1
|
Mésinèle J, Ruffin M, Guillot L, Boëlle PY, Corvol H. Seasonal and climatic influence on respiratory infections in children with cystic fibrosis. Sci Rep 2024; 14:27036. [PMID: 39511324 PMCID: PMC11543658 DOI: 10.1038/s41598-024-77253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Pseudomonas aeruginosa (Pa) and Methicillin susceptible Staphylococcus aureus (MSSA) are the predominant bacteria found in the airways of people with cystic fibrosis (pwCF), significantly contributing to lung disease progression. While various factors influencing the initial acquisition (IA) of these pathogens are known, the impact of environmental conditions remains understudied. This epidemiological study assessed the risk of MSSA and Pa initial acquisitions in relation to seasonality and climatic zones among 1,184 French pwCF under 18 years old. The age at IA for Pa (Pa-IA) and MSSA (MSSA-IA) was estimated using the Kaplan-Meier method. Seasonality and climatic zones were analysed as risk factors using time-varying Cox regression models. The median age at MSSA-IA was notably earlier (2.0 years) than that at Pa-IA (5.1 years). MSSA-IA occurred increasingly younger in more recent birth cohorts, while the age at Pa-IA remained stable over time. The risk of Pa-IA was consistently higher in all seasons compared with spring, peaking in autumn (HR = 1.53), irrespective of climatic zones. In Oceanic and Continental climates, the highest risk for MSSA-IA was in winter (HRs = 1.45 and 1.20 respectively). In the Mediterranean climate, the risk of MSSA-IA was lower in winter compared to spring (HRs = 0.68 and 0.61 respectively), and the median age at MSSA-IA later than for Pa-IA. This study demonstrates that seasonality and meteorological factors may influence acquisition of MSSA and Pa in pwCF. These findings suggest that environmental factors play a role in pathogen acquisition dynamics in CF and could inform the development of preventive strategies.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France
- Inovarion, Paris, 75005, France
| | - Manon Ruffin
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, 75012, France.
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
- Service de Pneumologie Pédiatrique, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Paris, 75012, France.
| |
Collapse
|
2
|
Dittrich AM, Sieber S, Naehrlich L, Burkhart M, Hafkemeyer S, Tümmler B. Use of elexacaftor/tezacaftor/ivacaftor leads to changes in detection frequencies of Staphylococcus aureus and Pseudomonas aeruginosa dependent on age and lung function in people with cystic fibrosis. Int J Infect Dis 2024; 139:124-131. [PMID: 38036261 DOI: 10.1016/j.ijid.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVES The impressive improvements of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) function by elexacaftor/tezacaftor/ivacaftor (ETI) result in changes in the detection frequencies of Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). We assessed determinants of the response to ETI with regards to SA and PA detection frequencies as documented in the German CF registry for people with CF (pwCF) ≥12 years. METHODS We evaluated changes in the detection frequencies of SA and PA for 21 months before and after initiation of ETI and used different statistical tests to identify determinants of detection changes. RESULTS We included data from 1092 pwCF with results from culture-dependent diagnostics for SA and PA detection from 7944 microbiological samples before and 6.845 microbiological samples after initiation of ETI. Detections of SA decreased from 54.3% to 44.3% and 40.2% and those of PA from 39.9% to 31.9% and 22.6% 3 and 21 months after initiation of therapy, respectively (all P <0.001). Reduction of SA and PA were observed in throat swabs and sputa, associated significantly with age, previous lung function, and were dependent on pre-ETI colonization status. CONCLUSIONS The different patterns of reductions of SA and PA suggest that pathogen-specific biological processes govern the responsiveness of microbiological colonization towards ETI in pwCF.
Collapse
Affiliation(s)
- Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.
| | - Sarah Sieber
- STAT-UP Statistical Consulting & Data Science GmbH, Munich, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany; Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | | | | | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
4
|
Lu KY, Wagner NJ, Velez AZ, Ceppe A, Conlon BP, Muhlebach MS. Antibiotic Tolerance and Treatment Outcomes in Cystic Fibrosis Methicillin-Resistant Staphylococcus aureus Infections. Microbiol Spectr 2023; 11:e0406122. [PMID: 36519944 PMCID: PMC9927320 DOI: 10.1128/spectrum.04061-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is highly prevalent in U.S. cystic fibrosis (CF) patients and is associated with worse clinical outcomes in CF. These infections often become chronic despite repeated antibiotic therapy. Here, we assessed whether bacterial phenotypes, including antibiotic tolerance, can predict the clinical outcomes of MRSA infections. MRSA isolates (n = 90) collected at the incident (i.e., acute) and early infection states from 57 patients were characterized for growth rates, biofilm formation, hemolysis, pigmentation, and vancomycin tolerance. The resistance profiles were consistent with those in prior studies. Isolates from the early stage of infection were found to produce biofilms, and 70% of the isolates exhibited delta-hemolysis, an indicator of agr activity. Strong vancomycin tolerance was present in 24% of the isolates but was not associated with intermediate vancomycin susceptibility. There were no associations between these phenotypic measures, antibiotic tolerance, and MRSA clearance. Our research suggests that additional factors may be relevant for predicting the clearance of MRSA. IMPORTANCE Chronic MRSA infections remain challenging to treat in patients with cystic fibrosis (CF). The ability of the bacterial population to survive high concentrations of bactericidal antibiotics, including vancomycin, despite lacking resistance is considered one of the main reasons for treatment failures. The connection between antibiotic tolerance and treatment outcomes remains unexplored and can be crucial for prognosis and regimen design toward eradication. In this study, we measured the capacity of 90 MRSA isolates from CF patients to form vancomycin-tolerant persister cells and evaluated their correlation with the clinical outcomes. Additionally, various traits that could reflect the metabolism and/or virulence of those MRSA isolates were systematically phenotyped and included for their predictive power. Our research highlights that despite the importance of antibiotic tolerance, additional factors need to be considered for predicting the clearance of MRSA.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nikki J. Wagner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amanda Z. Velez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Agathe Ceppe
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Jones AM. Infection control in cystic fibrosis: evolving perspectives and challenges. Curr Opin Pulm Med 2022; 28:571-576. [PMID: 36101908 DOI: 10.1097/mcp.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews the impact of some of the most recent changes in clinical care management in cystic fibrosis on infection prevention practice and advice for people with cystic fibrosis. RECENT FINDINGS People with cystic fibrosis (CF) consistently highlight infection control as one of their major concerns. Infection prevention guidance and practice has facilitated successful decreases in rates of many transmissible CF pathogens. The coronavirus disease 2019 pandemic highlighted the clinical significance of respiratory viral infections and has accelerated the implementation of remote monitoring and telemedicine consultations as standard practice in CF. The continued improvement in health of the CF population is being further augmented by the introduction of new therapies, in particular cystic fibrosis transmembrane conductance regulator modulators. Infection prevention will remain pertinent to CF care, but these recent changes in clinical practice will have ongoing implications for infection prevention guidance in CF. SUMMARY Recent changes in CF clinical care have implications that will lead to further evolution of infection control practice and advice.
Collapse
|
6
|
Cramer N, Nawrot ML, Wege L, Dorda M, Sommer C, Danov O, Wronski S, Braun A, Jonigk D, Fischer S, Munder A, Tümmler B. Competitive fitness of Pseudomonas aeruginosa isolates in human and murine precision-cut lung slices. Front Cell Infect Microbiol 2022; 12:992214. [PMID: 36081773 PMCID: PMC9446154 DOI: 10.3389/fcimb.2022.992214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infections with the gram-negative bacterium Pseudomonas aeruginosa are an important co-morbidity for the quality of life and prognosis of people with cystic fibrosis (CF). Such long-term colonization, sometimes lasting up to several decades, represents a unique opportunity to investigate pathogen adaptation processes to the host. Our studies aimed to resolve if and to what extent the bacterial adaptation to the CF airways influences the fitness of the pathogen to grow and to persist in the lungs. Marker-free competitive fitness experiments of serial P. aeruginosa isolates differentiated by strain-specific SNPs, were performed with murine and human precision cut lung slices (PCLS). Serial P. aeruginosa isolates were selected from six mild and six severe CF patient courses, respectively. MPCLS or hPCLS were inoculated with a mixture of equal numbers of the serial isolates of one course. The temporal change of the composition of the bacterial community during competitive growth was quantified by multi-marker amplicon sequencing. Both ex vivo models displayed a strong separation of fitness traits between mild and severe courses. Whereas the earlier isolates dominated the competition in the severe courses, intermediate and late isolates commonly won the competition in the mild courses. The status of the CF lung disease rather than the bacterial genotype drives the adaptation of P. aeruginosa during chronic CF lung infection. This implies that the disease status of the lung habitat governed the adaptation of P. aeruginosa more strongly than the underlying bacterial clone-type and its genetic repertoire.
Collapse
Affiliation(s)
- Nina Cramer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- *Correspondence: Nina Cramer,
| | - Marie Luise Nawrot
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lion Wege
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Medical School, Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Charline Sommer
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Olga Danov
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Sabine Wronski
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian Fischer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Potential opportunities and challenges for infection prevention and control for cystic fibrosis in the modern era. Curr Opin Infect Dis 2022; 35:346-352. [PMID: 35849525 DOI: 10.1097/qco.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW We describe recent changes in care for people with cystic fibrosis (PwCF) that could impact infection prevention and control (IP&C) practices. RECENT FINDINGS Current IP&C guidelines primarily aim to prevent acquisition and transmission of pathogens in PwCF utilizing evidence-based recommendations for healthcare settings. Currently, highly effective modulator therapy (HEMT) is dramatically improving the clinical manifestations of cystic fibrosis and reducing pulmonary exacerbations and hospitalizations. Thus, it is feasible that long-term, sustained improvements in pulmonary manifestations of cystic fibrosis could favorably alter cystic fibrosis microbiology. The COVID-19 pandemic increased the use of virtual care, enabling PwCF to spend less time in healthcare settings and potentially reduce the risk of acquiring cystic fibrosis pathogens. The increasing use of whole genome sequencing (WGS) shows great promise in elucidating sources of cystic fibrosis pathogens, shared strains, and epidemic strains and ultimately could allow the cystic fibrosis community to monitor the safety of changed IP&C practices, if deemed appropriate. Finally, given the nonhealthcare environmental reservoirs for cystic fibrosis pathogens, practical guidance can inform PwCF and their families about potential risks and mitigation strategies. SUMMARY New developments in the treatment of PwCF, a shift toward virtual care delivery of care, and use of WGS could change future IP&C practices.
Collapse
|