1
|
Dobi D, Loberto N, Mauri L, Bassi R, Chiricozzi E, Lunghi G, Aureli M. Effect of CFTR modulators Elexacaftor/Tezacaftor/Ivacaftor on lipid metabolism in human bronchial epithelial cells. Glycoconj J 2025; 42:1-14. [PMID: 39797966 DOI: 10.1007/s10719-024-10174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation. This study investigated ETI's impact on the maturation of the mutated CFTR, the expression levels of its scaffolding proteins, and lipid composition of cells using bronchial epithelial cell lines expressing both wild-type and F508del CFTR. Our findings revealed that ETI treatment enhances CFTR and its scaffolding proteins expression and aids in rescuing mature F508del CFTR, causing also significant alterations in the lipid profile including reduced levels of lactosylceramide and increased content of gangliosides GM1 and GD1a. These changes were linked to ETI's influence on enzymes involved in the sphingolipid metabolism, in particular GM3 synthase and sialidase. Through this work, we aim to deepen understanding CFTR interactions with lipids, and to elucidate the mechanisms of action of CFTR modulators. Our findings may support the development of potential therapeutic strategies contributing to the ongoing efforts to design effective correctors and potentiators for CF treatment.
Collapse
Affiliation(s)
- Dorina Dobi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
| |
Collapse
|
2
|
Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur J Med Chem 2023; 260:115758. [PMID: 37657268 DOI: 10.1016/j.ejmech.2023.115758] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fluorine-containing small molecules have occupied a special position in drug discovery research. The successful clinical use of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s led to an ever-increasing number of approved fluorinated compounds over the last 50 years. They have shown various biological properties such as antitumor, antimicrobial, and anti-inflammatory activities. Fluoro-pharmaceuticals have been considered a strong and practical tool in the rational drug design approach due to their benefits from potency and ADME (absorption, distribution, metabolism, and excretion) points of view. Herein, approved fluorinated drugs from 2015 to 2022 were reviewed.
Collapse
Affiliation(s)
- Negar Sheikhi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Bahraminejad
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Oliveira I, Jacinto R, Pestana S, Nolasco F, Calado J, Lopes SS, Roxo-Rosa M. Zebrafish Model as a Screen to Prevent Cyst Inflation in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms22169013. [PMID: 34445719 PMCID: PMC8396643 DOI: 10.3390/ijms22169013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), kidney cyst growth requires the recruitment of CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel that is defective in cystic fibrosis. We have been studying cyst inflation using the zebrafish Kupffer’s vesicle (KV) as model system because we previously demonstrated that knocking down polycystin 2 (PC2) induced a CFTR-mediated enlargement of the organ. We have now quantified the PC2 knockdown by showing that it causes a 73% reduction in the number of KV cilia expressing PC2. According to the literature, this is an essential event in kidney cystogenesis in ADPKD mice. Additionally, we demonstrated that the PC2 knockdown leads to a significant accumulation of CFTR-GFP at the apical region of the KV cells. Furthermore, we determined that KV enlargement is rescued by the injection of Xenopus pkd2 mRNA and by 100 µM tolvaptan treatment, the unique and approved pharmacologic approach for ADPKD management. We expected vasopressin V2 receptor antagonist to lower the cAMP levels of KV-lining cells and, thus, to inactivate CFTR. These findings further support the use of the KV as an in vivo model for screening compounds that may prevent cyst enlargement in this ciliopathy, through CFTR inhibition.
Collapse
Affiliation(s)
- Inês Oliveira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Fernando Nolasco
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
| | - Joaquim Calado
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
- ToxOmics, Center of ToxicoGenomics & Human Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Susana Santos Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| |
Collapse
|
4
|
Strandvik B. Is the ENaC Dysregulation in CF an Effect of Protein-Lipid Interaction in the Membranes? Int J Mol Sci 2021; 22:ijms22052739. [PMID: 33800499 PMCID: PMC7962953 DOI: 10.3390/ijms22052739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
While approximately 2000 mutations have been discovered in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), only a small amount (about 10%) is associated with clinical cystic fibrosis (CF) disease. The discovery of the association between CFTR and the hyperactive epithelial sodium channel (ENaC) has raised the question of the influence of ENaC on the clinical CF phenotype. ENaC disturbance contributes to the pathological secretion, and overexpression of one ENaC subunit, the β-unit, can give a CF-like phenotype in mice with normal acting CFTR. The development of ENaC channel modulators is now in progress. Both CFTR and ENaC are located in the cell membrane and are influenced by its lipid configuration. Recent studies have emphasized the importance of the interaction of lipids and these proteins in the membranes. Linoleic acid deficiency is the most prevailing lipid abnormality in CF, and linoleic acid is an important constituent of membranes. The influence on sodium excretion by linoleic acid supplementation indicates that lipid-protein interaction is of importance for the clinical pathophysiology in CF. Further studies of this association can imply a simple clinical adjuvant in CF therapy.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, 14183 Stockholm, Sweden
| |
Collapse
|
5
|
Zardini Buzatto A, Abdel Jabar M, Nizami I, Dasouki M, Li L, Abdel Rahman AM. Lipidome Alterations Induced by Cystic Fibrosis, CFTR Mutation, and Lung Function. J Proteome Res 2020; 20:549-564. [PMID: 33089695 DOI: 10.1021/acs.jproteome.0c00556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis is a genetic pathology characterized by abnormal accumulation of mucus in the respiratory, gastrointestinal, and reproductive tracts, caused by mutations in the CFTR gene. Although the classical presentation of the condition is well known, there is still a need for a better characterization of metabolic alterations related to cystic fibrosis and different genotypic mutations. We employed untargeted, comprehensive lipidomics of blood serum samples to investigate alterations in the lipid metabolism related to the pathology, mutation classes, and lung function decline. Six unique biomarker candidates were able to independently differentiate diseased individuals from healthy controls with excellent performance. Cystic fibrosis patients showed dyslipidemia for most lipid subclasses, with significantly elevated odd-chain and polyunsaturated fatty acyl lipids. Phosphatidic acids and diacylglycerols were particularly affected by different genotypic mutation classes. We selected a biomarker panel composed of four lipids, including two ceramides, one sphingomyelin, and one fatty acid, which correctly classified all validation samples from classes III and IV. A biomarker panel of five oxidized lipids was further selected to differentiate patients with reduced lung function, measured as predicted FEV1%. Our results indicate that cystic fibrosis is deeply related to lipid metabolism and provide new clues for the investigation of the disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
| | - Mai Abdel Jabar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia.,Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia.,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
6
|
Robinson E, MacDonald KD, Slaughter K, McKinney M, Patel S, Sun C, Sahay G. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. Mol Ther 2018; 26:2034-2046. [PMID: 29910178 PMCID: PMC6094356 DOI: 10.1016/j.ymthe.2018.05.014] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022] Open
Abstract
The promise of gene therapy for the treatment of cystic fibrosis has yet to be fully clinically realized despite years of effort toward correcting the underlying genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR). mRNA therapy via nanoparticle delivery represents a powerful technology for the transfer of genetic material to cells with large, widespread populations, such as airway epithelia. We deployed a clinically relevant lipid-based nanoparticle (LNP) for packaging and delivery of large chemically modified CFTR mRNA (cmCFTR) to patient-derived bronchial epithelial cells, resulting in an increase in membrane-localized CFTR and rescue of its primary function as a chloride channel. Furthermore, nasal application of LNP-cmCFTR restored CFTR-mediated chloride secretion to conductive airway epithelia in CFTR knockout mice for at least 14 days. On day 3 post-transfection, CFTR activity peaked, recovering up to 55% of the net chloride efflux characteristic of healthy mice. This magnitude of response is superior to liposomal CFTR DNA delivery and is comparable with outcomes observed in the currently approved drug ivacaftor. LNP-cmRNA-based systems represent a powerful platform technology for correction of cystic fibrosis and other monogenic disorders.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Kelvin D MacDonald
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kai Slaughter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Madison McKinney
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Radiation Medicine, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201, USA.
| |
Collapse
|