-term stability. Especially, the present Ni-MOF/α-Fe2O3 based PEC method exhibited comparable accuracy to high performance liquid chromatography (HPLC) in real sample analysis, such as bread and glucose solution. The results of this work would provide useful information for developing new semiconductor PEC glucose sensors.
Collapse
Affiliation(s)
- Penglong Wang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Jiayue Rong
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Luoyang Mengjin Advanced Manufacturing Industry Developing Zone, Luoyang, 471000, China
| | - Qin-Ge Fan
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaohui Li
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yongna Zhang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Ruifeng Chong
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan University, Kaifeng, 475004, China.
| | - Zhixian Chang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Peng K, Wu Z, Liu X, Yang J, Guan Z. Suppressing Se Vacancies in Sb 2Se 3 Photocathode by In Situ Annealing with Moderate Se Vapor Pressure for Efficient Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406035. [PMID: 39449205 DOI: 10.1002/smll.202406035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Sb2Se3 emerges as a promising material for solar energy conversion devices. Unfortunately, the common deep-level defect VSe (selenium vacancy) in Sb2Se3 results in a low solar conversion efficiency. The post selenization process has been widely adopted for suppressing VSe. However, the effect of selenization on suppressing VSe is often compromised and even more VSe are induced due to defect-correlation. Herein, high-quality Sb2Se3 films are prepared using an unconventional selenization process, with precisely regulating in situ annealing Se vapor pressure. It is found that moderate Se vapor pressure annealing can efficiently suppress VSe by overcoming defect-correlation, as well as promotes grain growth and forms a better heterojunction band alignment. Consequently, the Sb2Se3 photocathode shows a high-level photocurrent of 19.5 mA cm-2 at 0 VRHE, an onset potential of 0.40 VRHE and a half-cell solar-to-hydrogen conversion efficiency of 1.9%, owing to the inhibited charge recombination, excellent charge transport and interface charge extraction. This work provides a significant insight to suppress deep-level defect VSe by adjusting Se vapor pressure for efficient Sb2Se3 photocathode.
Collapse
Affiliation(s)
- Kunyuan Peng
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Zekai Wu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Xinsheng Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan, 475004, China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Zhongjie Guan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
3
|
Mohd Raub AA, Bahru R, Mohd Nashruddin SNA, Yunas J. Advances of nanostructured metal oxide as photoanode in photoelectrochemical (PEC) water splitting application. Heliyon 2024; 10:e39079. [PMID: 39640820 PMCID: PMC11620101 DOI: 10.1016/j.heliyon.2024.e39079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Water splitting via photoelectrochemical (PEC) cells offers a promising route to generate hydrogen fuel using solar energy. Nanostructured metal oxides have emerged as leading candidates as photoelectrodes in photocatalytic H2 production due to their photo-electrochemical stability, large surface area, earth abundance, and suitable band gap energies. This review reports the recent advancements of nanostructured metal oxide as photoanodes in photoelectrochemical (PEC) water-splitting applications. This review focuses on recent advancements in metal oxide photoanodes, their synthesis methods, modification strategies, and performance in PEC water splitting. Critical materials such as TiO2, Fe2O3, WO3, and BiVO4 are discussed in detail, highlighting their strengths, limitations, and future research directions to enhance efficiency and stability. This review will give clear insight into the trends and the critical factors for efficient metal oxide photoelectrode to improve the photocatalytic effectiveness in generating hydrogen fuel as an alternative energy source in the future. Finally, this study emphasises the potential of incorporating machine learning methods into experimental workflows to accelerate the optimisation of electrocatalysis performance, representing a significant advancement in developing efficient and sustainable hydrogen production technologies.
Collapse
Affiliation(s)
- Aini Ayunni Mohd Raub
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Raihana Bahru
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Nur Ashakirin Mohd Nashruddin
- Institute of Informatics and Computing in Energy (IICE), Department of Computing College of Computing & Informatics, University of Tenaga Nasional, Malaysia
| | - Jumril Yunas
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| |
Collapse
|
4
|
Dong G, Xie F, Kou F, Chen T, Xiao C, Du S, Liang J, Lou C, Zhuang J. Enhancing photoelectrochemical performance and stability of Ti-doped hematite photoanode via pentanuclear Co-based MOF modification. Front Chem 2024; 12:1454524. [PMID: 39281034 PMCID: PMC11392840 DOI: 10.3389/fchem.2024.1454524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Modifying photoanodes with metal-organic frameworks (MOFs) as oxygen evolution reaction (OER) cocatalysts has emerged as a promising approach to enhance the efficiency of photoelectrochemical (PEC) water oxidation. However, designing OER-active MOFs with both high photo- and electrochemical stability remains a challenge, limiting the advancement of this research. Herein, we present a facile method to fabricate a MOF-modified photoanode by directly loading a pentanuclear Co-based MOF (Co-MOF) onto the surface of a Ti-doped hematite photoanode (Ti:Fe2O3). The resulting Co-MOF/Ti:Fe2O3 modified photoanode exhibits an enhanced photocurrent density of 1.80 mA∙cm-2 at 1.23 V, surpassing those of the Ti:Fe2O3 (1.53 mA∙cm-2) and bare Fe2O3 (0.59 mA∙cm-2) counterparts. Additionally, significant enhancements in charge injection and separation efficiencies, applied bias photon-to-current efficiency (ABPE), incident photon to current conversion efficiency (IPCE), and donor density (Nd) were observed. Notably, a minimal photocurrent decay of only 5% over 10 h demonstrates the extraordinary stability of the Co-MOF/Ti:Fe2O3 photoanode. This work highlights the efficacy of polynuclear Co-based MOFs as OER cocatalysts in designing efficient and stable photoanodes for PEC water splitting applications.
Collapse
Affiliation(s)
- Guofa Dong
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Fengyan Xie
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Fangxia Kou
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Tingting Chen
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Caihong Xiao
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Shaowu Du
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, China
| | - Jiaqi Liang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenfang Lou
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiandong Zhuang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Xiao J, Jia X, Du B, Zhong Z, Li C, Sun J, Nie Z, Zhang X, Wang B. Balancing charge recombination and hole transfer rates in hematite photoanodes by modulating the Co 2+/Fe 3+ sites in the OER cocatalyst. J Colloid Interface Sci 2024; 654:915-924. [PMID: 37898075 DOI: 10.1016/j.jcis.2023.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
This work investigates the roles of Co and Fe sites in a composite cocatalyst on the performance of hematite photoanodes for photoelectrochemical (PEC) water splitting. The cobalt/iron-based composite (Co-Fe-O) cocatalyst, consisting of adjustable Co2+/Fe3+ratios, was synthesized using a one-step hydrothermal method. It reveals that Co2+ sites with a robust capacity for low-bias hole capture, which is insignificantly affected by partial substitution by Fe3+, decelerate the charge recombination process. However, it also leads to a slower charge transfer, with slower oxygen-evolution kinetics on Co sites than on Fe sites. Consequently, the modulation of the Co2+/Fe3+ ratio facilitates the redistribution of surface strap states, striking a delicate balance between charge recombination and charge transfer rates. This optimization led to the highest low-bias photocurrent density of 1.6 mA cm-2 at 1.0 V vs. RHE (a 2.4-fold increase) for the cocatalyst with a Co2+/Fe3+ ratio of 1:2 (CoFe2O4 nanoparticles). Additionally, the cocatalyst with a Co2+/Fe3+ ratio of 1:4 (mixture of CoFe2O4 and Fe2O3 nanoparticles, demonstrated an impressive high-bias photocurrent density of 3.8 mA cm-2 at 1.6 V vs. RHE (a 2.3-fold increase). This study emphasizes the promising potential of modulating active sites within a cocatalyst to achieve efficient PEC water splitting on a hematite-based photoanode.
Collapse
Affiliation(s)
- Jingran Xiao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Xin Jia
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Borui Du
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, PR China
| | - Ziqi Zhong
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, PR China
| | - Chunxiao Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Jialin Sun
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Zunyan Nie
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xuekai Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
6
|
Guan Y, Gu X, Deng Q, Wang S, Li Z, Yan S, Zou Z. Synergy Effect of the Enhanced Local Electric Field and Built-In Electric Field of CoS/Mo-Doped BiVO 4 for Photoelectrochemical Water Oxidation. Inorg Chem 2023; 62:16919-16931. [PMID: 37792966 DOI: 10.1021/acs.inorgchem.3c02622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Bismuth vanadate is a promising material for photoelectrochemical water oxidation. However, it suffers from a low quantum efficiency, poor stability, and slow water oxidation kinetics. Here, we developed a novel photoanode of CoS/Mo-BiVO4 with excellent photoelectrochemical water oxidation performance. It achieved a photocurrent density of 4.5 mA cm-2 at 1.23 V versus the reversible hydrogen electrode, ∼4 times that of BiVO4. The CoS/Mo-BiVO4 photoanode also exhibited good stability, and the photocurrent density generated by the CoS/Mo-BiVO4 photoanode did not significantly decrease after light irradiation for 2 h. Upon replacement of part of the V with Mo doping in BiVO4, the local electric field around the Mo-O bond was enhanced, thus promoting carrier separation in BiVO4. The CoS was deposited on the surface of Mo-BiVO4, forming a built-in electric field at the interface. Under the action of the bias electric field and the built-in electric field, the carriers of CoS/Mo-BiVO4 were efficiently separated in the direction of the inverse type II heterojunction. In addition, CoS improved the light absorption and charge injection efficiency of the CoS/Mo-BiVO4 photoanode.
Collapse
Affiliation(s)
- Yuan Guan
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xinyi Gu
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Qiankun Deng
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shaomang Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
7
|
Lv J, Wu M, Fan M, Zhang Q, Chang Z, Wang X, Zhou Q, Wang L, Chong R, Zhang L. Insights into the multirole CoAl layered double hydroxide on boosting photoelectrochemical activity of hematite: Application to hydrogen peroxide sensing. Talanta 2023; 262:124681. [PMID: 37224575 DOI: 10.1016/j.talanta.2023.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
As an important compound in many industrial and biological processes, hydrogen peroxide (H2O2) would cause harmfulness to human health at high concentration level. It thus is urgent to develop highly sensitive and selective sensors for practical H2O2 detection in the fields of water monitoring, food quality control, and so on. In this work, CoAl layered double hydroxide ultrathin nanosheets decorated hematite (CoAl-LDH/α-Fe2O3) photoelectrode was successfully fabricated by a facile hydrothermal process. CoAl-LDH/α-Fe2O3 displays the relatively wide linear range from 1 to 2000 μM with a high sensitivity of 132.0 μA mM-1 cm-2 and a low detection limit of 0.04 μM (S/N ≥ 3) for PEC detection of H2O2, which is superior to other similar α-Fe2O3-based sensors in literatures. The (photo)electrochemical characterizations, such as electrochemical impedance spectroscopy, Mott-Schottky plot, cyclic voltammetry, open circuit potential and intensity modulated photocurrent spectroscopy, were used to investigate the roles of CoAl-LDH on the improved PEC response of α-Fe2O3 toward H2O2. It revealed that, CoAl-LDH could not only passivate the surface states and enlarge the band bending of α-Fe2O3, but also could act as trapping centers for holes and followed by as active sites for H2O2 oxidation, thus facilitated the charge separation and transfer. The strategy for boosting PEC response would be help for the further development of semiconductor-based PEC sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Mingwei Wu
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Qinqin Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, 475000, China
| | - Zhixian Chang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Xinshou Wang
- College of Science, Henan Kaifeng College of Science Technology and Communication, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ruifeng Chong
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Ling Zhang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
8
|
Chong R, Wang Z, Fan M, Wang L, Chang Z, Zhang L. Hematite decorated with nanodot-like cobalt (oxy)hydroxides for boosted photoelectrochemical water oxidation. J Colloid Interface Sci 2023; 629:217-226. [PMID: 36152578 DOI: 10.1016/j.jcis.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022]
Abstract
Photoelectrochemical (PEC) water splitting has been considered as an alternative process to produce green hydrogen. However, the energy conversion efficiency of PEC systems was still limited by the inefficient photoanode. Cocatalysts decoration is regarded as an efficient strategy for improving PEC performance of photoanode. In this work, nanodot-like cobalt (oxy)hydroxides was rationally decorated on hematite to fabricate CoOOH/Fe2O3 photoanode. The resulted CoOOH/Fe2O3 exhibits a high photocurrent density of 1.92 mA cm-2 at 1.23 V vs. RHE, which is 2.6 times than that of bare Fe2O3. In addition, the onset potential displays a cathodic shift of ca. 110 mV, indicating that CoOOH can efficiently accelerate water oxidation kinetics over Fe2O3. The comprehensive PEC and electrochemical characterizations reveal that CoOOH could not only provide abundant accessible Co active sites for water oxidation, but also could passivate the surface states of Fe2O3, thus increase the carrier density and decrease the interfacial resistance. As a result, the PEC water oxidation performance over Fe2O3 was significantly boosted. This work supports that the roles of CoOOH cocatalyst is generic and such CoOOH could be used for other semiconductor-based photoanodes for outstanding PEC water splitting performance.
Collapse
Affiliation(s)
- Ruifeng Chong
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhenzhen Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Ming Fan
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Li Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhixian Chang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Ling Zhang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
9
|
Chong R, Rong J, Fan M, Zheng L, Wang X, Zhou Q, Wang L, Chang Z, Zhang L. A sensitive photoelectrochemical sensor based on hematite decorated with nickel hydroxide for the detection of glucose. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Gao L, Wang P, Chai H, Li S, Jin J, Ma J. Expediting hole transfer via surface states in hematite-based composite photoanodes. NANOSCALE 2022; 14:17044-17052. [PMID: 36367117 DOI: 10.1039/d2nr04445e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Regarding the indirect hole transfer route in hematite-based photoelectrodes, the widely accepted viewpoint is that the FeIVO states act as a hole transfer medium, while other types of surface states act as recombination centers. Alternatively, it has rarely been reported that the recombining surface states may contribute to the charge transport in modified photoelectrodes. In this study, we employed CoCr layered double hydroxide (LDH)/Fe2O3 and CoCr LDH/Zr:Fe2O3 as research models to investigate the distinct charge transfer pathways in composite photoanodes. Different from the adverse role of surface states at ∼0.7 V versus the reversible hydrogen electrode (r-SS) in the bare hematite photoelectrodes (Fe2O3 or Zr:Fe2O3), the r-SS in the composite photoanodes (CoCr LDH/Fe2O3 or CoCr LDH/Zr:Fe2O3) served as a hole transfer station to induce high-valent Co cations, and the position of r-SS determined the onset potential of the composite photoelectrodes. Moreover, the FeIVO states still acted as active intermediates to transport numerous holes to the cocatalyst, which enhanced the charge utilization efficiency at 1.23 V versus the reversible hydrogen electrode (RHE) to a large extent. Besides, a noteworthy fact is that Zr doping increased the number of active FeIVO states, which significantly contributed to the enhancement in current density. However, it led to a delayed onset potential because of the positively shifted surface states (r-SS and FeIVO). Evidently, the different surface state distributions between Fe2O3 and Zr:Fe2O3 gave rise to anisotropic charge transfer and recombination behavior in the composite photoanodes. This study gives extensive insight into the hole transfer route in composite photoanodes and reveals the surface state-tuning effects of dopants and cocatalysts, which are significant for a deep understanding of the surface states and optimal design of composite photoanodes via surface state modulation.
Collapse
Affiliation(s)
- Lili Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Huan Chai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, 741001, P. R. China
| |
Collapse
|
11
|
Lv J, Fan M, Zhang L, Zhou Q, Wang L, Chang Z, Chong R. Photoelectrochemical sensing and mechanism investigation of hydrogen peroxide using a pristine hematite nanoarrays. Talanta 2022; 237:122894. [PMID: 34736710 DOI: 10.1016/j.talanta.2021.122894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 09/18/2021] [Indexed: 01/03/2023]
Abstract
In this paper, a facile hydrothermal combined with subsequent two-step post-calcination method was used to fabricate hematite (α-Fe2O3) nanoarrays on fluorine-doped SnO2 glass (FTO). The morphology, crystalline phase, optical property and surface chemical states of the fabricated α-Fe2O3 photoelectrode were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet visible spectroscopy and X-ray photoelectron spectroscopy correspondingly. The α-Fe2O3 photoelectrode exhibits excellent photoelectrochemical (PEC) response toward hydrogen peroxide (H2O2) in aqueous solutions, with a low detection limit of 20 μM (S/N = 3) and wide linear range (0.01-0.09, 0.3-4, and 6-16 mM). Additionally, the α-Fe2O3 photoelectrode shows satisfying reproducibility, stability, selectivity and good feasibility for real samples. Mechanism analysis indicates, comparing with H2O, H2O2 possesses much more fast reaction kinetics over α-Fe2O3 surface, thus the recombination of photogenerated charges are reduced, followed by much more photogenerated electrons are migrated to the counter electrode via external circuit. The insight on the enhanced photocurrent, which is corelative to the concentration of H2O2 in aqueous solution, will stimulate us to further optimize the surface structure of α-Fe2O3 to gain highly efficient α-Fe2O3 based sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ling Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhixian Chang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Ruifeng Chong
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Sun Z, Xu C, Li Z, Guo F, Liu B, Liu J, Zhou J, Yu Z, He X, Jiang D. Construction of organic–inorganic hybrid photoanodes with metal phthalocyanine complexes to improve photoelectrochemical water splitting performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj00762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modification of cobalt phthalocyanine complexes on BiVO4 could promote the charge carrier migration and accelerate the water oxidation kinetics, thus significantly enhancing the photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Zijun Sun
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Chengwen Xu
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Zhen Li
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Fei Guo
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Baosheng Liu
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Jinghua Liu
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Jin Zhou
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Zhiqiang Yu
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xiong He
- Research Centre of Materials Science and Engineering, School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Liuzhou key laboratory for new energy vehicle power lithium battery, Liuzhou 545006, China
| | - Daochuan Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|