1
|
Xie Y, Liang X, Li Z, Zhou B, Ning P, Sun X, Li K, Shimizu KI, Zeng XC, Wang F. Unraveling the Cause of Strong Metal-Support Interaction Formation: Disparities in Metal Nanoparticle Anchoring Mechanisms. Angew Chem Int Ed Engl 2025; 64:e202505820. [PMID: 40126092 DOI: 10.1002/anie.202505820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 03/25/2025]
Abstract
Strong metal-support interaction (SMSI) can be normally induced by the surface free energy differences between metal nanoparticles and supports. To gain deeper insights into the effect of SMSI on heterogeneous catalysis, we use prototype Pt, Pd/TiO2(anatase) systems to demonstrate different reverse water gas shift (RWGS) reaction activity changes, especially with increasing the metal nanoparticle (NP) loading. Our experiments show that the conventional surface-free-energy change law regarding the incremental NP size is no longer applicable to these systems due to the overlook of the change of support properties owing to the disparities of the metal anchoring mechanisms. Both experimental measurements and density functional theory (DFT) calculations show that Pt atoms strongly favor anchoring on the oxygen vacancies (Ov) over the OH-sites on the anatase TiO2 support. In contrast, Pd atoms lack such Ov-site preference compared to Pt atoms, thereby leaving higher content of Ov on the support than the Pt counterpart. Moreover, high density of residual Ov on the support can cause the Pd NPs to be in higher degree of contact with the support, either in NP-encapsulation state (experiment) or NP-spreading state (simulation). The enhanced CO2 conversion of Pt/TiO2A is attributed to the synergistic effect of Ov and hydrogen spillover from Pt sites.
Collapse
Affiliation(s)
- Yuxuan Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, No.727 South Jingming Road, Kunming, 650500, China
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Xiongyi Liang
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Chengdu Research Institute, City University of Hong Kong, Chengdu, 610200, China
| | - Zhao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, No.727 South Jingming Road, Kunming, 650500, China
| | - Biao Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, No.727 South Jingming Road, Kunming, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, No.727 South Jingming Road, Kunming, 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, No.727 South Jingming Road, Kunming, 650500, China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, No.727 South Jingming Road, Kunming, 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, No.727 South Jingming Road, Kunming, 650500, China
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, No.727 South Jingming Road, Kunming, 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, No.727 South Jingming Road, Kunming, 650500, China
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, No.727 South Jingming Road, Kunming, 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, No.727 South Jingming Road, Kunming, 650500, China
| |
Collapse
|
2
|
Li X, Cheng Q, Zhang Y, Liu Y, Pan Y, Zhao D, Xiong S, Liu W, Jiang X, Yan J, Duan X, Tian Y, Li X. Engineering Lattice Dislocations of TiO 2 Support of PdZn-ZnO Dual-Site Catalysts to Boost CO 2 Hydrogenation to Methanol. Angew Chem Int Ed Engl 2025; 64:e202424435. [PMID: 39790085 DOI: 10.1002/anie.202424435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Indexed: 01/12/2025]
Abstract
CO2 hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO2 catalyst by engineering lattice dislocation structures of TiO2 support. We discover that this modification orders irregularly arranged atoms in TiO2 to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases. It facilitates the transformation of metallic Pd into PdZn alloy, effectively suppressing CO production through inhibiting the reverse water-gas shift reaction mediated by the carboxylate pathway on Pd0 sites. Moreover, it enables the efficient transfer of hydrogen species via hydrogen spillover from PdZn alloy to ZnO for compensating the poor hydrogen dissociation ability of ZnO, thereby creating both more oxygen vacancies essential for CO2 activation and a hydroxyl-rich environment conducive to hydrogenation of intermediates. These collective modifications on PdZn-ZnO dual sites synergistically induce the propensity of the formate pathway for methanol synthesis. Consequently, compared to the unmodified catalyst, our as-designed catalyst increases methanol selectivity from 64.2 to 80.0 %, reduces CO selectivity from 35.0 to 19.8 %, and achieves an impressive methanol space-time yield of 9028.0 mgMeOH gPd+Zn -1 h-1 at a similar CO2 conversion (~8.0 %).
Collapse
Affiliation(s)
- Xiaoshen Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Qingpeng Cheng
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yingtian Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yunhao Liu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yu Pan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Dejian Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shaohui Xiong
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Liu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xueyang Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiayan Yan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiang Duan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ye Tian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xingang Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Wang Y, Dong M, Li S, Chen B, Liu H, Han B. The superiority of Pd 2+ in CO 2 hydrogenation to formic acid. Chem Sci 2024; 15:5525-5530. [PMID: 38638229 PMCID: PMC11023059 DOI: 10.1039/d3sc06925g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
The hydrogenation of CO2 to formic acid is an essential subject since formic acid is a promising hydrogen storage material and a valuable commodity chemical. In this study, we report for the first time the hydrogenation of CO2 to formic acid catalyzed by a Pd2+ catalyst, Pd-V/AC-air. The catalyst exhibited extraordinary catalytic activity toward the hydrogenation of CO2 to formic acid. The TON and TOF are up to 4790 and 2825 h-1, respectively, representing the top level among reported heterogeneous Pd catalysts. By combining a study of first-principles density functional theory with experimental results, the superiority of Pd2+ over Pd0 was confirmed. Furthermore, the presence of V modified the electronic state of Pd2+, thus promoting the reaction. This study reports the effect of metal valence and electronic state on the catalytic performance for the first time and provides a new prospect for the design of an efficient heterogeneous catalyst for the hydrogenation of CO2 to formic acid.
Collapse
Affiliation(s)
- Yanyan Wang
- National Narcotics Laboratory Beijing Regional Center Beijing 100164 P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science, University of Chinese Academy of Sciences Beijing 100049 China
| | - Shaopeng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science, University of Chinese Academy of Sciences Beijing 100049 China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Science, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Doustkhah E, Tsunoji N, Mine S, Toyao T, Shimizu KI, Morooka T, Masuda T, Assadi MHN, Ide Y. Feeble Single-Atom Pd Catalysts for H 2 Production from Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10251-10259. [PMID: 38241200 DOI: 10.1021/acsami.3c18709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Single-atom catalysts are thought to be the pinnacle of catalysis. However, for many reactions, their suitability has yet to be unequivocally proven. Here, we demonstrate why single Pd atoms (PdSA) are not catalytically ideal for generating H2 from formic acid as a H2 carrier. We loaded PdSA on three silica substrates, mesoporous silicas functionalized with thiol, amine, and dithiocarbamate functional groups. The Pd catalytic activity on amino-functionalized silica (SiO2-NH2/PdSA) was far higher than that of the thiol-based catalysts (SiO2-S-PdSA and SiO2-NHCS2-PdSA), while the single-atom stability of SiO2-NH2/PdSA against aggregation after the first catalytic cycle was the weakest. In this case, Pd aggregation boosted the reaction yield. Our experiments and calculations demonstrate that PdSA in SiO2-NH2/PdSA loosely binds with amine groups. This leads to a limited charge transfer from Pd to the amine groups and causes high aggregability and catalytic activity. According to the density functional calculations, the loose binding between Pd and N causes most of Pd's 4d electrons in amino-functionalized SiO2 to remain close to the Fermi level and labile for catalysis. However, PdSA chemically binds to the thiol group, resulting in strong hybridization between Pd and S, pulling Pd's 4d states deeper into the conduction band and away from the Fermi level. Consequently, fewer 4d electrons were available for catalysis.
Collapse
Affiliation(s)
- Esmail Doustkhah
- Research Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Koç University Tüpraş Energy Center (KUTEM), Department of Chemistry, Koç University, Istanbul 34450, Turkey
- Chemistry Department, Faculty of Engineering and Natural Sciences, Istinye University, Sarıyer, Istanbul 34396, Turkey
| | - Nao Tsunoji
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Shinya Mine
- National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Chemical Process Technology, 4-2-1 Nigatake, Miyagino, Sendai 983-8551, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Tetsuro Morooka
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Takuya Masuda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - M Hussein N Assadi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yusuke Ide
- Research Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
5
|
Zhang X, Li A, Tang H, Xu Y, Qin X, Jiang Z, Yu Q, Zhou W, Chen L, Wang M, Liu X, Ma D. Carbonate Hydrogenated to Formate in the Aqueous Phase over Nickel/TiO 2 Catalysts. Angew Chem Int Ed Engl 2023; 62:e202307061. [PMID: 37608769 DOI: 10.1002/anie.202307061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Carbonate hydrogenation to formate is a promising route to convert captured carbon dioxide into valuable chemicals, thus reducing carbon emissions and creating a revenue return. Developing inexpensive catalysts with high activity, selectivity, and stability remains challenging. We report a supported non-noble metal catalyst, Ni/TiO2 , with great selectivity over 96 % and excellent stability in catalyzing the conversion of carbonate into formate in aqueous solution. Ni0 and Ni2+ species are both observed in Ni/TiO2 catalysts, and the synergistic effect of these two Ni components leads to high activity and high selectivity of carbonate hydrogenation to formate.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Aowen Li
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyi Tang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yao Xu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qiaolin Yu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Chen
- School of Chemistry and Chemical, In situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xi Liu
- School of Chemistry and Chemical, In situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Liu H, Yuan C, Wu S, Sun C, Huang Z, Xu H, Shen W. Constructing an oxygen vacancy- and hydroxyl-rich TiO2-supported Pd catalyst with improved Pd dispersion and catalytic stability. J Chem Phys 2023; 159:124701. [PMID: 38127376 DOI: 10.1063/5.0171023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
Surface property modification of catalyst support is a straightforward approach to optimize the performance of supported noble metal catalysts. In particular, oxygen vacancies and hydroxyl groups play significant roles in promoting noble metal dispersion on catalysts as well as catalytic stability. In this study, we developed a nanoflower-like TiO2-supported Pd catalyst that has a higher concentration of oxygen vacancies and surface hydroxyl groups compared to that of commercial anatase and P25 support. Notably, due to the distinctive structure of the nanoflower-like TiO2, our catalyst exhibited improved dispersion and stabilization of Pd species and the formation of abundant reactive oxygen species, thereby facilitating the activation of CO and O2 molecules. As a result, the catalyst showed remarkable efficiency in catalyzing the low-temperature CO oxidation reaction with a complete CO conversion at 80 °C and stability for over 100 h.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chenyi Yuan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chao Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Yuan E, Wang C, Wu C, Shi G, Jian P, Hou X. Constructing a Pd-Co Interface to Tailor a d-Band Center for Highly Efficient Hydroconversion of Furfural over Cobalt Oxide-Supported Pd Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43845-43858. [PMID: 37690049 DOI: 10.1021/acsami.3c09234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cobalt is an alternative catalyst for furfural hydrogenation but suffers from the strong binding of H and furan ring on the surface, resulting in low catalytic activity and chemoselectivity. Herein, by constructing a Pd-Co interface in cobalt oxide-supported Pd catalysts to tailor the d-band center of Co, the concerted effort of Pd and Co boosts the catalytic performance for the hydroconversion of furfural to cyclopentanone and cyclopentanol. The increased dispersion of Pd on acid etching Co3O4 promotes the reduction of Co3+ to Co0 by enhancing hydrogen spillover, favoring the creation of the Pd-Co interface. Both experimental and theoretical calculations demonstrate that the electron transfer from Pd to Co at the interface results in the downshift of the d-band center of Co atoms, accompanied by the destabilization of H and furan ring adsorption on the Co surface, respectively. The former improves the furfural hydrogenation with TOF on Co elevating from 0.20 to 0.62 s-1, and the latter facilitates the desorption of formed furfuryl alcohol from the Co surface for subsequently hydrogenative rearrangement of the furan ring to cyclopentanone on acid sites. The resultant Pd/Co3O4-6 catalyst delivers superior activity with a 99% furfural conversion and 85% overall selectivity toward cyclopentanone/cyclopentanol. We anticipate that such a concept of tailoring the d-band center of Co via interface engineering provides novel insight and feasible approach for the design of highly efficient catalysts for furfural hydroconversion and beyond.
Collapse
Affiliation(s)
- Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Changlong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Chan Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | - Guojun Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xu Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin 130000, China
| |
Collapse
|
8
|
Guo Y, Li H, Li B, Su S, Zhong X, Kong D, Chen Y, Song Y. Enhanced Photocatalytic Coupling of Benzylamine to N-Benzylidene Benzylamine over the Organic-Inorganic Composites F70-TiO 2 Based on Fullerenes Derivatives and TiO 2. Molecules 2023; 28:molecules28114301. [PMID: 37298775 DOI: 10.3390/molecules28114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The organic-inorganic composites F70-TiO2, based on fullerene with carboxyl group derivatives and TiO2 semiconductor, have been designed and constructed to become an optical-functional photocatalyst via the facile sol-gel method. The composite photocatalyst obtained shows excellent photocatalytic activity for the high-efficiency conversion of benzylamine (BA) to N-benzylidene benzylamine (NBBA) with air pressure at a normal temperature under visible light irradiation. By optimizing the composition, the composites with the 1:15 mass ratio of F70 and TiO2, denoted as F70-TiO2(1:15), demonstrated the highest reaction efficiency for benzylamine (>98% conversion) to N-benzylidene benzylamine (>93% selectivity) in this study. However, pure TiO2 and fullerene derivatives (F70) exhibit decreased conversion (56.3% and 89.7%, respectively) and selectivity (83.8% and 86.0%, respectively). The UV-vis diffuse reflectance spectra (DRS) and Mott-Schottky experiment's results indicate that the introduction of fullerene derivatives into anatase TiO2 would greatly broaden the visible light response range and adjust the energy band positions of the composites, enhancing the sunlight utilization and promoting the photogenerated charge (e--h+) separation and transfer. Specifically, a series of results on the in situ EPR tests and the photo-electrophysical experiment indicate that the separated charges from the hybrid could effectively activate benzylamine and O2 to accelerate the formation of active intermediates, and then couple with free BA molecules to form the desired production of N-BBA. The effective combination, on a molecular scale, between fullerene and titanium dioxide has provided a profound understanding of the photocatalysis mechanism. This work elaborates and makes clear the relationship between the structure and the performance of functional photocatalysts.
Collapse
Affiliation(s)
- Yanmeng Guo
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Hang Li
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Bo Li
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Shizhuo Su
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xin Zhong
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Derui Kong
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yifan Chen
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yujie Song
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Identification of the Active Sites of Platinum-Ceria Catalysts in Propane Oxidation and Preferential Oxidation of Carbon Monoxide in Hydrogen. Catal Letters 2022. [DOI: 10.1007/s10562-022-04254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Zheng H, Liao W, Ding J, Xu F, Jia A, Huang W, Zhang Z. Unveiling the Key Factors in Determining the Activity and Selectivity of CO 2 Hydrogenation over Ni/CeO 2 Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hao Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Weiqi Liao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Jieqiong Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Fangkai Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Aiping Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui230026, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning116023, China
| | - Zhenhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| |
Collapse
|
11
|
Tailoring Ir-FeOx interactions and catalytic performance in preferential oxidation of CO in H2 via the morphology engineering of anatase TiO2 over Ir-FeOx/TiO2 catalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Wen Y, Huang Q, Zhang Z, Huang W. Morphology‐Dependent
Catalysis of
CeO
2
‐Based
Nanocrystal Model Catalysts. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Wen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Qiuyu Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Zhenhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Cataly‐sis of Anhui Higher Education Institutes and Department of Chemical Physics University of Science and Technology of China Hefei 230026 People's Republic of China
- Dalian National Laboratory for Clean Energy Chinese Academy of Sciences Dalian 116023 People's Republic of China
| |
Collapse
|
13
|
Tuning activity and selectivity of CO2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Zhang Z, Fan L, Liao W, Zhao F, Tang C, Zhang J, Feng M, Lu JQ. Structure sensitivity of CuO in CO oxidation over CeO2-CuO/Cu2O catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|