1
|
Drzymała-Czyż S, Walkowiak J, Colombo C, Alicandro G, Storrösten OT, Kolsgaard M, Bakkeheim E, Strandvik B. Fatty acid abnormalities in cystic fibrosis-the missing link for a cure? iScience 2024; 27:111153. [PMID: 39620135 PMCID: PMC11607544 DOI: 10.1016/j.isci.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The care for cystic fibrosis (CF) has dramatically changed with the development of modulators, correctors, and potentiators of the CFTR molecule, which lead to improved clinical status of most people with CF (pwCF). The modulators influence phospholipids and ceramides, but not linoleic acid (LA) deficiency, associated with more severe phenotypes of CF. The LA deficiency is associated with upregulation of its transfer to arachidonic acid (AA). The AA release from membranes is increased and associated with increase of pro-inflammatory prostanoids and the characteristic inflammation is present before birth and bacterial infections. Docosahexaenoic acid is often decreased, especially in associated liver disease Some endogenously synthesized fatty acids are increased. Cholesterol and ceramide metabolisms are disturbed. The lipid abnormalities are present at birth, and before feeding in transgenic pigs and ferrets. This review focus on the lipid abnormalities and their associations to clinical symptoms in CF, based on clinical studies and experimental research.
Collapse
Affiliation(s)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Olav Trond Storrösten
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Magnhild Kolsgaard
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Egil Bakkeheim
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
D’Orazio S, Mattoscio D. Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression. Pharmaceuticals (Basel) 2024; 17:1185. [PMID: 39338347 PMCID: PMC11434829 DOI: 10.3390/ph17091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cystic fibrosis (CF) is the most common fatal genetic disease among Caucasian people, with over 2000 mutations in the CFTR gene. Although highly effective modulators have been developed to rescue the mutant CFTR protein, unresolved inflammation and persistent infections still threaten the lives of patients. While the central role of arachidonic acid (AA) and its metabolites in the inflammatory response is widely recognized, less is known about their impact on immunomodulation and metabolic implications in CF. To this end, here we provided a comprehensive analysis of the AA metabolism in CF. In this context, CFTR dysfunction appeared to complexly disrupt normal lipid processing, worsening the chronic airway inflammation, and compromising the immune responses to bacterial infections. As such, potential strategies targeting AA and its inflammatory mediators are being investigated as a promising approach to balance the inflammatory response while mitigating disease progression. Thus, a deeper understanding of the AA pathway dysfunction in CF may open innovative avenues for designing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Simona D’Orazio
- Department of Medical, Oral and Biotechnology Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnology Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Slimmen LJ, Broos JY, Manaï BH, Estevão SC, Giera M, Kooij G, Unger WW, Janssens HM. The Omega-6 Lipid pathway shift is associated with neutrophil influx and structural lung damage in early cystic fibrosis lung disease. Clin Transl Immunology 2024; 13:e70000. [PMID: 39286529 PMCID: PMC11403467 DOI: 10.1002/cti2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/24/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives In cystic fibrosis (CF), an imbalanced lipid metabolism is associated with lung inflammation. Little is known about the role that specific lipid mediators (LMs) exert in CF lung inflammation, and whether their levels change during early disease progression. Therefore, we measured airway LM profiles of young CF patients, correlating these with disease-associated parameters. Methods Levels of omega (ω)-3/6 PUFAs and their LM derivatives were determined in bronchoalveolar lavage fluid (BALF) of children with CF ages 1-5 using a targeted high-performance liquid chromatography-tandem mass spectrometry approach. Hierarchical clustering analysis was performed on relative LM levels. Individual relative LM levels were correlated with neutrophilic inflammation (BALF %Neu) and structural lung damage (PRAGMA-CF %Disease). Significant correlations were included in a backward multivariate linear regression model to identify the LMs that are best related to disease progression. Results A total of 65 BALF samples were analysed for ω-3/6 lipid content. LM profiles clustered into an arachidonic acid (AA)-enriched and a linoleic acid (LA)-enriched sample cluster. AA derivatives like 17-OH-DH-HETE, 5-HETE, 5,15-diHETE, 15-HETE, 15-KETE, LTB4 and 6-trans-LTB4 positively correlated with BALF %Neu and/or PRAGMA %Dis. Contrastingly, 9-HoTrE and the LA derivatives 9-HoDE, 9(10)-EpOME, 9(10)-DiHOME, 13-HoDE, 13-oxoODE and 12(13)-EpOME negatively correlated with BALF %Neu and/or PRAGMA %Dis. 6-trans-LTB4 was the strongest predictor for BALF %Neu. 5-HETE and 15-KETE contributed most to PRAGMA %Dis prediction. Conclusions Our data provide more insight into the lung lipidome of infants with CF, and show that a shift from LA derivatives to AA derivatives in BALF associates with early CF lung disease progression.
Collapse
Affiliation(s)
- Lisa Jm Slimmen
- Division of Respiratory Medicine and Allergology, Department of Paediatrics Erasmus MC Sophia Children's Hospital, Erasmus University Medical Centre Rotterdam The Netherlands
- Laboratory of Paediatrics, Infection and Immunity Group, Department of Paediatrics Erasmus University Medical Centre Rotterdam The Netherlands
| | - Jelle Y Broos
- Department of Molecular Cell Biology and Immunology, MS Centre Amsterdam Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Amsterdam The Netherlands
- Center for Proteomics and Metabolomics Leiden University Medical Centre Leiden The Netherlands
| | - Badies Han Manaï
- Division of Respiratory Medicine and Allergology, Department of Paediatrics Erasmus MC Sophia Children's Hospital, Erasmus University Medical Centre Rotterdam The Netherlands
| | - Silvia C Estevão
- Laboratory of Paediatrics, Infection and Immunity Group, Department of Paediatrics Erasmus University Medical Centre Rotterdam The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics Leiden University Medical Centre Leiden The Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, MS Centre Amsterdam Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Amsterdam The Netherlands
| | - Wendy Wj Unger
- Laboratory of Paediatrics, Infection and Immunity Group, Department of Paediatrics Erasmus University Medical Centre Rotterdam The Netherlands
| | - Hettie M Janssens
- Division of Respiratory Medicine and Allergology, Department of Paediatrics Erasmus MC Sophia Children's Hospital, Erasmus University Medical Centre Rotterdam The Netherlands
| |
Collapse
|
4
|
Tindall A, Bass R, Maqbool A, Stallings VA. Impact of lumacaftor/ivacaftor on nutrition and growth in modulator-naïve children over 24 weeks. J Cyst Fibros 2024; 23:758-763. [PMID: 38789320 PMCID: PMC11948311 DOI: 10.1016/j.jcf.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Cystic fibrosis transmembrane conductance regulator (CFTR) modulators improve nutritional status and are of importance in achieving normal growth among younger children with CF. The study was designed to examine CFTR modulator-associated changes in nutrition status, including bile acids and fatty acids after lumacaftor/ivacaftor therapy for 24 weeks. METHODS Children 2 to 5.9 years were recruited from US and Canadian CF Centers. Eligible children were lumacaftor/ivacaftor naïve and approved to initiate therapy. Anthropometrics, diet, energy expenditure, nutrition biomarkers, pancreatic status, serum and fecal calprotectin, serum bile acids and plasma fatty acids were measured. Changes from baseline at 12 and 24 weeks were examined using mixed effects linear regression modeling. RESULTS Weight-for-age z-score (WAZ) increased at 12 (0.15 ± 0.1, p = 0.01) and 24 weeks (0.23 ± 0.1, p = 0.001) from baseline following modulator therapy. Head circumference-for-age (HCZ) increased at 12 weeks compared to baseline (0.22 ± 0.1, p = 0.03) and subscapular Z score increased from baseline at 24 weeks following therapy (0.33 ± 0.1, p = 0.02). There were no changes in energy expenditure. Serum total bile acids (6.7 ± 2.0, p = 0.001), chenodeoxycholic acid (CDCA) (2.4 ± 1.1, p = 0.001), and cholic acid (CA) (3.5 ± 0.8, p < 0.0001) increased at 24 weeks compared to baseline. Fecal calprotectin decreased at 12 and 24 weeks compared to baseline (-463 ± 310, p = 0.03 and 566 ± 347, p = 0.047). A number of plasma fatty acids changed over the course of 24 weeks of therapy. Noteably, alpha-linolenic acid (ALA) decreased at 12 and 24 weeks (-24 ± 10,p = 0.03 and -18 ± 10, p = 0.02, respectively). CONCLUSIONS Overall, young children experienced favorable changes in nutritional and growth, with the exception of plasma ALA status in the first 24 weeks of lumacaftor/ivacaftor therapy.
Collapse
Affiliation(s)
- Alyssa Tindall
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Rosara Bass
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Asim Maqbool
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia A Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Gartner S, Roca-Ferrer J, Fernandez-Alvarez P, Lima I, Rovira-Amigo S, García-Arumi E, Tizzano EF, Picado C. Elevated Prostaglandin E 2 Synthesis Is Associated with Clinical and Radiological Disease Severity in Cystic Fibrosis. J Clin Med 2024; 13:2050. [PMID: 38610815 PMCID: PMC11012863 DOI: 10.3390/jcm13072050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Previous studies found high but very variable levels of tetranor-PGEM and PGDM (urine metabolites of prostaglandin (PG) E2 and PGD2, respectively) in persons with cystic fibrosis (pwCF). This study aims to assess the role of cyclooxygenase COX-1 and COX-2 genetic polymorphisms in PG production and of PG metabolites as potential markers of symptoms' severity and imaging findings. Methods: A total of 30 healthy subjects and 103 pwCF were included in this study. Clinical and radiological CF severity was evaluated using clinical scoring methods and chest computed tomography (CT), respectively. Urine metabolites were measured using liquid chromatography/tandem mass spectrometry. Variants in the COX-1 gene (PTGS1 639 C>A, PTGS1 762+14delA and COX-2 gene: PTGS2-899G>C (-765G>C) and PTGS2 (8473T>C) were also analyzed. Results: PGE-M and PGD-M urine concentrations were significantly higher in pwCF than in controls. There were also statistically significant differences between clinically mild and moderate disease and severe disease. Patients with bronchiectasis and/or air trapping had higher PGE-M levels than patients without these complications. The four polymorphisms did not associate with clinical severity, air trapping, bronchiectasis, or urinary PG levels. Conclusions: These results suggest that urinary PG level testing can be used as a biomarker of CF severity. COX genetic polymorphisms are not involved in the variability of PG production.
Collapse
Affiliation(s)
- Silvia Gartner
- Unidad de Neumología Pediátrica y Fibrosis Quística, Hospital Vall d’Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.G.); (I.L.); (S.R.-A.)
| | - Jordi Roca-Ferrer
- Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Paula Fernandez-Alvarez
- Área de Genética Clínica y Molecular, Hospital Vall d’Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.F.-A.); (E.G.-A.); (E.F.T.)
- Medicina Genética, Vall d’Hebrón Institut de Recerca VHIR, 08035 Barcelona, Spain
| | - Isabel Lima
- Unidad de Neumología Pediátrica y Fibrosis Quística, Hospital Vall d’Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.G.); (I.L.); (S.R.-A.)
| | - Sandra Rovira-Amigo
- Unidad de Neumología Pediátrica y Fibrosis Quística, Hospital Vall d’Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.G.); (I.L.); (S.R.-A.)
| | - Elena García-Arumi
- Área de Genética Clínica y Molecular, Hospital Vall d’Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.F.-A.); (E.G.-A.); (E.F.T.)
- Medicina Genética, Vall d’Hebrón Institut de Recerca VHIR, 08035 Barcelona, Spain
| | - Eduardo F. Tizzano
- Área de Genética Clínica y Molecular, Hospital Vall d’Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (P.F.-A.); (E.G.-A.); (E.F.T.)
- Medicina Genética, Vall d’Hebrón Institut de Recerca VHIR, 08035 Barcelona, Spain
| | - César Picado
- Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
6
|
Tindall A, Bass R, Maqbool A, Stallings VA. Changes in nutrition and growth status in young children in the first 12 weeks of ivacaftor therapy. J Cyst Fibros 2023; 22:989-995. [PMID: 37438197 PMCID: PMC10776802 DOI: 10.1016/j.jcf.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Highly effective CFTR modulators improve nutritional status and are of particular importance among younger children experiencing rapid growth. This study was designed to examine CFTR modulator associated changes in nutritional and other extrapulmonary outcomes in children 4-24 months of age with ivacaftor treatment over 12 weeks. METHODS Children 4-24 months were recruited from US and Canadian CF Centers. Eligible children were ivacaftor naïve and approved to start therapy. Anthropometrics, diet, sleeping energy expenditure (SEE), nutrition biomarkers, pancreatic status, serum and fecal calprotectin, serum bile acids, plasma fatty acids were measured. Changes from baseline at 6 and 12 weeks were examined using mixed effects linear regression modeling. RESULTS Fifteen participants enrolled (40% male). Weight-for-age z-scores increased at 6 (p = 0.03) and 12 weeks ivacaftor therapy (p<0.001) compared to baseline. Plasma docosatetraenoic acid (DTA), total saturated fatty acids increased at 6 weeks (p = 0.02) and 12 weeks (p = 0.009). At 12 weeks, serum CO2 concentration decreased (p = 0.002), serum urea nitrogen increased (p = 0.01) and fecal elastase increased (p = 0.02) compared to baseline. Bile acids, deoxycholic acid increased (p = 0.03) and ursodeoxycholic acid decreased (p = 0.02) after 12 weeks. Plasma total fatty acids, palmitic acid, mead, and docosatetraenoic acid (DTA) increased after 12 weeks (p = 0.02, p = 0.002 and p = 0.04, respectively). Plasma total saturated fatty acids increased at 6 weeks (p = 0.02) and 12 weeks (p = 0.009). Dietary intake (p = 0.04) and percent kcal from protein (p = 0.04) increased after 12 weeks compared to baseline. CONCLUSIONS Overall, younger children experienced favorable changes in nutritional and growth status in the first 12 weeks of ivacaftor therapy.
Collapse
Affiliation(s)
- Alyssa Tindall
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America.
| | - Rosara Bass
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Asim Maqbool
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Virginia A Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
7
|
Uc A, Strandvik B, Yao J, Liu X, Yi Y, Sun X, Welti R, Engelhardt J, Norris A. The fatty acid imbalance of cystic fibrosis exists at birth independent of feeding in pig and ferret models. Clin Sci (Lond) 2022; 136:1773-1791. [PMID: 36416119 PMCID: PMC9747517 DOI: 10.1042/cs20220450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Persons with cystic fibrosis (CF) exhibit a unique alteration of fatty acid composition, marked especially among polyunsaturates by relative deficiency of linoleic acid and excess of Mead acid. Relative deficiency of docosahexaenoic acid is variably found. However, the initial development of these abnormalities is not understood. We examined fatty acid composition in young CF ferrets and pigs, finding abnormalities from the day of birth onward including relative deficiency of linoleic acid in both species. Fatty acid composition abnormalities were present in both liver and serum phospholipids of newborn CF piglets even prior to feeding, including reduced linoleic acid and increased Mead acid. Serum fatty acid composition evolved over the first weeks of life in both non-CF and CF ferrets, though differences between CF and non-CF persisted. Although red blood cell phospholipid fatty acid composition was normal in newborn animals, it became perturbed in juvenile CF ferrets including relative deficiencies of linoleic and docosahexaenoic acids and excess of Mead acid. In summary, fatty acid composition abnormalities in CF pigs and ferrets exist from a young age including at birth independent of feeding and overlap extensively with the abnormalities found in humans with CF. That the abnormalities exist prior to feeding implies that dietary measures alone will not address the mechanisms of imbalance.
Collapse
Affiliation(s)
- Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Flemingsberg, Stockholm 14183, Sweden
| | - Jianrong Yao
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Ruth Welti
- Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, U.S.A
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
8
|
Shrestha N, McCarron A, Rout-Pitt N, Donnelley M, Parsons DW, Hryciw DH. Essential Fatty Acid Deficiency in Cystic Fibrosis Disease Progression: Role of Genotype and Sex. Nutrients 2022; 14:nu14214666. [PMID: 36364928 PMCID: PMC9657825 DOI: 10.3390/nu14214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Adequate intake of nutrients such as essential fatty acids (EFA) are critical in cystic fibrosis (CF). The clinical course of deterioration of lung function in people with CF has been shown to relate to nutrition. Independent of the higher energy consumption and malabsorption due to pancreatic insufficiency, EFA deficiency is closely associated with the risk of pulmonary infection, the most significant pathology in CF. This review will focus on the EFA deficiency identified in people with CF, as well as the limited progress made in deciphering the exact metabolic pathways that are dysfunctional in CF. Specifically, people with CF are deficient in linoleic acid, an omega 6 fatty acid, and the ratio of arachidonic acid (omega 6 metabolite) and docosahexaenoic acid (omega 3 metabolite) is increased. Analysis of the molecular pathways in bronchial cells has identified changes in the enzymes that metabolise EFA. However, fatty acid metabolism primarily occurs in the liver, with EFA metabolism in CF liver not yet investigated, indicating that further research is required. Despite limited understanding in this area, it is well known that adequate EFA concentrations are critical to normal membrane structure and function, and thus are important to consider in disease processes. Novel insights into the relationship between CF genotype and EFA phenotype will be discussed, in addition to sex differences in EFA concentrations in people with CF. Collectively, investigating the specific effects of genotype and sex on fatty acid metabolism may provide support for the management of people with CF via personalised genotype- and sex-specific nutritional therapies.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia
| | - Alexandra McCarron
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Nathan Rout-Pitt
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - David W. Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Deanne H. Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- Correspondence: ; Tel.: +61-7-3735-3601
| |
Collapse
|
9
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
10
|
Nutrition in Cystic Fibrosis—Some Notes on the Fat Recommendations. Nutrients 2022; 14:nu14040853. [PMID: 35215502 PMCID: PMC8875685 DOI: 10.3390/nu14040853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Nutrition is important in cystic fibrosis (CF) because the disease is associated with a higher energy consumption, special nutritional deficiencies, and malabsorption mainly related to pancreatic insufficiency. The clinical course with deterioration of lung function has been shown to relate to nutrition. Despite general recommendation of high energy intake, the clinical deterioration is difficult to restrain suggesting that special needs have not been identified and specified. It is well-known that the CF phenotype is associated with lipid abnormalities, especially in the essential or conditionally essential fatty acids. This review will concentrate on the qualitative aspects of fat metabolism, which has mainly been neglected in dietary fat recommendations focusing on fat quantity. For more than 60 years it has been known and confirmed that the patients have a deficiency of linoleic acid, an n-6 essential fatty acid of importance for membrane structure and function. The ratio between arachidonic acid and docosahexaenoic acid, conditionally essential fatty acids of the n-6 and n-3 series, respectively, is often increased. The recently discovered relations between the CFTR modulators and lipid metabolism raise new interests in this field and together with new technology provide possibilities to specify further specify personalized therapy.
Collapse
|
11
|
Hryciw DH, Jackson CA, Shrestha N, Parsons D, Donnelley M, McAinch AJ. Role for animal models in understanding essential fatty acid deficiency in cystic fibrosis. Cell Mol Life Sci 2021; 78:7991-7999. [PMID: 34741185 PMCID: PMC11072998 DOI: 10.1007/s00018-021-04014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Essential fatty acid deficiency has been observed in most patients with Cystic Fibrosis (CF); however, pancreatic supplementation does not restore the deficiency, suggesting a different pathology independent of the pancreas. At this time, the underlying pathological mechanisms are largely unknown. Essential fatty acids are obtained from the diet and processed by organs including the liver and intestine, two organs significantly impacted by mutations in the cystic fibrosis transmembrane conductance regulator gene (Cftr). There are several CF animal models in a variety of species that have been developed to investigate molecular mechanisms associated with the CF phenotype. Specifically, global and systemic mutations in Cftr which mimic genotypic changes identified in CF patients have been generated in mice, rats, sheep, pigs and ferrets. These mutations produce CFTR proteins with a gating defect, trafficking defect, or an absent or inactive CFTR channel. Essential fatty acids are critical to CFTR function, with a bidirectional relationship between CFTR and essential fatty acids proposed. Currently, there are limited analyses on the essential fatty acid status in most of these animal models. Of interest, in the mouse model, essential fatty acid status is dependent on the genotype and resultant phenotype of the mouse. Future investigations should identify an optimal animal model that has most of the phenotypic changes associated with CF including the essential fatty acid deficiencies, which can be used in the development of therapeutics.
Collapse
Affiliation(s)
- Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD, Australia.
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia.
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Courtney A Jackson
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - David Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC, Australia
| |
Collapse
|
12
|
Strandvik B. Is the ENaC Dysregulation in CF an Effect of Protein-Lipid Interaction in the Membranes? Int J Mol Sci 2021; 22:ijms22052739. [PMID: 33800499 PMCID: PMC7962953 DOI: 10.3390/ijms22052739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
While approximately 2000 mutations have been discovered in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), only a small amount (about 10%) is associated with clinical cystic fibrosis (CF) disease. The discovery of the association between CFTR and the hyperactive epithelial sodium channel (ENaC) has raised the question of the influence of ENaC on the clinical CF phenotype. ENaC disturbance contributes to the pathological secretion, and overexpression of one ENaC subunit, the β-unit, can give a CF-like phenotype in mice with normal acting CFTR. The development of ENaC channel modulators is now in progress. Both CFTR and ENaC are located in the cell membrane and are influenced by its lipid configuration. Recent studies have emphasized the importance of the interaction of lipids and these proteins in the membranes. Linoleic acid deficiency is the most prevailing lipid abnormality in CF, and linoleic acid is an important constituent of membranes. The influence on sodium excretion by linoleic acid supplementation indicates that lipid-protein interaction is of importance for the clinical pathophysiology in CF. Further studies of this association can imply a simple clinical adjuvant in CF therapy.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, 14183 Stockholm, Sweden
| |
Collapse
|
13
|
Yonker LM, Barrios J, Mou H, Hurley BP. Untapped Potential: Therapeutically Targeting Eicosanoids and Endocannabinoids in the Lung. Clin Pharmacol Ther 2021; 110:69-81. [PMID: 33423293 DOI: 10.1002/cpt.2165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023]
Abstract
Inflammation of the airway involves the recruitment of highly active immune cells to combat and clear microbes and toxic factors; however, this inflammatory response can result in unintended damage to lung tissue. Tissue damage resulting from inflammation is often mitigated by resolving factors that limit the scope and duration of the inflammatory response. Both inflammatory and resolving processes require the actions of a vast array of lipid mediators that can be rapidly synthesized through a variety of airway resident and infiltrating immune cells. Eicosanoids and endocannabinoids represent two major classes of lipid mediators that share synthetic enzymes and have diverse and overlapping functions. This review seeks to provide a summary of the major bioactive eicosanoids and endocannabinoids, challenges facing researchers that study them, and their roles in modulating inflammation and resolution. With a special emphasis on cystic fibrosis, a variety of therapeutics are discussed that have been explored for their potential anti-inflammatory or proresolving impact toward alleviating excessive airway inflammation and improving lung function.
Collapse
Affiliation(s)
- Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Pulmonary Division, Boston, Massachusetts, USA.,Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Juliana Barrios
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Hongmei Mou
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| | - Bryan P Hurley
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, USA.,Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, USA
| |
Collapse
|
14
|
The Extrapulmonary Effects of Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Cystic Fibrosis. Ann Am Thorac Soc 2021; 17:147-154. [PMID: 31661636 PMCID: PMC6993798 DOI: 10.1513/annalsats.201909-671cme] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The effects of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators on lung function, pulmonary exacerbations, and quality of life have been well documented. However, CF is a multiorgan disease, and therefore an evidence base is emerging on the systemic effects of CFTR modulators beyond the pulmonary system. This is of great clinical importance, as many of these studies provide proof of concept that CFTR modulators might be used one day to prevent or treat extrapulmonary manifestations stemming from CFTR dysfunction. In this concise review of the literature, we summarize the results of key publications that have evaluated the effects of CFTR modulators on weight and growth, pancreatic function, the gastrointestinal and hepatobiliary systems, sinus disease, bone disease, exercise tolerance, fertility, mental health, and immunity. Although many of these studies have reported beneficial extrapulmonary effects related to the use of ivacaftor (IVA) in patients with CF with at least one gating mutation, most of the evidence is low or very low quality, given the limited number of patients evaluated and the lack of control groups. Based on an even smaller number of studies evaluating the extrapulmonary effects of lumacaftor-IVA, the benefits are less clear. Although limited, these studies may provide the basis for future clinical trials to evaluate CFTR modulators on the extrapulmonary manifestations of CF.
Collapse
|
15
|
Airway Inflammation and Host Responses in the Era of CFTR Modulators. Int J Mol Sci 2020; 21:ijms21176379. [PMID: 32887484 PMCID: PMC7504341 DOI: 10.3390/ijms21176379] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The arrival of cystic fibrosis transmembrane conductance regulator (CFTR) modulators as a new class of treatment for cystic fibrosis (CF) in 2012 represented a pivotal advance in disease management, as these small molecules directly target the upstream underlying protein defect. Further advancements in the development and scope of these genotype-specific therapies have been transformative for an increasing number of people with CF (PWCF). Despite clear improvements in CFTR function and clinical endpoints such as lung function, body mass index (BMI), and frequency of pulmonary exacerbations, current evidence suggests that CFTR modulators do not prevent continued decline in lung function, halt disease progression, or ameliorate pathogenic organisms in those with established lung disease. Furthermore, it remains unknown whether their restorative effects extend to dysfunctional CFTR expressed in phagocytes and other immune cells, which could modulate airway inflammation. In this review, we explore the effects of CFTR modulators on airway inflammation, infection, and their influence on the impaired pulmonary host defences associated with CF lung disease. We also consider the role of inflammation-directed therapies in light of the widespread clinical use of CFTR modulators and identify key areas for future research.
Collapse
|
16
|
Wheelock CE, Strandvik B. Abnormal n-6 fatty acid metabolism in cystic fibrosis contributes to pulmonary symptoms. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102156. [PMID: 32750662 DOI: 10.1016/j.plefa.2020.102156] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023]
Abstract
Cystic fibrosis (CF) is a recessively inherited fatal disease that is the subject of extensive research and ongoing development of therapeutics targeting the defective protein, cystic fibrosis transmembrane conductance regulator (CFTR). Despite progress, the link between CFTR and clinical symptoms is incomplete. The severe CF phenotypes are associated with a deficiency of linoleic acid, which is the precursor of arachidonic acid. The release of arachidonic acid from membranes via phospholipase A2 is the rate-limiting step for eicosanoid synthesis and is increased in CF, which contributes to the observed inflammation. A potential deficiency of docosahexaenoic acid may lead to decreased levels of specialized pro-resolving mediators. This pathophysiology may contribute to an early and sterile inflammation, mucus production, and to bacterial colonization, which further increases inflammation and potentiates the clinical symptoms. Advances in lipid technology will assist in elucidating the role of lipid metabolism in CF, and stimulate therapeutic modulations of inflammation.
Collapse
Affiliation(s)
- Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Strandvik
- Dept of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Wisniewski BL, Shrestha CL, Zhang S, Thompson R, Gross M, Groner JA, Uppal K, Ramilo O, Mejias A, Kopp BT. Metabolomics profiling of tobacco exposure in children with cystic fibrosis. J Cyst Fibros 2020; 19:791-800. [PMID: 32487493 PMCID: PMC7492400 DOI: 10.1016/j.jcf.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inflammation is integral to early disease progression in children with CF. The effect of modifiable environmental factors on infection and inflammation in persons with CF is poorly understood. Our prior studies determined that secondhand smoke exposure (SHSe) is highly prevalent in young children with CF. SHSe is associated with increased inflammation, heightened bacterial burden, and worsened clinical outcomes. However, the specific metabolite and signaling pathways that regulate responses to SHSe in CF are relatively unknown. METHODS High-resolution metabolomics was performed on plasma samples from infants (n = 25) and children (n = 40) with CF compared to non-CF controls (n = 15). CF groups were stratified according to infant or child age and SHSe status. RESULTS Global metabolomic profiles segregated by age and SHSe status. SHSe in CF was associated with changes in pathways related to steroid biosynthesis, fatty acid metabolism, cysteine metabolism, and oxidative stress. CF infants with SHSe demonstrated enrichment for altered metabolite localization to the small intestine, liver, and striatum. CF children with SHSe demonstrated metabolite enrichment for organs/tissues associated with oxidative stress including mitochondria, peroxisomes, and the endoplasmic reticulum. In a confirmatory analysis, SHSe was associated with changes in biomarkers of oxidative stress and cellular adhesion including MMP-9, MPO, and ICAM-1. CONCLUSIONS SHSe in young children and infants with CF is associated with altered global metabolomics profiles and specific biochemical pathways, including enhanced oxidative stress. SHSe remains an important but understudied modifiable variable in early CF disease.
Collapse
Affiliation(s)
- Benjamin L Wisniewski
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rohan Thompson
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Myron Gross
- Minnesota CHEAR Exposure Assessment Hub, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Judith A Groner
- Section of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Karan Uppal
- National Exposure Assessment Laboratory at Emory, Emory University, Atlanta, GA, USA
| | - Octavio Ramilo
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
18
|
Kopp BT, Thompson R, Kim J, Konstan R, Diaz A, Smith B, Shrestha C, Rogers LK, Hayes D, Tumin D, Woodley FW, Ramilo O, Sanders DB, Groner JA, Mejias A. Secondhand smoke alters arachidonic acid metabolism and inflammation in infants and children with cystic fibrosis. Thorax 2019; 74:237-246. [PMID: 30661024 DOI: 10.1136/thoraxjnl-2018-211845] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 11/04/2022]
Abstract
BACKGROUND Mechanisms that facilitate early infection and inflammation in cystic fibrosis (CF) are unclear. We previously demonstrated that children with CF and parental-reported secondhand smoke exposure (SHSe) have increased susceptibility to bacterial infections. SHSe hinders arachidonic acid (AA) metabolites that mediate immune function in patients without CF, and may influence CF immune dysfunction. We aimed to define SHSe's impact on inflammation mediators and infection in children with CF. METHODS Seventy-seven children with CF <10 years of age (35 infants <1 year; 42 children 1-10 years) were enrolled and hair nicotine concentrations measured as an objective surrogate of SHSe. AA signalling by serum and macrophage lipidomics, inflammation using blood transcriptional profiles and in vitro macrophage responses to bacterial infection after SHSe were assessed. RESULTS Hair nicotine concentrations were elevated in 63% of patients. Of the AA metabolites measured by plasma lipidomics, prostaglandin D2 (PGD2) concentrations were decreased in children with CF exposed to SHSe, and associated with more frequent hospitalisations (p=0.007) and worsened weight z scores (p=0.008). Children with CF exposed to SHSe demonstrated decreased expression of the prostaglandin genes PTGES3 and PTGR2 and overexpression of inflammatory pathways. These findings were confirmed using an in vitro model, where SHSe was associated with a dose-dependent decrease in PGD2 and increased methicillin-resistant Staphylococcus aureus survival in human CF macrophages. CONCLUSIONS Infants and young children with CF and SHSe have altered AA metabolism and dysregulated inflammatory gene expression resulting in impaired bacterial clearance. Our findings identified potential therapeutic targets to halt early disease progression associated with SHSe in the young population with CF.
Collapse
Affiliation(s)
- Benjamin T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rohan Thompson
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jeeho Kim
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Robert Konstan
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alejandro Diaz
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bennett Smith
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Chandra Shrestha
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Don Hayes
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dmitry Tumin
- Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Frederick W Woodley
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Don B Sanders
- Riley Children's Hospital, Indianapolis, Indiana, USA
| | - Judith A Groner
- Section of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
19
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|