1
|
Bollar GE, Shaffer KM, Keith JD, Oden AM, Dowell AE, Ryan KJ, Acosta EP, Guimbellot JS, Kiedrowski MR, Birket SE. Evaluating the effects of ivacaftor exposure on Staphylococcus aureus small colony variant development and antibiotic tolerance. JAC Antimicrob Resist 2024; 6:dlae185. [PMID: 39659642 PMCID: PMC11630538 DOI: 10.1093/jacamr/dlae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background Ivacaftor exhibits anti-staphylococcal properties but does not clear Staphylococcus aureus from the lungs of people with cystic fibrosis (pwCF). We assessed whether exposure to therapeutic concentrations of ivacaftor could allow S. aureus to form small colony variants (SCVs), a phenotype commonly associated with bacterial persistence. Methods Humanized G551D-CFTR (hG551D) rats were treated with ivacaftor for 7 days. Concentrations in the plasma, epithelial lining fluid and lung tissue lysate were measured using LC-MS/MS. Survival of S. aureus during ivacaftor treatment was assessed in an hG551D rat model of lung infection. S. aureus adaptation to therapeutic concentrations of ivacaftor was investigated in vitro by serial passage in the presence of 10 µM ivacaftor. Bacterial survival in the presence of antimicrobials was evaluated using growth curves and density assays. Results Ivacaftor plasma concentrations of treated hG551D rats reached 3.488 ± 1.118 µM, with more variable concentrations in the epithelial lining fluid and lung tissue lysate. During S. aureus infection, ivacaftor-treated hG551D rats returned similar numbers of bacteria from the lung, compared with vehicle-treated controls. Exposure of S. aureus to ivacaftor in vitro led to the formation of ivacaftor-tolerant SCVs with an unstable phenotype and increased antibiotic tolerance. Conclusions Treatment with ivacaftor did not alter S. aureus burden in the cystic fibrosis rat and led to the formation of tolerant SCVs in vitro, suggesting that development of an SCV phenotype may allow S. aureus to persist in the cystic fibrosis lung during ivacaftor therapy.
Collapse
Affiliation(s)
- Gretchen E Bollar
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kendall M Shaffer
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Johnathan D Keith
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley M Oden
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander E Dowell
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin J Ryan
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward P Acosta
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Megan R Kiedrowski
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Birket
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Nick HJ, Christeson SE, Bratcher PE. The Functional Impact of VX-770 on the Cystic Fibrosis Transmembrane Conductance Regulator Is Enduring and Increases the Constitutive Activity of This Channel in Primary Airway Epithelia Generated from Healthy Donors. Biomolecules 2024; 14:1378. [PMID: 39595555 PMCID: PMC11591604 DOI: 10.3390/biom14111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
VX-770 is a small-molecule CFTR potentiator that is highly efficacious in individuals with cystic fibrosis caused by mutations in CFTR that result in a defect in channel gating. While studies have reported on the mechanism of action of VX-770, there is still more to learn about the impact that it has on CFTR function in various contexts. The aim of the present study was to examine the longevity and stability of the effect of VX-770 on CFTR function in cultured airway epithelia and to measure the consequences of this interaction. The responses to acute and chronic VX-770 exposure were measured in cultures of expanded and re-differentiated primary human nasal epithelial cells. Acute VX-770 exposure resulted in an increase in CFTR-mediated currents in the absence of exogenous compounds that induce the phosphorylation/activation of CFTR, with acute exposure having the same effect as chronic exposure. The functional impact of VX-770 on CFTR was long-lasting in cultured airway epithelia, as they maintained an electrophysiological profile consistent with the saturation of CFTR with VX-770 over time periods of up to 4 days following a short (0.5 min) or low-dose (100 nM) exposure to VX-770 during an analysis in an Ussing chamber. Rinsing the apical surface prior to VX-770 exposure or exposure during the analysis in the Ussing chamber increased the interaction between VX-770 and the CFTR. Importantly, after short, low-dose exposures to VX-770, the CFTR channels in cultured epithelia appeared to remain saturated with VX-770 for extended periods of time, despite the repetitive rinsing of the apical surface. This finding has implications for patients discontinuing the use of VX-770-containing therapies.
Collapse
Affiliation(s)
- Heidi J. Nick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Naehrig S, Shad C, Breuling M, Goetschke M, Habler K, Sieber S, Kastenberger J, Kunzelmann AK, Sommerburg O, Liebchen U, Behr J, Vogeser M, Paal M. Therapeutic Drug Monitoring of Elexacaftor, Tezacaftor, and Ivacaftor in Adult People with Cystic Fibrosis. J Pers Med 2024; 14:1065. [PMID: 39452571 PMCID: PMC11508966 DOI: 10.3390/jpm14101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Elexacaftor, tezacaftor, and ivacaftor (ETI) have significantly improved lung function in people with cystic fibrosis (pwCF). Despite exceptional improvements in most cases, treatment-related inter-subject variability and drug-drug interactions that complicate modulator therapy have been reported. METHODS This retrospective analysis presents data on the serum concentration of ETI in our pwCF with full or reduced dosage from August 2021 to December 2023 via routine therapeutic drug monitoring (TDM). The data were compared with the maximum drug concentrations (Cmax) from the pharmaceutical company's summary of product characteristics. RESULTS A total of 786 blood samples from 155 pwCF (41% female, 59% male) were analyzed. The examinations were divided into four groups: full dose within the given tmax (38.5% of all measurements), full dose outside the tmax (29%), reduced dose within the tmax (19.2%), and reduced dose outside the tmax (13.2%). In pwCF receiving the full dose and blood taken within the tmax, 45.3% of serum concentrations of elexacaftor, 51.1% of serum concentrations of ivacaftor, and 8.9% of serum concentrations of tezacaftor were found to be above the Cmax, respectively. For those on reduced doses within the tmax, 24.5% had a serum concentration of elexacaftor, 23.2% had a serum concentration of ivacaftor, and 2.5% had a serum concentration of tezacaftor above the Cmax, respectively. CONCLUSIONS Many pwCF under ETI therapy have Cmax values for elexacaftor and ivacaftor above the recommended range, even on reduced doses or before the tmax was reached. This highlights the value of a TDM program. Further pharmacokinetic studies are necessary.
Collapse
Affiliation(s)
- Susanne Naehrig
- Cystic Fibrosis Center for Adults, Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Christina Shad
- Cystic Fibrosis Center for Adults, Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Magdalena Breuling
- Cystic Fibrosis Center for Adults, Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Melanie Goetschke
- Cystic Fibrosis Center for Adults, Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Katharina Habler
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 813777 Munich, Germany
| | - Sarah Sieber
- STAT-UP Statistical Consulting & Data Science GmbH, 80333 Munich, Germany
| | | | | | - Olaf Sommerburg
- Division of Pediatric Pulmonology, Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany;
| | - Uwe Liebchen
- Department of Anesthesiology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Juergen Behr
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany;
| | - Michael Vogeser
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 813777 Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 813777 Munich, Germany
| |
Collapse
|
4
|
Liu Z, Anderson JD, Rose NR, Baker EH, Dowell AE, Ryan KJ, Acosta EP, Guimbellot JS. Differential distribution of ivacaftor and its metabolites in plasma and human airway epithelia. Pulm Pharmacol Ther 2024; 86:102314. [PMID: 38964603 DOI: 10.1016/j.pupt.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Ivacaftor is the first clinically approved monotherapy potentiator to treat CFTR channel dysfunction in people with cystic fibrosis. Ivacaftor (Iva) is a critical component for all current modulator therapies, including highly effective modulator therapies. Clinical studies show that CF patients on ivacaftor-containing therapies present various clinical responses, off-target effects, and adverse reactions, which could be related to metabolites of the compound. In this study, we reported the concentrations of Iva and two of its major metabolites (M1-Iva and M6-Iva) in capillary plasma and estimated M1-Iva and M6-Iva metabolic activity via the metabolite parent ratio in capillary plasma over 12 h. We also used the ratio of capillary plasma versus human nasal epithelial cell concentrations to evaluate entry into epithelial cells in vivo. M6-Iva was rarely detected by LC-MS/MS in epithelial cells from participants taking ivacaftor, although it was detected in plasma. To further explore this discrepancy, we performed in vitro studies, which showed that M1-Iva, but not M6-Iva, readily crossed 16HBE cell membranes. Our studies also suggest that metabolism of these compounds is unlikely to occur in airway epithelia despite evidence of expression of metabolism enzymes. Overall, our data provide evidence that there are differences between capillary and cellular concentrations of these compounds that may inform future studies of clinical response and off-target effects.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justin D Anderson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie R Rose
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth H Baker
- Department of Sociology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander E Dowell
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin J Ryan
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward P Acosta
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer S Guimbellot
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
5
|
Campagna N, Wall E, Lee K, Guo J, Li W, Yang T, Baranchuk A, El-Diasty M, Zhang S. Differential Effects of Remdesivir and Lumacaftor on Homomeric and Heteromeric hERG Channels. Mol Pharmacol 2023; 104:164-173. [PMID: 37419691 DOI: 10.1124/molpharm.123.000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.
Collapse
Affiliation(s)
- Noah Campagna
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Erika Wall
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Kevin Lee
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Mohammad El-Diasty
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Mutual Effects of Single and Combined CFTR Modulators and Bacterial Infection in Cystic Fibrosis. Microbiol Spectr 2023; 11:e0408322. [PMID: 36625583 PMCID: PMC9927584 DOI: 10.1128/spectrum.04083-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators improve clinical outcomes with varied efficacies in patients with CF. However, the mutual effects of CFTR modulators and bacterial adaptation, together with antibiotic regimens, can influence clinical outcomes. We evaluated the effects of ivacaftor (IVA), lumacaftor (LUM), tezacaftor, elexacaftor, and a three-modulator combination of elexacaftor, tezacaftor, and ivacaftor (ETI), alone or combined with antibiotics, on sequential CF isolates. IVA and ETI showed direct antimicrobial activities against Staphylococcus aureus but not against Pseudomonas aeruginosa. Additive effects or synergies were observed between the CFTR modulators and antibiotics against both species, independently of adaptation to the CF lung. IVA and LUM were the most effective in potentiating antibiotic activity against S. aureus, while IVA and ETI enhanced mainly polymyxin activity against P. aeruginosa. Next, we evaluated the effect of P. aeruginosa pneumonia on the pharmacokinetics of IVA in mice. IVA and its metabolites in plasma, lung, and epithelial lining fluid were increased by P. aeruginosa infection. Thus, CFTR modulators can have direct antimicrobial properties and/or enhance antibiotic activity against initial and adapted S. aureus and P. aeruginosa isolates. Furthermore, bacterial infection impacts airway exposure to IVA, potentially affecting its efficacy. Our findings suggest optimizing host- and pathogen-directed therapies to improve efficacy for personalized treatment. IMPORTANCE CFTR modulators have been developed to correct and/or enhance CFTR activity in patients with specific cystic fibrosis (CF) genotypes. However, it is of great importance to identify potential off-targets of these novel therapies to understand how they affect lung physiology in CF. Since bacterial infections are one of the hallmarks of CF lung disease, the effects (if any) of CFTR modulators on bacteria could impact their efficacy. This work highlights a mutual interaction between CFTR modulators and opportunistic bacterial infections; in particular, it shows that (i) CFTR modulators have an antibacterial activity per se and influence antibiotic efficacy, and (ii) bacterial airway infections affect levels of CFTR modulators in the airways. These findings may help optimize host- and pathogen-directed drug regimens to improve the efficacy of personalized treatment.
Collapse
|
7
|
Dube PS, Legoabe LJ, Beteck RM. Quinolone: a versatile therapeutic compound class. Mol Divers 2022:10.1007/s11030-022-10581-8. [PMID: 36527518 PMCID: PMC9758687 DOI: 10.1007/s11030-022-10581-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2022]
Abstract
The discovery of nalidixic acid is one pinnacle in medicinal chemistry, which opened a new area of research that has led to the discovery of several life-saving antimicrobial agents (generally referred to as fluoroquinolones) for over decades. Although fluoroquinolones are frequently encountered in the literature, the utility of quinolone compounds extends far beyond the applications of fluoroquinolones. Quinolone-based compounds have been reported for activity against malaria, tuberculosis, fungal and helminth infections, etc. Hence, the quinolone scaffold is of great interest to several researchers in diverse disciplines. This article highlights the versatility of the quinolone pharmacophore as a therapeutic agent beyond the fluoroquinolone profile.
Collapse
Affiliation(s)
- Phelelisiwe S. Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| |
Collapse
|
8
|
Guimbellot JS, Nichols DP, Brewington JJ. Novel Applications of Biomarkers and Personalized Medicine in Cystic Fibrosis. Clin Chest Med 2022; 43:617-630. [PMID: 36344070 DOI: 10.1016/j.ccm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As routine care in cystic fibrosis (CF) becomes increasingly personalized, new opportunities to further focus care on the individual have emerged. These opportunities are increasingly filled through research in tools aiding drug selection, drug monitoring and titration, disease-relevant biomarkers, and evaluation of therapeutic benefits. Herein, we will discuss such research tools presently being translated into the clinic to improve the personalization of care in CF.
Collapse
Affiliation(s)
- Jennifer S Guimbellot
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; 1600 7th Avenue South, ACC 620, Birmingham, AL 35233, USA
| | - David P Nichols
- Department of Pediatrics, Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Building Cure, 1920 Terry Avenue, Office 4-209, Seattle, WA 98109, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH 45229, USA.
| |
Collapse
|
9
|
Guimbellot JS, Ryan KJ, Anderson JD, Parker KL, Odom LV, Rowe SM, Acosta EP. Plasma and cellular ivacaftor concentrations in patients with cystic fibrosis. Pediatr Pulmonol 2022; 57:2745-2753. [PMID: 35927224 PMCID: PMC9588676 DOI: 10.1002/ppul.26093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Access to cystic fibrosis transmembrane conductance regulator (CFTR) modulators has been gradually increasing for people with cystic fibrosis, the first of which was ivacaftor, a CFTR potentiator that is part of all clinically available modulator treatments. In this study, we hypothesized that the steady-state concentrations in blood and tissue are highly variable in patients taking ivacaftor in a real-world context, which may have an impact on the treatment approach. We collected nasal epithelial cells to estimate target site concentrations and blood samples to estimate pharmacokinetic parameters at a steady state. We found that patients on ivacaftor monotherapy have variable concentrations well above the maximal effective concentration and may maintain concentrations necessary for the clinical benefit even if dosing is reduced. We also are the first to provide detailed target site concentration data over time, which shows that tissue concentrations do not fluctuate significantly and do not correlate with plasma concentrations. These findings show that some patients may have higher-than-expected concentrations and may benefit from tailored dosing to balance clinical response with side effects or adherence needs.
Collapse
Affiliation(s)
- Jennifer S. Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Kevin J. Ryan
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, UAB, Birmingham, AL
| | - Justin D. Anderson
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Kennedy L. Parker
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - L. Victoria Odom
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, UAB, Birmingham, AL
- Departments of Medicine and Cell Developmental and Integrative Biology, UAB, Birmingham, AL
| | - Edward P. Acosta
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, UAB, Birmingham, AL
| |
Collapse
|
10
|
Ryan KJ, Guimbellot JS, Dowell AE, Reed-Walker KD, Kerstner-Wood CD, Anderson JD, Liu Z, Acosta EP. Quantitation of Cystic Fibrosis Triple Combination Therapy, Elexacaftor/Tezacaftor/Ivacaftor, in Human Plasma and Cellular Lysate. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1213:123518. [DOI: 10.1016/j.jchromb.2022.123518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
11
|
Therapeutic Drug Monitoring of Ivacaftor, Lumacaftor, Tezacaftor, and Elexacaftor in Cystic Fibrosis: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14081674. [PMID: 36015300 PMCID: PMC9412421 DOI: 10.3390/pharmaceutics14081674] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Drugs modulating the cystic fibrosis transmembrane conductance regulator (CFTR) protein, namely ivacaftor, lumacaftor, tezacaftor, and elexacaftor, are currently revolutionizing the management of patients with cystic fibrosis (CF), particularly those with at least one F508del variant (up to 85% of patients). These “caftor” drugs are mainly metabolized by cytochromes P450 3A, whose enzymatic activity is influenced by environmental factors, and are sensitive to inhibition and induction. Hence, CFTR modulators are characterized by an important interindividual pharmacokinetic variability and are also prone to drug–drug interactions. However, these CFTR modulators are given at standardized dosages, while they meet all criteria for a formal therapeutic drug monitoring (TDM) program that should be considered in cases of clinical toxicity, less-than-expected clinical response, drug or food interactions, distinct patient subgroups (i.e., pediatrics), and for monitoring short-term adherence. While the information on CFTR drug exposure–clinical response relationships is still limited, we review the current evidence of the potential interest in the TDM of caftor drugs in real-life settings.
Collapse
|
12
|
Shaughnessy CA, Zeitlin PL, Bratcher PE. Net benefit of ivacaftor during prolonged tezacaftor/elexacaftor exposure in vitro. J Cyst Fibros 2022; 21:637-643. [DOI: 10.1016/j.jcf.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
|
13
|
Badr A, Eltobgy M, Krause K, Hamilton K, Estfanous S, Daily KP, Abu Khweek A, Hegazi A, Anne MNK, Carafice C, Robledo-Avila F, Saqr Y, Zhang X, Bonfield TL, Gavrilin MA, Partida-Sanchez S, Seveau S, Cormet-Boyaka E, Amer AO. CFTR Modulators Restore Acidification of Autophago-Lysosomes and Bacterial Clearance in Cystic Fibrosis Macrophages. Front Cell Infect Microbiol 2022; 12:819554. [PMID: 35252032 PMCID: PMC8890004 DOI: 10.3389/fcimb.2022.819554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) human and mouse macrophages are defective in their ability to clear bacteria such as Burkholderia cenocepacia. The autophagy process in CF (F508del) macrophages is halted, and the underlying mechanism remains unclear. Furthermore, the role of CFTR in maintaining the acidification of endosomal and lysosomal compartments in CF cells has been a subject of debate. Using 3D reconstruction of z-stack confocal images, we show that CFTR is recruited to LC3-labeled autophagosomes harboring B. cenocepacia. Using several complementary approaches, we report that CF macrophages display defective lysosomal acidification and degradative function for cargos destined to autophagosomes, whereas non-autophagosomal cargos are effectively degraded within acidic compartments. Notably, treatment of CF macrophages with CFTR modulators (tezacaftor/ivacaftor) improved the autophagy flux, lysosomal acidification and function, and bacterial clearance. In addition, CFTR modulators improved CFTR function as demonstrated by patch-clamp. In conclusion, CFTR regulates the acidification of a specific subset of lysosomes that specifically fuse with autophagosomes. Therefore, our study describes a new biological location and function for CFTR in autophago-lysosomes and clarifies the long-standing discrepancies in the field.
Collapse
Affiliation(s)
- Asmaa Badr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Clinical Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Kylene P. Daily
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Arwa Abu Khweek
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Ahmad Hegazi
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Midhun N. K. Anne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Youssra Saqr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Center for Biostatistics, Ohio State University, Columbus, OH, United States
| | - Tracey L. Bonfield
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mikhail A. Gavrilin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Columbus, OH, United States
| | | | - Stephanie Seveau
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Measurements of spontaneous CFTR-mediated ion transport without acute channel activation in airway epithelial cultures after modulator exposure. Sci Rep 2021; 11:22616. [PMID: 34799640 PMCID: PMC8605007 DOI: 10.1038/s41598-021-02044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Quantitation of CFTR function in vitro is commonly performed by acutely stimulating then inhibiting ion transport through CFTR and measuring the resulting changes in transepithelial voltage (Vte) and current (ISC). While this technique is suitable for measuring the maximum functional capacity of CFTR, it may not provide an accurate estimate of in vivo CFTR activity. To test if CFTR-mediated ion transport could be measured in the absence of acute CFTR stimulation, primary airway epithelia were analyzed in an Ussing chamber with treatment of amiloride followed by CFTR(inh)-172 without acute activation of CFTR. Non-CF epithelia demonstrated a decrease in Vte and ISC following exposure to CFTR(inh)-172 and in the absence of forskolin/IBMX (F/I); this decrease is interpreted as a measure of spontaneous CFTR activity present in these epithelia. In F508del/F508del CFTR epithelia, F/I-induced changes in Vte and ISC were ~ fourfold increased after treatment with VX-809/VX-770, while the magnitude of spontaneous CFTR activities were only ~ 1.6-fold increased after VX-809/VX-770 treatment. Method-dependent discrepancies in the responses of other CF epithelia to modulator treatments were observed. These results serve as a proof of concept for the analysis of CFTR modulator responses in vitro in the absence of acute CFTR activation. Future studies will determine the usefulness of this approach in the development of novel CFTR modulator therapies.
Collapse
|
15
|
Jeyaratnam J, van der Meer R, Berkers G, Heijerman HG, Beekman JM, van der Ent CK. Breast development in a 7 year old girl with CF treated with ivacaftor: An indication for personalized dosing? J Cyst Fibros 2021; 20:e63-e66. [PMID: 34175243 DOI: 10.1016/j.jcf.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Substantial progress has been made in the treatment of Cystic fibrosis due to introduction of CFTR modulators. However, little is known about the long term side effects of treatment with these drugs. We here present a 7 year old girl with CF who presented with breast development as a rare dose dependent side effect of treatment with ivacaftor and we report data on the correlation between drug plasma concentration and clinical effect, bodyweight, and BSA in 16 patients. Higher plasma concentrations did not correlate with clinical effect, as change in FEV1 and sweat chloride concentration. Patients with low bodyweight or BSA tended to have higher plasma concentrations. This might indicate that the current recommended dose of ivacaftor is at the top of the dose-response curve and that some patients can be treated with lower doses of ivacaftor with similar clinical effect.
Collapse
Affiliation(s)
- Joshena Jeyaratnam
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske van der Meer
- Department of Pulmonology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Gitte Berkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Harry Gm Heijerman
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
16
|
CFTR Modulators: Does One Dose Fit All? J Pers Med 2021; 11:jpm11060458. [PMID: 34073663 PMCID: PMC8224731 DOI: 10.3390/jpm11060458] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
For many people with cystic fibrosis (pwCF), CFTR modulators will be the cornerstone of their treatment. These modulators show robust treatment effects at group level in pwCF with specific mutations. The individual effect however, is variable. In this review we will explain reasons for reconsideration of dosing regimens of CFTR modulating therapy in order to improve treatment response and prevent side effects. Since the effect of a drug depends on pharmacodynamics and pharmacokinetics, pharmacodynamics and pharmacokinetic properties of CFTR modulators will be discussed. Pharmacokinetic-pharmacodynamic relationships will be used to gain insight in dosage response and exposure response relationships. To understand the cause of variation in drug exposure, pharmacokinetic properties that may change due to CF disease will be explained. We show that with current insight, there are conceivable situations that give reason for reconsideration of dosing regimens, however many questions need to be unravelled.
Collapse
|
17
|
Anderson JD, Liu Z, Odom LV, Kersh L, Guimbellot JS. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L119-L129. [PMID: 34009038 DOI: 10.1152/ajplung.00639.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients' cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.
Collapse
Affiliation(s)
- Justin D Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - L Victoria Odom
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Veit G, Roldan A, Hancock MA, Da Fonte DF, Xu H, Hussein M, Frenkiel S, Matouk E, Velkov T, Lukacs GL. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight 2020; 5:139983. [PMID: 32853178 PMCID: PMC7526550 DOI: 10.1172/jci.insight.139983] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Based on its clinical benefits, Trikafta — the combination of folding correctors VX-661 (tezacaftor), VX-445 (elexacaftor), and the gating potentiator VX-770 (ivacaftor) — was FDA approved for treatment of patients with cystic fibrosis (CF) carrying deletion of phenylalanine at position 508 (F508del) of the CF transmembrane conductance regulator (CFTR) on at least 1 allele. Neither the mechanism of action of VX-445 nor the susceptibility of rare CF folding mutants to Trikafta are known. Here, we show that, in human bronchial epithelial cells, VX-445 synergistically restores F508del-CFTR processing in combination with type I or II correctors that target the nucleotide binding domain 1 (NBD1) membrane spanning domains (MSDs) interface and NBD2, respectively, consistent with a type III corrector mechanism. This inference was supported by the VX-445 binding to and unfolding suppression of the isolated F508del-NBD1 of CFTR. The VX-661 plus VX-445 treatment restored F508del-CFTR chloride channel function in the presence of VX-770 to approximately 62% of WT CFTR in homozygous nasal epithelia. Substantial rescue of rare misprocessing mutations (S13F, R31C, G85E, E92K, V520F, M1101K, and N1303K), confined to MSD1, MSD2, NBD1, and NBD2 of CFTR, was also observed in airway epithelia, suggesting an allosteric correction mechanism and the possible application of Trikafta for patients with rare misfolding mutants of CFTR. Trikafta, the combination of type I corrector VX-661, type III corrector VX-445, and the potentiator VX-770, may be applied for various CFTR folding mutants.
Collapse
Affiliation(s)
| | | | - Mark A Hancock
- SPR-MS Facility, McGill University, Montréal, Quebec, Canada
| | | | | | - Maytham Hussein
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | | | - Elias Matouk
- Adult Cystic Fibrosis Clinic, Montreal Chest Institute, and
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Gergely L Lukacs
- Department of Physiology and.,Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
19
|
Farinha CM. From disease mechanisms to novel therapies and back. J Cyst Fibros 2020; 19:673-674. [DOI: 10.1016/j.jcf.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Guhr Lee TN, Cholon DM, Quinney NL, Gentzsch M, Esther CR. Accumulation and persistence of ivacaftor in airway epithelia with prolonged treatment. J Cyst Fibros 2020; 19:746-751. [PMID: 32536510 DOI: 10.1016/j.jcf.2020.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Current dosing strategies of CFTR modulators are based on serum pharmacokinetics, but drug concentrations in target tissues such as airway epithelia are not known. Previous data suggest that CFTR modulators may accumulate in airway epithelia, and serum pharmacokinetics may not accurately predict effects of chronic treatment. METHODS CF (F508del homozygous) primary human bronchial epithelial (HBE) cells grown at air-liquid interface were treated for 14 days with ivacaftor plus lumacaftor or ivacaftor plus tezacaftor, followed by a 14-day washout period. At various intervals during treatment and washout phases, drug concentrations were measured via mass spectrometry, electrophysiological function was assessed in Ussing chambers, and mature CFTR protein was quantified by Western blotting. RESULTS During treatment, ivacaftor accumulated in CF-HBEs to a much greater extent than either lumacaftor or tezacaftor and remained persistently elevated even after 14 days of washout. CFTR activity peaked at 7 days of treatment but diminished with further ivacaftor accumulation, though remained above baseline even after washout. CONCLUSIONS Intracellular accrual and persistence of CFTR modulators during and after chronic treatment suggest complex pharmacokinetic and pharmacodynamic properties within airway epithelia that are not predicted by serum pharmacokinetics. Direct measurement of drugs in target tissues may be needed to optimize dosing strategies, and the persistence of CFTR modulators after treatment cessation has implications for personalized medicine approaches.
Collapse
Affiliation(s)
- Tara N Guhr Lee
- Division of Pediatric Pulmonology, Department of Pediatrics, University of North Carolina School of Medicine, 450-D MacNider Hall, Campus Box 7217, Chapel Hill, NC 27599-7217, USA; Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Deborah M Cholon
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L Quinney
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martina Gentzsch
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles R Esther
- Division of Pediatric Pulmonology, Department of Pediatrics, University of North Carolina School of Medicine, 450-D MacNider Hall, Campus Box 7217, Chapel Hill, NC 27599-7217, USA; Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|