1
|
Bandarabadi M, Li S, Aeschlimann L, Colombo G, Tzanoulinou S, Tafti M, Becchetti A, Boutrel B, Vassalli A. Inactivation of hypocretin receptor-2 signaling in dopaminergic neurons induces hyperarousal and enhanced cognition but impaired inhibitory control. Mol Psychiatry 2024; 29:327-341. [PMID: 38123729 PMCID: PMC11116111 DOI: 10.1038/s41380-023-02329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Hypocretin/Orexin (HCRT/OX) and dopamine (DA) are both key effectors of salience processing, reward and stress-related behaviors and motivational states, yet their respective roles and interactions are poorly delineated. We inactivated HCRT-to-DA connectivity by genetic disruption of Hypocretin receptor-1 (Hcrtr1), Hypocretin receptor-2 (Hcrtr2), or both receptors (Hcrtr1&2) in DA neurons and analyzed the consequences on vigilance states, brain oscillations and cognitive performance in freely behaving mice. Unexpectedly, loss of Hcrtr2, but not Hcrtr1 or Hcrtr1&2, induced a dramatic increase in theta (7-11 Hz) electroencephalographic (EEG) activity in both wakefulness and rapid-eye-movement sleep (REMS). DAHcrtr2-deficient mice spent more time in an active (or theta activity-enriched) substate of wakefulness, and exhibited prolonged REMS. Additionally, both wake and REMS displayed enhanced theta-gamma phase-amplitude coupling. The baseline waking EEG of DAHcrtr2-deficient mice exhibited diminished infra-theta, but increased theta power, two hallmarks of EEG hyperarousal, that were however uncoupled from locomotor activity. Upon exposure to novel, either rewarding or stress-inducing environments, DAHcrtr2-deficient mice featured more pronounced waking theta and fast-gamma (52-80 Hz) EEG activity surges compared to littermate controls, further suggesting increased alertness. Cognitive performance was evaluated in an operant conditioning paradigm, which revealed that DAHcrtr2-ablated mice manifest faster task acquisition and higher choice accuracy under increasingly demanding task contingencies. However, the mice concurrently displayed maladaptive patterns of reward-seeking, with behavioral indices of enhanced impulsivity and compulsivity. None of the EEG changes observed in DAHcrtr2-deficient mice were seen in DAHcrtr1-ablated mice, which tended to show opposite EEG phenotypes. Our findings establish a clear genetically-defined link between monosynaptic HCRT-to-DA neurotransmission and theta oscillations, with a differential and novel role of HCRTR2 in theta-gamma cross-frequency coupling, attentional processes, and executive functions, relevant to disorders including narcolepsy, attention-deficit/hyperactivity disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sha Li
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lea Aeschlimann
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Benjamin Boutrel
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Yu H, Wang M, Yang Q, Xu X, Zhang R, Chen X, Le W. The electrophysiological and neuropathological profiles of cerebellum in APP swe /PS1 ΔE9 mice: A hypothesis on the role of cerebellum in Alzheimer's disease. Alzheimers Dement 2023; 19:2365-2375. [PMID: 36469008 DOI: 10.1002/alz.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/11/2022]
Abstract
We propose the hypothesis that the cerebellar electrophysiology and sleep-wake cycles may be altered at the early stage of Alzheimer's disease (AD), proceeding the amyloid-β neuropathological hallmarks. The electrophysiologic characteristics of cerebellum thereby might be served as a biomarker in the prepathological detection of AD. Sleep disturbances are common in preclinical AD patients, and the cerebellum has been implicated in sleep-wake regulation by several pioneer studies. Additionally, recent studies suggest that the structure and function of the cerebellum may be altered at the early stages of AD, indicating that the cerebellum may be involved in the disease's progression. We used APPswe /PS1ΔE9 mice as a model of AD, monitored and analyzed electroencephalogram data, and assessed neuropathological profiles in the cerebellum of AD mice. Our hypothesis may establish a linkage between the cerebellum and AD, thereby potentially providing new perspectives on the pathogenesis of the disease.
Collapse
Affiliation(s)
- Hang Yu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Manli Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qiu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaojiao Xu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Rong Zhang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
3
|
Szlaga A, Sambak P, Gugula A, Trenk A, Gundlach AL, Blasiak A. Catecholaminergic innervation and D2-like dopamine receptor-mediated modulation of brainstem nucleus incertus neurons in the rat. Neuropharmacology 2022; 218:109216. [PMID: 35973599 DOI: 10.1016/j.neuropharm.2022.109216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Nucleus incertus (NI) is a brainstem structure involved in the control of arousal, stress responses and locomotor activity. It was reported recently that NI neurons express the dopamine type 2 (D2) receptor that belongs to the D2-like receptor (D2R) family, and that D2R activation in the NI decreased locomotor activity. In this study, using multiplex in situ hybridization, we observed that GABAergic and glutamatergic NI neurons express D2 receptor mRNA, and that D2 receptor mRNA-positive neurons belong to partially overlapping relaxin-3- and cholecystokinin-positive NI neuronal populations. Our immunohistochemical and viral-based retrograde tract-tracing studies revealed a dense innervation of the NI area by fibers containing the catecholaminergic biosynthesis enzymes, tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH), and indicated the major sources of the catecholaminergic innervation of the NI as the Darkschewitsch, raphe and hypothalamic A13 nuclei. Furthermore, using whole-cell patch clamp recordings, we demonstrated that D2R activation by quinpirole produced excitatory and inhibitory influences on neuronal activity in the NI, and that both effects were postsynaptic in nature. Moreover, the observed effects were cell-type specific, as type I NI neurons were either excited or inhibited, whereas type II NI neurons were mainly excited by D2R activation. Our results reveal that rat NI receives a strong catecholaminergic innervation and suggest that catecholamines acting within the NI are involved in the control of diverse processes, including locomotor activity, social interaction and nociceptive signaling. Our data also strengthen the hypothesis that the NI acts as a hub integrating arousal-related neuronal information.
Collapse
Affiliation(s)
- Agata Szlaga
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
Lin R, Liang J, Luo M. The Raphe Dopamine System: Roles in Salience Encoding, Memory Expression, and Addiction. Trends Neurosci 2021; 44:366-377. [PMID: 33568331 DOI: 10.1016/j.tins.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Dopamine (DA) neurons of the dorsal raphe nucleus (DRN) were traditionally viewed as an extension of the ventral tegmental area (VTA) DA population. While the VTA DA population is known to play important roles in reward processing, emerging evidence now supports the view that DRN DA neurons are a specialized midbrain DA subsystem that performs distinct functions in parallel to the VTA DA population. Recent studies have shed new light on the roles of DRN DA neurons in encoding incentive salience and in regulating memory expression and arousal. Here, we review recent findings using mouse models about the physiology and behavioral functions of DRN DA neurons, highlight the engagement of DRN DA neurons and their upstream circuits in opioid addiction, and discuss emerging lines of investigation that reveal multifaceted heterogeneity among DRN DA neurons.
Collapse
Affiliation(s)
- Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing 102206, China.
| | - Jingwen Liang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Hypocretin (orexin) immunoreactivity in the feline midbrain: Relevance for the generation of wakefulness. J Chem Neuroanat 2020; 105:101769. [PMID: 32145304 DOI: 10.1016/j.jchemneu.2020.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
Hypocretins (Hcrt) 1 and 2 are two neuropeptides synthesized from neurons that are located in the perifornical area of the lateral hypothalamus. These neurons project diffusely throughout the central nervous system, and have been implicated in the generation and maintenance of wakefulness, as well as in critical physiological processes that occur during this behavioral state, such as motivation. The hypocretinergic projections towards the feline midbrain have not been studied before. Therefore, the aim of the present study was to analyze their relationship to the midbrain neurons, that are critically involved in the control of sleep and wakefulness. With this purpose, we examined the distribution of Hcrt1-positive fibers in the midbrain and pontomesencephalic area of the domestic cat (Felis catus), and their relationship with catecholaminergic and cholinergic neurons by means of single and double immunohistochemistry. Hcrtergic axons with distinctive varicosities and buttons were heterogeneously distributed, exhibiting different densities in distinct regions of the midbrain. High Hcrtergic fiber densities were observed in the periaqueductal gray, interpeduncular nucleus, locus coeruleus and cholinergic mesopontine regions. In addition, we studied in detail the Hcrtergic projection towards the dopaminergic nuclei of the midbrain. While very few Hcrt + fibers were observed in the substantia nigra pars compacta, the highest density of Hcrtergic fibers was found in the dopaminergic ventral periaqueductal gray area (also called A10dc area); appositions between Hcrtergic terminals and dopaminergic somata and dendrites were observed within this area. Because this dopaminergic area has been involved in the control of wakefulness, the present anatomical data provides relevant support about the role of the Hcrtergic system in the generation of this behavioral state.
Collapse
|
6
|
Fifel K, Meijer JH, Deboer T. Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures. Sci Rep 2018; 8:7765. [PMID: 29773830 PMCID: PMC5958140 DOI: 10.1038/s41598-018-25770-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
Although the link between sleep disturbances and dopamine (DA)-related neurological and neuropsychiatric disorders is well established, the impact of sleep alterations on neuronal activity of midbrain DA-ergic structures is currently unknown. Here, using wildtype C57Bl mice, we investigated the circadian- and sleep-related modulation of electrical neuronal activity in midbrain ventral-tegmental-area (VTA) and substantia nigra (SN). We found no significant circadian modulation of activity in SN while VTA displayed a low amplitude but significant circadian modulation with increased firing rates during the active phase. Combining neural activity recordings with electroencephalogram (EEG) recordings revealed a strong vigilance state dependent modulation of neuronal activity with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in both SN and VTA. Six-hours of sleep deprivation induced a significant depression of neuronal activity in both areas. Surprisingly, these alterations lasted for up to 48 hours and persisted even after the normalization of cortical EEG waves. Our results show that sleep and sleep disturbances significantly affect neuronal activity in midbrain DA structures. We propose that these changes in neuronal activity underlie the well-known relationship between sleep alterations and several disorders involving dysfunction of the DA circuitry such as addiction and depression.
Collapse
Affiliation(s)
- Karim Fifel
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Tom Deboer
- Department of Molecular Cell Biology, Neurophysiology unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
7
|
Boosting of Thalamic D2 Dopaminergic Transmission: A Potential Strategy for Drug-Seeking Attenuation. eNeuro 2017; 4:eN-COM-0378-17. [PMID: 29279859 PMCID: PMC5738865 DOI: 10.1523/eneuro.0378-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/30/2023] Open
Abstract
This commentary focuses on novel findings by Clark et al. (2017) published in eNeuro, which show that dopamine D2 receptors (D2Rs) in the paraventricular nucleus of the thalamus (PVT) are involved in cocaine sensitization. We extend the discussion on how their findings contribute to our understanding of the role of the PVT in drug seeking by providing new insight on the role of the PVT in the regulation of food-seeking and fear responses. We also consider the significance of the neuroanatomical findings reported by Clark et al., that the PVT is reciprocally connected with areas of the brain involved in addiction and discuss the implications associated with the source and type of dopaminergic fibers innervating this area of the thalamus.
Collapse
|
8
|
Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, Gradinaru V. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 2017; 94:1205-1219.e8. [PMID: 28602690 DOI: 10.1016/j.neuron.2017.05.020] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 01/07/2023]
Abstract
Ventral midbrain dopamine (DA) is unambiguously involved in motivation and behavioral arousal, yet the contributions of other DA populations to these processes are poorly understood. Here, we demonstrate that the dorsal raphe nucleus DA neurons are critical modulators of behavioral arousal and sleep-wake patterning. Using simultaneous fiber photometry and polysomnography, we observed time-delineated dorsal raphe nucleus dopaminergic (DRNDA) activity upon exposure to arousal-evoking salient cues, irrespective of their hedonic valence. We also observed broader fluctuations of DRNDA activity across sleep-wake cycles with highest activity during wakefulness. Both endogenous DRNDA activity and optogenetically driven DRNDA activity were associated with waking from sleep, with DA signal strength predictive of wake duration. Conversely, chemogenetic inhibition opposed wakefulness and promoted NREM sleep, even in the face of salient stimuli. Therefore, the DRNDA population is a critical contributor to wake-promoting pathways and is capable of modulating sleep-wake states according to the outside environment, wherein the perception of salient stimuli prompts vigilance and arousal.
Collapse
Affiliation(s)
- Jounhong Ryan Cho
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer B Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - J Elliott Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lindsay R Bremner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
9
|
Walczak M, Błasiak T. Midbrain dopaminergic neuron activity across alternating brain states of urethane anaesthetized rat. Eur J Neurosci 2017; 45:1068-1077. [PMID: 28177164 DOI: 10.1111/ejn.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
Midbrain dopaminergic neurons are implicated in the control of motor functions and reward-driven behaviours. The function of this neuronal population is strongly connected with distinct patterns of firing - irregular or bursting, which either maintains basal levels of dopamine (DA) or leads to phasic release, respectively. Heterogeneity of dopaminergic neurons, observed on both structural and functional levels, is also reflected in different responses of DA neurons to changes in global brain states. Preparation of urethane anaesthetized animal is a broadly used model to study brain state dependent activity of neurons. Unfortunately activity of midbrain DA neurons across urethane induced cyclic, spontaneous brain state alternations is poorly described. To fulfil this gap in our knowledge we have performed simultaneous, extracellular recordings of the firing of single putative DA neurons combined with continuous brain state monitoring. We found that during slow wave activity, the firing rate of recorded putative DA neurons was significantly higher compared to firing rates during activated state, both in ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). In the presence of cortical slow waves, putative dopaminergic neurons also intensified bursting activity, but the magnitude of this phenomena differed in respect to the examined region (VTA or SNc). Our results show that activity of DA neurons under urethane anaesthesia is brain-state dependent and emphasize the importance of brain state monitoring during electrophysiological experiments.
Collapse
Affiliation(s)
- Magdalena Walczak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
10
|
Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study. Brain Struct Funct 2015; 221:3521-46. [PMID: 26462664 DOI: 10.1007/s00429-015-1117-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS-NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep.
Collapse
|
11
|
Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas. Sci Rep 2015; 5:10041. [PMID: 25973686 PMCID: PMC4431128 DOI: 10.1038/srep10041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/17/2015] [Indexed: 12/22/2022] Open
Abstract
The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself.
Collapse
|
12
|
Garcia-Rill E, D’Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology-Implications for schizophrenia. Sleep Sci 2015; 8:82-91. [PMID: 26483949 PMCID: PMC4608902 DOI: 10.1016/j.slsci.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 01/24/2023] Open
Abstract
Schizophrenia is characterized by major sleep/wake disturbances including increased vigilance and arousal, decreased slow wave sleep, and increased REM sleep drive. Other arousal-related symptoms include sensory gating deficits as exemplified by decreased habituation of the blink reflex. There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease. Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.
Collapse
Key Words
- CaMKII, calcium/calmodulin-dependent protein kinase
- Calcium channels
- EEG, electroencephalogram
- EPSC, excitatory postsynaptic potential
- GABA, γ aminobutyric acid
- Gamma band activity
- InsP, inositol 1,4,5-triphosphate receptor protein
- KA, kainic acid
- NCS-1, neuronal calcium sensor protein 1
- NMDA, n methyl d aspartic acid
- Neuronal calcium sensor protein
- P50 potential
- PGO, ponto-geniculo-occipital
- PPN, pedunculopontine nucleus
- Pf, parafascicular nucleus
- RAS, reticular activating system
- REM, rapid eye movement
- SWS, slow wave sleep
- SubCD, subcoeruleus dorsalis
- cAMP, cyclic adenosine monophosphate
- ω-Aga, ω-agatoxin-IVA
- ω-CgTx, ω-conotoxin-GVIA
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stasia D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Veronica Bisagno
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco J. Urbano
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015; 6:32. [PMID: 25767461 PMCID: PMC4341569 DOI: 10.3389/fneur.2015.00032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/08/2015] [Indexed: 12/14/2022] Open
Abstract
Identifying the neuronal circuits and dynamics of sleep-to-wake transition is essential to understanding brain regulation of behavioral states, including sleep–wake cycles, arousal, and hyperarousal. Recent work by different laboratories has used optogenetics to determine the role of individual neuromodulators in state transitions. The optogenetically driven data do not yet provide a multi-dimensional schematic of the mechanisms underlying changes in vigilance states. This work presents a modeling framework to interpret, assist, and drive research on the sleep-regulatory network. We identify feedback, redundancy, and gating hierarchy as three fundamental aspects of this model. The presented model is expected to expand as additional data on the contribution of each transmitter to a vigilance state becomes available. Incorporation of conductance-based models of neuronal ensembles into this model and existing models of cortical excitability will provide more comprehensive insight into sleep dynamics as well as sleep and arousal-related disorders.
Collapse
Affiliation(s)
| | - Ramón Huerta
- BioCircuits Institute, University of California San Diego , La Jolla, CA , USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
14
|
Kelly AM, Goodson JL. Functional interactions of dopamine cell groups reflect personality, sex, and social context in highly social finches. Behav Brain Res 2014; 280:101-12. [PMID: 25496780 DOI: 10.1016/j.bbr.2014.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is well known for its involvement in novelty-seeking, learning, and goal-oriented behaviors such as social behavior. However, little is known about how DA modulates social processes differentially in relation to sex and behavioral phenotype (e.g., personality). Importantly, the major DA cell groups (A8-A15) are conserved across all amniote vertebrates, and thus broadly relevant insights may be obtained through investigations of avian species such as zebra finches (Taeniopygia guttata), which express a human-like social organization based on biparental nuclear families that are embedded within larger social groups. We here build upon a previous study that quantified multidimensional personality structures in male and female zebra finches using principal components analysis (PCA) of extensive behavioral measures in social and nonsocial contexts. These complex dimensions of behavioral phenotype can be characterized as Social competence/dominance, Gregariousness, and Anxiety. Here we analyze Fos protein expression in DA neuronal populations in response to social novelty and demonstrate that the Fos content of multiple dopamine cell groups is significantly predicted by sex, personality, social context, and their interactions. In order to further investigate coordinated neuromodulation of behavior across multiple DA cell groups, we also conducted a PCA of neural variables (DA cell numbers and their phasic Fos responses) and show that behavioral PCs are associated with unique suites of neural PCs. These findings demonstrate that personality and sex are reflected in DA neuron activity and coordinated patterns of neuromodulation arising from multiple DA cell groups.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Azogu I, de la Tremblaye PB, Dunbar M, Lebreton M, LeMarec N, Plamondon H. Acute sleep deprivation enhances avoidance learning and spatial memory and induces delayed alterations in neurochemical expression of GR, TH, DRD1, pCREB and Ki67 in rats. Behav Brain Res 2014; 279:177-90. [PMID: 25433096 DOI: 10.1016/j.bbr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
The current study investigated the effects of acute versus repeated periods of sleep deprivation on avoidance learning and spatial memory and on the expression of discrete biochemical brain signals involved in stress regulation, motivation and brain plasticity. Male Long-Evans rats were sleep deprived using the platform-over-water method for a single 4 h period (ASD) or for daily 4h RSD period on five consecutive days (CSD). The Y maze passive avoidance task (YM-PAT) and the Morris water maze (MWM) were used to determine learning and memory 1h following the last SD period. Region-specific changes in glucocorticoid receptors (GR), tyrosine hydroxylase (TH), dopamine 1 receptors (DRD1), phospho-CREB (pCREB) and Ki-67 expression were assessed in the hippocampal formation, hypothalamus and mesolimbic regions 72 h following RSD. Behaviorally, our findings revealed increased latency to re-enter the aversive arm in the YM-PAT and reduced distance traveled and latency to reach the platform in the MWM in ASD rats compared to all other groups, indicative of improved avoidance learning and spatial memory, respectively. Acute SD enhanced TH expression in the ventral tegmental area, nucleus accumbens and A11 neurons of the hypothalamus and DRD1 expression in the lateral hypothalamus. Cell proliferation in the subventricular zone and pCREB expression in the dentate gyrus and CA3 regions was also enhanced following acute SD. In contrast, repeated SD significantly elevated GR-ir at the hypothalamic paraventricular nucleus and CA1 and CA3 layers of the hippocampus compared to all other groups. Our study supports that a brief 4h sleep deprivation period is sufficient to induce delayed neurochemical changes.
Collapse
Affiliation(s)
- Idu Azogu
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Patricia Barra de la Tremblaye
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Megan Dunbar
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Marianne Lebreton
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie LeMarec
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Hélène Plamondon
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
16
|
Li S, Shi Y, Kirouac GJ. The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat. Front Neuroanat 2014; 8:136. [PMID: 25477789 PMCID: PMC4238322 DOI: 10.3389/fnana.2014.00136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the nucleus accumbens. This area of the striatum plays a key role in motivation and recent experimental evidence indicates that the PVT may have a similar function. It is well known that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) fibers have also been localized in the PVT but the source of these fibers in the rat has not been unequivocally identified. The present study was done to re-examine this question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the periaqueductal gray). In contrast, double-labeled neurons were absent in the retrorubral field (A8), substantia nigra (A9) and VTA (A10) of the midbrain. We conclude that DA fibers in the PVT do not originate from VTA but from a heterogeneous population of DA neurons located in the hypothalamus and periaqueductal gray.
Collapse
Affiliation(s)
- Sa Li
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China ; Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada ; Department of Psychiatry, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
17
|
Clément O, Valencia Garcia S, Libourel PA, Arthaud S, Fort P, Luppi PH. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study. PLoS One 2014; 9:e96851. [PMID: 24811249 PMCID: PMC4014589 DOI: 10.1371/journal.pone.0096851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 04/12/2014] [Indexed: 11/18/2022] Open
Abstract
GABAergic neurons specifically active during paradoxical sleep (PS) localized in the dorsal paragigantocellular reticular nucleus (DPGi) are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.
Collapse
Affiliation(s)
- Olivier Clément
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Sara Valencia Garcia
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Paul-Antoine Libourel
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Arthaud
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Team SLEEP, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
18
|
Kovalzon VM, Zavalko IM. The neurochemistry of the sleep-wakefulness cycle and Parkinson’s disease. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413030069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Jego S, Salvert D, Renouard L, Mori M, Goutagny R, Luppi PH, Fort P. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. PLoS One 2012; 7:e52525. [PMID: 23300698 PMCID: PMC3531409 DOI: 10.1371/journal.pone.0052525] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/15/2012] [Indexed: 01/17/2023] Open
Abstract
The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH) in neurons from the tuberal hypothalamic area (THA) which are recruited during sleep states, especially paradoxical sleep (PS). To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2) prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS). Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons.
Collapse
Affiliation(s)
- Sonia Jego
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Denise Salvert
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Leslie Renouard
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Romain Goutagny
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Pierre-Hervé Luppi
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| | - Patrice Fort
- Sleep-Waking Neuronal Networks, CNRS - UMR5292; INSERM - U1028, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
- University of Lyon, Lyon, France
| |
Collapse
|
20
|
|
21
|
Dougalis AG, Matthews GAC, Bishop MW, Brischoux F, Kobayashi K, Ungless MA. Functional properties of dopamine neurons and co-expression of vasoactive intestinal polypeptide in the dorsal raphe nucleus and ventro-lateral periaqueductal grey. Eur J Neurosci 2012; 36:3322-3332. [PMID: 22925150 DOI: 10.1111/j.1460-9568.2012.08255.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dorsal raphe nucleus (DRN) and ventrolateral periaqueductal grey (vlPAG) regions contain populations of dopamine neurons, often considered to be a dorsal caudal extension of the A10 group [mostly found in the ventral tegmental area (VTA)]. Recent studies suggest they are involved in promoting wakefulness and mediate some of the antinociceptive and rewarding properties of opiates. However, little is known about their electrophysiological properties. To address this, we used Pitx3-GFP and tyrosine hydroxylase (TH)-GFP mice to carry out targeted whole-cell recordings from this population in acute brain slices. We found that DRN/vlPAG dopamine neurons have characteristics similar to most VTA dopamine neurons, but distinct from dorsal raphe serotonin neurons. They fire broad action potentials at a relatively slow, regular rate, exhibit a hyperpolarization-activated inward current and delayed repolarization, and show spike-frequency adaptation in response to prolonged depolarization. In addition, they receive fast excitatory and inhibitory synaptic inputs. Moreover, we found co-expression of vasoactive intestinal polypeptide in small, periaqueductal dopamine neurons, but generally not in larger, more ventral dopamine neurons.
Collapse
Affiliation(s)
- Antonios G Dougalis
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Gillian A C Matthews
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Matthew W Bishop
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Frédéric Brischoux
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Mark A Ungless
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
22
|
Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 2012; 7:e28724. [PMID: 22235249 PMCID: PMC3250413 DOI: 10.1371/journal.pone.0028724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022] Open
Abstract
The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis.
Collapse
|
23
|
Meyers N, Fromm S, Luckenbaugh DA, Drevets WC, Hasler G. Neural correlates of sleepiness induced by catecholamine depletion. Psychiatry Res 2011; 194:73-8. [PMID: 21872452 PMCID: PMC3185157 DOI: 10.1016/j.pscychresns.2011.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022]
Abstract
Although extensive indirect evidence exists to suggest that the central dopaminergic system plays a significant role in the modulation of arousal, the functional effect of the dopaminergic influence on the regulation of the sleep-wake cycle remains unclear. Thirteen healthy volunteers and 15 unmedicated subjects with a history of major depressive disorder underwent catecholamine depletion (CD) using oral alpha-methyl-para-tyrosine in a randomized, placebo-controlled, double-blind, crossover study. The main outcome measures in both sessions were sleepiness (Stanford-Sleepiness-Scale), cerebral glucose metabolism (positron emission tomography), and serum prolactin concentration. CD consistently induced clinically relevant sleepiness in both groups. The CD-induced prolactin increase significantly correlated with CD-induced sleepiness but not with CD-induced mood and anxiety symptoms. CD-induced sleepiness correlated with CD-induced increases in metabolism in the medial and orbital frontal cortex, bilateral superior temporal cortex, left insula, cingulate motor area and in the vicinity of the periaqueductal gray. This study suggests that the association between dopamine depletion and sleepiness is independent of the brain reward system and the risk for depression. The visceromotor system, the cingulate motor area, the periaqueductal gray and the caudal hypothalamus may mediate the impact of the dopaminergic system on regulation of wakefulness and sleep.
Collapse
Affiliation(s)
- Noah Meyers
- National Institute of Mental Health, Mood and Anxiety Disorders Program, Section on Neuroimaging in Mood and Anxiety Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Fromm
- National Institute of Mental Health, Mood and Anxiety Disorders Program, Section on Neuroimaging in Mood and Anxiety Disorders, National Institutes of Health, Bethesda, MD 20892
| | - David A. Luckenbaugh
- National Institute of Mental Health, Mood and Anxiety Disorders Program, Section on Neuroimaging in Mood and Anxiety Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Wayne C. Drevets
- Department of Psychiatry, Oklahoma University School of Medicine; Laureate Institute for Brain Research; Tulsa, OK, 74136
| | - Gregor Hasler
- Psychiatric University Hospital, University of Berne, Berne, Switzerland,Corresponding author. University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern, Switzerland. Tel.: +41 31 930-9543; fax: +41 31 930 99 21. (G. Hasler)
| |
Collapse
|
24
|
Schwarz PB, Peever JH. Dopamine triggers skeletal muscle tone by activating D1-like receptors on somatic motoneurons. J Neurophysiol 2011; 106:1299-309. [PMID: 21653722 DOI: 10.1152/jn.00230.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dopamine system plays an integral role in motor physiology. Dopamine controls movement by modulation of higher-order motor centers (e.g., basal ganglia) but may also regulate movement by directly controlling motoneuron function. Even though dopamine cells synapse onto motoneurons, which themselves express dopamine receptors, it is unknown whether dopamine modulates skeletal muscle activity. Therefore, we aimed to determine whether changes in dopaminergic neurotransmission at a somatic motor pool affect motor outflow to skeletal muscles. We used microinjection, neuropharmacology, electrophysiology, and histology to determine whether manipulation of D(1)- and D(2)-like receptors on trigeminal motoneurons affects masseter and/or tensor palatini muscle tone in anesthetized rats. We found that apomorphine (a dopamine analog) activated trigeminal motoneurons and triggered a potent increase in both masseter and tensor palatini tone. This excitatory effect is mediated by D(1)-like receptors because specific D(1)-like receptor activation strengthened muscle tone and blockade of these receptors prevented dopamine-driven activation of motoneurons. Blockade of D(1)-like receptors alone had no detectable effect on basal masseter/tensor palatini tone, indicating the absence of a functional dopamine drive onto trigeminal motoneurons, at least during isoflurane anesthesia. Finally, we showed that D(2)-like receptors do not affect either trigeminal motoneuron function or masseter/tensor palatini muscle tone. Our results provide the first demonstration that dopamine can directly control movement by manipulating somatic motoneuron behavior and skeletal muscle tone.
Collapse
Affiliation(s)
- Peter B Schwarz
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada
| | | |
Collapse
|
25
|
Liu YP, Tung CS, Chuang CH, Lo SM, Ku YC. Tail-pinch stress and REM sleep deprivation differentially affect sensorimotor gating function in modafinil-treated rats. Behav Brain Res 2010; 219:98-104. [PMID: 21167213 DOI: 10.1016/j.bbr.2010.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/04/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Prepulse inhibition (PPI) is a phenomenon in which a mild stimulus attenuates a cross-modality startle response to later intense stimulation. PPI is thought to index the central inhibitory mechanism through which behavioural responses are filtered. The present study compared the effects of two stress paradigms on the acoustic startle response (ASR) and on PPI in a rat model. The tail-pinch (TP) method produces an acute and immediate stressful condition, whereas rapid eye movement (REM) sleep deprivation (REMSD) leads to a more persistent and long-term stress. Our results demonstrated that in rats, TP stress reduced the size of the ASR, and REMSD impaired PPI. The wake-promoting agent modafinil (MOD) had no effect on PPI if given alone. However, MOD reduced the ASR and PPI under TP stress, whereas only PPI was reduced by MOD after 96 h of REMSD. These results suggest that distinct stress paradigms differentially mediated sensorimotor gating abilities in terms of either responsiveness to the stimulus or information-filtering capabilities.
Collapse
Affiliation(s)
- Yia-Ping Liu
- Department of Physiology and Biophysics, National Defence Medical Centre, Taipei, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
26
|
Moorman DE, Aston-Jones G. Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: diurnal influences. J Neurosci 2010; 30:15585-99. [PMID: 21084614 PMCID: PMC3004096 DOI: 10.1523/jneurosci.2871-10.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/02/2010] [Accepted: 09/21/2010] [Indexed: 11/21/2022] Open
Abstract
Recent studies show that glutamate and orexin (ORX, also known as hypocretin) inputs to the ventral tegmental area (VTA) dopamine (DA) cell region are essential for conditioned behavioral responses to reward-associated stimuli. In vitro experiments showed that ORX inputs to VTA potentiate responses of DA neurons to glutamate inputs, but it has remained unclear which glutamate inputs are modulated by ORX. The medial prefrontal cortex (mPFC) is a good candidate, given its role in processing complex stimulus-response information and its reciprocal connections with VTA DA neurons. Here we used in vivo recordings in anesthetized rats to investigate the responses of VTA DA neurons to mPFC stimulation, and how these responses are modulated by ORX. We demonstrate that mPFC stimulation evokes short- and long-latency excitation and inhibition in DA neurons. Maximal short-latency excitatory responses originated from stimulation sites in ventral prelimbic/infralimbic cortex, and were significantly more frequent during the active than during the rest period of the diurnal cycle. Application of ORX onto VTA DA neurons increased baseline activity and augmented or revealed excitatory responses to mPFC stimulation independent of changes in baseline activity, and without consistently affecting inhibitory responses. Moreover, orexin-1 receptor antagonism decreased tonic DA cell activity in active- but not rest-period animals, confirming a diurnal influence of ORX. These results indicate that ORX potently influences DA neuron activity, in part by modulating responses to mPFC inputs. By regulating prefrontal control of DA release, ORX projections to VTA may shape motivated behaviors in response to conditioned stimuli.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|