1
|
Gui Y, Duan S, Xiao L, Tang J, Li A. Bexarotent Attenuated Chronic Constriction Injury-Induced Spinal Neuroinflammation and Neuropathic Pain by Targeting Mitogen-Activated Protein Kinase Phosphatase-1. THE JOURNAL OF PAIN 2019; 21:1149-1159. [PMID: 30660765 DOI: 10.1016/j.jpain.2019.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
It is widely accepted that neuroinflammation in the spinal cord contributes to the development of central sensitization in neuropathic pain. Mitogen-activated protein kinase (MAPK) activation plays a vital role in the development of neuroinflammation in the spinal cord. In this study, we investigated the effect of bexarotene (bex), a retinoid X receptor agonist, on MAPKs activation in chronic constriction injury (CCI)-induced neuropathic pain. The data showed that daily treatment with bex 50 mg/kg significantly alleviated CCI-induced nociceptive hypersensitivity in rats. Bex 50 mg/kg/day inhibited CCI-induced MAPKs (p38MAPK, ERK1/2, and JNK) activation and upregulation of proinflammatory factors (IL-1β, tumor necrosis factor-α and IL-6). Bex also reversed CCI-induced microglia activation in the ipsilateral spinal cord. Furthermore, bex treatment significantly upregulated MKP-1 in the spinal cord. These effects were completely abrogated by MKP-1 inhibitor BCI. These results indicated that bex relieved CCI-induced neuroinflammation and neuropathic pain by targeting MKP-1. Therefore, bex might be a potential agent for the treatment of neuropathic pain. PERSPECTIVE: Bex could relieve neuropathic pain behaviors in animals by reversing MKP-1 downregulation and MAPKs activation in the spinal cord. Therapeutic applications of bex may be extended beyond cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Yulong Gui
- Department of Anesthesiology, Maternal and Child Hospital of Hunan Province, Changsha, Hunan, China
| | - Shunyuan Duan
- Department of Endocrinology, Yongzhou-affiliated Hospital of University of South China, Yongzhou, Hunan Province, China
| | - Lihong Xiao
- Department of Anesthesiology, Maternal and Child Hospital of Hunan Province, Changsha, Hunan, China
| | - Jing Tang
- Department of Anesthesiology, Maternal and Child Hospital of Hunan Province, Changsha, Hunan, China
| | - Aiyuan Li
- Department of Anesthesiology, Maternal and Child Hospital of Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
2
|
Saeb S, Azari H, Mostafavi-Pour Z, Ghanbari A, Ebrahimi S, Mokarram P. 9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:523-532. [PMID: 30214105 PMCID: PMC6123560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways. METHODS Cortical neural stem cells were isolated from 14-day-old rat embryos and cultured using the neurosphere assay. The cells were treated in 4 different conditions for 1 week: the negative control group received only the basic fibroblast growth factor, the positive control group received only T3 without growth factors, the RA group was treated with 9-cis-RA, and the Vit D3 group was treated with 1,25(OH)2D3. The effects of 9-cis-RA and 1,25(OH)2D3 on the level of the myelin basic protein (MBP) and the gene expression of the SOX10, MBP gene, HES5, and LRP6 were studied using flow cytometry and real-time PCR. The data were analyzed using one-way ANOVA with GraphPad Prism. A P value less than 0.05 was considered significant. RESULTS The mRNA expressions of the SOX10, MBP, and MBP gene were significantly increased in the treated groups compared with the negative control group; the increase was similar in the 9-cis-RA group and the positive control group. Furthermore, 9-cis-RA significantly decreased the expression of the HES5 gene, a Notch signaling pathway transcription factor, and 1,25(OH)2D3 significantly reduced the expression of the LRP6 gene, a Wnt signaling pathway co-receptor. CONCLUSION It seems that 9-cis-RA and 1,25(OH)2D3 are good candidates to improve the differentiation of OPCs into oligodendrocytes.
Collapse
Affiliation(s)
- Saeedeh Saeb
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Hassan Azari
- Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences and Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran;
| | | | - Amir Ghanbari
- Department of Anatomical Sciences, Yasuj University of Medical sciences, Yasuj, Iran
| | - Sepideh Ebrahimi
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Pooneh Mokarram
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
3
|
Kumar A, Singh HN, Pareek V, Raza K, Dantham S, Kumar P, Mochan S, Faiq MA. A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE) Consensus Sequence Repeats in the Viral Genome. Front Hum Neurosci 2016; 10:403. [PMID: 27555815 PMCID: PMC4977292 DOI: 10.3389/fnhum.2016.00403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 11/13/2022] Open
Abstract
Owing to the reports of microcephaly as a consistent outcome in the fetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV)-microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favor of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1) sequence homology between ZIKV genome and the response element of an early neural tube developmental marker "retinoic acid" in human DNA and (2) comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE) consensus sequence (5'-AGGTCA-3') in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly) and other viruses available in National Institute of Health genetic sequence database (GenBank) for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause fetal brain defects (for which maternal-fetal transmission during developing stage may be required). The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although, bioinformatic evidence and embryological features are in favor of our hypothesis, additional studies including animal models are warranted to validate our proposition. Such studies are likely to unfold ZIKV-microcephaly association and may help in devising methods to combat it.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences New Delhi, India
| | - Himanshu N Singh
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, India
| | - Vikas Pareek
- Computational Neuroscience and Neuroimaging Division, National Brain Research Centre Manesar, India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences New Delhi, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, India
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences New Delhi, India
| | - Sankat Mochan
- Department of Anatomy, All India Institute of Medical Sciences New Delhi, India
| | - Muneeb A Faiq
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical SciencesNew Delhi, India; Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of medical SciencesNew Delhi, India; Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of DelhiNew Delhi, India
| |
Collapse
|
4
|
Litwa E, Rzemieniec J, Wnuk A, Lason W, Krzeptowski W, Kajta M. RXRα, PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of nonylphenol in mouse hippocampal cells. J Steroid Biochem Mol Biol 2016; 156:43-52. [PMID: 26643981 DOI: 10.1016/j.jsbmb.2015.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/21/2015] [Accepted: 11/26/2015] [Indexed: 12/26/2022]
Abstract
In the present study, we investigated the role of the retinoid X receptor (RXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), in the apoptotic and toxic effects of nonylphenol in mouse primary neuronal cell cultures. Our study demonstrated that nonylphenol activated caspase-3 and induced lactate dehydrogenase (LDH) release in hippocampal cells, which was accompanied by an increase in the mRNA expression and protein levels of RXRα, PXR and CAR. Nonylphenol stimulated Rxra, Pxr, and Car mRNA expression. These effects were followed by increase in the protein levels of particular receptors. Immunofluorescence labeling revealed the cellular distribution of RXRα, PXR and CAR in hippocampal neurons in response to nonylphenol, shortening of neurites and cytoplasmic shrinking, as indicated by MAP2 staining. It also showed NP-induced translocation of receptor-specific immunofluorescence from cytoplasm to the nucleus. The use of specific siRNAs demonstrated that Rxra-, Pxr-, and Car-siRNA-transfected cells were less vulnerable to nonylphenol-induced activation of caspase-3 and LDH, thus confirming the key involvement of RXRα/PXR/CAR signaling pathways in the apoptotic and neurotoxic actions of nonylphenol. These new data give prospects for the targeting xenobiotic nuclear receptors to protect the developing nervous system against endocrine disrupting chemicals.
Collapse
Affiliation(s)
- E Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Confocal Microscopy Laboratory, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
5
|
Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2015; 47:485-505. [PMID: 25445182 DOI: 10.1016/j.neubiorev.2014.10.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/30/2023]
Abstract
The cuprizone mouse model allows the investigation of the complex molecular mechanisms behind nonautoimmune-mediated demyelination and spontaneous remyelination. While it is generally accepted that oligodendrocytes are specifically vulnerable to cuprizone intoxication due to their high metabolic demands, a comprehensive overview of the etiology of cuprizone-induced pathology is still missing to date. In this review we extensively describe the physico-chemical mode of action of cuprizone and discuss the molecular and enzymatic mechanisms by which cuprizone induces metabolic stress, oligodendrocyte apoptosis, myelin degeneration and eventually axonal and neuronal pathology. In addition, we describe the dual effector function of the immune system which tightly controls demyelination by effective induction of oligodendrocyte apoptosis, but in contrast also paves the way for fast and efficient remyelination by the secretion of neurotrophic factors and the clearance of cellular and myelinic debris. Finally, we discuss the many clinical symptoms that can be observed following cuprizone treatment, and how these strengthened the cuprizone model as a useful tool to study human multiple sclerosis, schizophrenia and epilepsy.
Collapse
|
6
|
Kruczek D, Clarner T, Beyer C, Kipp M, Mey J. Activation of Nuclear Receptors RAR, RXR, and LXR Does Not Reduce Cuprizone-Induced Demyelination in Mice. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Tim Clarner
- Institut für Neuroanatomie, Universitätsklinikum Aachen, Germany
| | - Cordian Beyer
- Institut für Neuroanatomie, Universitätsklinikum Aachen, Germany
| | - Markus Kipp
- Institut für Neuroanatomie, Universitätsklinikum Aachen, Germany
- Lehrstuhl II – Neuroanatomie, Ludwig-Maximilians-Universität München, Germany
| | - Jörg Mey
- Institut für Biologie II, RWTH Aachen, Germany
- Laboratorio Regeneraci73243;n Nerviosa, Hospital Nacional de Parapléjicos, Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht University, Netherlands
| |
Collapse
|
7
|
Mizee MR, Nijland PG, van der Pol SMA, Drexhage JAR, van het Hof B, Mebius R, van der Valk P, van Horssen J, Reijerkerk A, de Vries HE. Astrocyte-derived retinoic acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol 2014; 128:691-703. [PMID: 25149081 DOI: 10.1007/s00401-014-1335-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) lesions are characterized by the presence of activated astrocytes, which are thought to actively take part in propagating lesion progression by secreting pro-inflammatory mediators. Conversely, reactive astrocytes may exert disease-dampening effects through the production of trophic factors and anti-inflammatory mediators. Astrocytic control of the blood-brain barrier (BBB) is crucial for normal brain homeostasis and BBB disruption is a well-established early event in MS lesion development. Here, we set out to unravel potential protective effects of reactive astrocytes on BBB function under neuroinflammatory conditions as seen in MS, where we focus on the role of the brain morphogen retinoic acid (RA). Immunohistochemical analysis revealed that retinaldehyde dehydrogenase 2 (RALDH2), a key enzyme for RA synthesis, is highly expressed by reactive astrocytes throughout white matter lesions compared to control and normal appearing white matter. In vitro modeling of reactive astrocytes resulted in increased expression of RALDH2, enhanced RA synthesis, and a protective role for astrocyte-derived RA on BBB function during inflammation-induced barrier loss. Furthermore, RA induces endothelial immune quiescence and decreases monocyte adhesion under inflammatory conditions. Finally, we demonstrated that RA attenuated oxidative stress in inflamed endothelial cells, through activation of the antioxidant transcription factor nuclear factor E2 related factor 2. In summary, RA synthesis by reactive astrocytes represents an endogenous protective response to neuroinflammation, possibly aimed at protecting the BBB against inflammatory insult. A better understanding of RA signaling in MS pathophysiology may lead to the discovery of novel targets to halt disease progression.
Collapse
|
8
|
Fandel D, Wasmuht D, Avila-Martín G, Taylor JS, Galán-Arriero I, Mey J. Spinal cord injury induced changes of nuclear receptors PPARα and LXRβ and modulation with oleic acid/albumin treatment. Brain Res 2013; 1535:89-105. [PMID: 23958344 DOI: 10.1016/j.brainres.2013.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 11/19/2022]
Abstract
In previous studies with animal models of spinal cord injury (SCI) pharmacological activation of peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) were used to reduce tissue damage and promote behavioral recovery in animal models. We have studied the endogenous expression of the transcription factors PPARα and LXRβ in the chronic stage after SCI in rats. The immunohistochemical investigation revealed a long lasting increase in the level of PPARα in white matter in the vicinity of the lesion site. The source of this signal was identified in a subpopulation of astrocytes outside of the glial scar area. Intrathecal injections of oleic acid/albumin reduced the lesion-induced PPARα immunoreactivity. In addition, ependymal cells displayed a prominent PPARα signal in the non-injured spinal cord, and continued to express the receptor as they proliferated and migrated within the damaged tissue. The nuclear receptor LXRβ was detected at similar levels after SCI as in sham operated animals. We found high levels of immunoreactivity in the gray matter, while in the white matter it was present in subpopulations of astrocytes and oligodendrocytes. Macrophages that had accumulated within the center of the lesion contained LXRβ in their cell nuclei. Possible endogenous functions of PPARα and LXRβ after SCI are discussed, specifically the control of fatty acid and cholesterol metabolism and the regulation of inflammatory reactions.
Collapse
Affiliation(s)
- Daniel Fandel
- Laboratorio Regeneración Nerviosa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha, Toledo, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system characterized by infiltration of immune cells and progressive damage to myelin and axons. All therapeutics used to treat MS have been developed to target an overactive immune response, with aims to reduce disease activity. Chronic demyelinated axons are further prone to irreversible damage and death, and it is imperative that new therapies address this critical issue. Remyelination, the generation of new myelin in the adult nervous system, is an endogenous repair mechanism that restores function of denuded axons and delays their deterioration. Although remyelination can be extensive in some patients, the majority of cases limit repair only to the acute phase of disease. A significant current drive in new MS therapeutics is to identify targets that can promote remyelination by boosting endogenous oligodendrocyte precursor cells to form new myelin. Also, a number of inhibitory pathways have been identified in chronic MS lesions that prevent oligodendrocyte precursor cells from being properly recruited to demyelinated lesions or interfere with their differentiation to myelin-forming oligodendrocytes. In this review, we introduce the phenomenon of remyelination from the view of experimental models and studies in MS patients, describe a potential role in remyelination for currently available MS mediations, and discuss many avenues that are being actively studied to promote remyelination. The next frontier in MS therapeutics will supplement immunomodulation with agents that directly foster myelin repair, with aims to delay disease progression and recover lost neurological functions.
Collapse
Affiliation(s)
- Michael B. Keough
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| |
Collapse
|
10
|
Gonzalo H, Brieva L, Tatzber F, Jové M, Cacabelos D, Cassanyé A, Lanau-Angulo L, Boada J, Serrano JCE, González C, Hernández L, Peralta S, Pamplona R, Portero-Otin M. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 2012; 123:622-34. [PMID: 22924648 DOI: 10.1111/j.1471-4159.2012.07934.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/18/2012] [Accepted: 08/19/2012] [Indexed: 11/30/2022]
Abstract
Metabolomic and lipidomic analyses have been used for the profiling of neurodegenerative processes, both in targeted and untargeted approaches. In this work we have applied these techniques to the study of CSF samples of multiple sclerosis (MS) patients (n = 9), compared with samples of non-MS individuals (n = 9) using mass-spectrometry. We have used western-blot and analyzed cell culture to confirm pathogenic pathways suggested by mass-spectrometric measurements. The results of the untargeted approach of metabolomics and lipidomics suggest the existence of several metabolites and lipids discriminating both populations. Applying targeted lipidomic analyses focused to a pathogenic pathway in MS, oxidative stress, reveal that the lipid peroxidation marker 8-iso-prostaglandin F2α is increased in CSF from MS patients. Furthermore, as lipid peroxidation exerts its pathogenical effects through protein modification, we studied the incidence of protein lipoxidation, revealing specific increases in carboxymethylated, neuroketal and malondialdehyde-mediated protein modifications in proteins of CSF from MS patients, despite the absence of their precursors glyoxal and methylglyoxal. Finally, we report that the level of neuroketal-modified proteins correlated with a hitherto unknown increased amount of autoantibodies against lipid peroxidation-modified proteins in CSF, without compensation by signaling induced by lipid peroxidation via peroxisome proliferator-activated receptor γ (PPARγ). The results, despite the limitation of being obtained in a small population, strongly suggest that autoimmunity against in situ produced epitopes derived from lipid peroxidation can be a relevant pathogenic factor in MS.
Collapse
Affiliation(s)
- Hugo Gonzalo
- Department of Experimental Medicine, PCiTAL-Universitat de Lleida-IRBLLEIDA, Lleida, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|