1
|
Bennett T, Walmsley S, Bendayan R. Aging with HIV and HIV-associated neurocognitive impairment. AIDS 2025; 39:215-228. [PMID: 39878669 DOI: 10.1097/qad.0000000000004057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 01/31/2025]
Abstract
Antiretroviral therapy (ART) is the most effective therapeutic intervention for HIV infection. With improved survival, comorbidities, including neuropsychiatric and HIV-associated neurocognitive impairment (NCI) are of increasing concern to aging people with HIV (PWH). The clinical features and the inter-individual variability of the aging process confound the elucidation of the diagnosis and underlying mechanisms of cognitive dysfunction in aging PWH. Herein, we review the clinical aspects of HIV-associated NCI in the aging PWH contrasting to the normative neuro-aging seen in people without HIV (PWoH) and address the growing role of biomarkers to predict the onset of age-related diseases in PWH and their clinical significance. There is an urgent need for further research into the role of specific immune brain biomarkers in predicting the aging process and how these biomarkers may assist in understanding the mechanisms and possible prognosis of age-related neurocognitive comorbidities in aging PWH as an endpoint for interventional studies.
Collapse
Affiliation(s)
- Teresa Bennett
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
| | - Sharon Walmsley
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
| |
Collapse
|
2
|
Huang C, Qu QR, Hoque MT, Bendayan R. Dolutegravir induces endoplasmic reticulum stress at the blood-brain barrier. FASEB J 2025; 39:e70377. [PMID: 39985305 PMCID: PMC11846018 DOI: 10.1096/fj.202402677rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
Dolutegravir (DTG)-based antiretroviral therapy is the contemporary first-line therapy to treat HIV infection. Despite its efficacy, mounting evidence has suggested a higher risk of neuropsychiatric adverse effect (NPAE) associated with DTG use, with a limited understanding of the underlying mechanisms. Our laboratory has previously reported a toxic effect of DTG but not bictegravir (BTG) in disrupting the blood-brain barrier (BBB) integrity. The current study aimed to investigate the underlying mechanism of DTG toxicity. Primary cultures of mouse brain microvascular endothelial cells were treated with DTG and BTG at therapeutically relevant concentrations. RNA sequencing, qPCR, western blot analysis, and cell stress assays (Ca2+ flux, H2DCFDA, TMRE, MTT) were applied to assess the results. The gene ontology (GO) analysis revealed an enriched transcriptome signature of endoplasmic reticulum (ER) stress following DTG treatment. We demonstrated that therapeutic concentrations of DTG but not BTG activated the ER stress sensor proteins (PERK, IRE1, p-IRE1) and downstream ER stress markers (eIF2α, p-eIF2α, Hspa5, Atf4, Ddit3, Ppp1r15a, Xbp1, spliced-Xbp1). In addition, DTG treatment resulted in a transient Ca2+ flux, an aberrant mitochondrial membrane potential, and a significant increase in reactive oxygen species in treated cells. Furthermore, we found that prior treatment with ER sensor or ER stress inhibitors significantly mitigated the DTG-induced downregulation of tight junction proteins (Zo-1, Ocln, Cldn5) and elevation of pro-inflammatory cytokines and chemokines (Il6, Il23a, Il12b, Cxcl1, Cxcl2). The current study provides valuable insights into DTG-mediated cellular toxicity mechanisms, which may serve as a potential explanation for DTG-associated NPAEs in the clinic.
Collapse
Affiliation(s)
- Chang Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| | - Qing Rui Qu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| | - Md. Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Haorah J, Malaroviyam S, Iyappan H, Samikkannu T. Neurological impact of HIV/AIDS and substance use alters brain function and structure. Front Med (Lausanne) 2025; 11:1505440. [PMID: 39839621 PMCID: PMC11747747 DOI: 10.3389/fmed.2024.1505440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection is the cause of acquired immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) has successfully controlled AIDS, but HIV-associated neurocognitive disorders (HANDs) remain prevalent among people with HIV. HIV infection is often associated with substance use, which promotes HIV transmission and viral replication and exacerbates HANDs even in the era of cART. Thus, the comorbid effects of substance use exacerbate the neuropathogenesis of HANDs. Unraveling the mechanism(s) of this comorbid exacerbation at the molecular, cell-type, and brain region levels may provide a better understanding of HAND persistence. This review aims to highlight the comorbid effects of HIV and substance use in specific brain regions and cell types involved in the persistence of HANDs. This review includes an overview of post-translational modifications, alterations in microglia-specific biomarkers, and possible mechanistic pathways that may link epigenomic modifications to functional protein alterations in microglia. The impairment of the microglial proteins that are involved in neural circuit function appears to contribute to the breakdown of cellular communication and neurodegeneration in HANDs. The epigenetic modification of N-terminal acetylation is currently understudied, which is discussed in brief to demonstrate the important role of this epigenetic modification in infected microglia within specific brain regions. The discussion also explores whether combined antiretroviral therapy is effective in preventing HIV infection or substance-use-mediated post-translational modifications and protein alterations in the persistence of neuropathogenesis in HANDs.
Collapse
Affiliation(s)
| | | | | | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Shabalala SN, Luvuno M, Mabandla MV. Modulation of tenofovir by probenecid: Impact on drug, interleukin-1β, and dopamine concentration in the prefrontal cortex and cerebellum. Neuroscience 2024; 562:209-216. [PMID: 39461661 DOI: 10.1016/j.neuroscience.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The blood-brain barrier's limited permeability to tenofovir restricts its ability to clear HIV from the brain. Probenecid acting as an adjuvant increases tenofovir concentrations in plasma and the kidneys thereby enhancing its therapeutic effect. However, the probenecid effect on brain tenofovir concentration and possible adverse effects remains poorly understood. We investigated the effect of probenecid co-administered tenofovir on tenofovir brain concentration, interleukin-1β (IL-1β) and dopamine concentration in the prefrontal cortex (PFC) and the cerebellum. Ninety-six male BALB/c mice were divided into four groups viz: a control group, Tenofovir disoproxil fumarate (TDF) treated, probenecid treated, and TDF + probenecid treated. We orally administered a single dose of TDF (5 mg/kg), and probenecid (8.3 mg/kg), and sacrificed six mice per group after 1 h, 4 h, and 6 h post-treatment to collect plasma, PFC, and cerebellar tissue. Co-administered tenofovir increased tenofovir concentration, peaking at 6 h with the cerebellum having the highest concentration. This suggests that probenecid enhanced the entry of tenofovir into the brain. Tenofovir alone increased IL-1β concentration at all intervals post-administration, while probenecid alone had no impact on IL-1β concentration. Co-administered tenofovir also increased IL-1β concentration. Probenecid's limited impact on IL-1β concentration following co-administration suggests that its anti-inflammatory properties may require more than 6 h to have an effect. Furthermore, neither tenofovir nor probenecid affected dopamine concentration. In conclusion, probenecid enhances the concentration and retention of tenofovir in the brain, making it a possible pharmacokinetic enhancer. However, its anti-inflammatory effects may require a longer duration to fully manifest.
Collapse
Affiliation(s)
- Simangele Ne Shabalala
- Discipline of Human Physiology, School of Laboratory Medicine and MedicalSciences, College of Health Sciences, South Africa.
| | - M Luvuno
- Discipline of Human Physiology, School of Laboratory Medicine and MedicalSciences, College of Health Sciences, South Africa
| | - M V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and MedicalSciences, College of Health Sciences, South Africa
| |
Collapse
|
5
|
Lawal SK, Olojede SO, Alabi BA, Dithole KS, Matula ST, Naidu EC, Rennie CO, Azu OO. Evaluation of Hippocampal Microanatomy and Neuro-Biomarkers Following Administration of Silver Nanoparticles Conjugated with Tenofovir Disoproxil Fumarate in Experimental Diabetic Rats. Pharmaceuticals (Basel) 2024; 17:1635. [PMID: 39770477 PMCID: PMC11728639 DOI: 10.3390/ph17121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 01/16/2025] Open
Abstract
Adverse complications like metabolic disorders, neurotoxicity, and low central nervous system (CNS) penetration are associated with the long-term use of tenofovir disoproxil fumarate (TDF). Therefore, some modifications are required to enhance neurological functions using silver nanoparticles (AgNPs). This study aimed to evaluate the neuroprotective impact of silver nanoparticles (AgNPs)-conjugated TDF as AgNPs-TDF on the hippocampal microanatomy and some neuro-biomarkers of diabetic rats. Forty-two male Sprague-Dawley rats, with an average weight of 250 ± 13 g, were divided into non-diabetic and diabetic groups. They were further divided into 3 groups each (n = 7): non-diabetic control (NC), non-diabetic + TDF (NTF), and non-diabetic + TDF + silver nanoparticles (NTS), as well as diabetic control (DC), diabetic + TDF (DTF), and diabetic + TDF + silver nanoparticles (DTS). The characterization of AgNPs-TDF was assessed, and the conjugates were administered to the diabetic rats, followed by behavioral testing and biochemical, immunohistochemical, and microanatomy analyses of the hippocampus. The results showed that the administration of AgNPs-TDF significantly reduced the blood glucose level, malondialdehyde (MDA), and inflammatory biomarker concentrations in DTS compared with the DTF and DC groups. Furthermore, AgNPs-TDF administration significantly increased the levels of tissue superoxide dismutase (SOD), reduced glutathione (GSH), and insulin-like growth factor-1 in DTS compared with the DTF and DC groups. In addition, the DTS group revealed a monomorphic pattern of dark-stained neuronal nuclei similar to the control group and showed neuroprotective effects on hippocampal microanatomy compared with the DTF group. This study shows that AgNPs-TDF restores various alterations in the hippocampus and improves cognitive functions in diabetic rats.
Collapse
Affiliation(s)
- Sodiq Kolawole Lawal
- School of Nursing, Faculty of Health Sciences, University of Botswana, Private Bag UB 0022, Plot 4775, Notwane Road, Gaborone, Botswana; (K.S.D.); (S.T.M.)
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 3629, South Africa; (E.C.N.); (C.O.R.)
| | - Samuel Oluwaseun Olojede
- Division of Human Anatomy, Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa;
| | | | - Kafalotse Sylvia Dithole
- School of Nursing, Faculty of Health Sciences, University of Botswana, Private Bag UB 0022, Plot 4775, Notwane Road, Gaborone, Botswana; (K.S.D.); (S.T.M.)
| | - Samuel Thopho Matula
- School of Nursing, Faculty of Health Sciences, University of Botswana, Private Bag UB 0022, Plot 4775, Notwane Road, Gaborone, Botswana; (K.S.D.); (S.T.M.)
| | - Edwin Coleridge Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 3629, South Africa; (E.C.N.); (C.O.R.)
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 3629, South Africa; (E.C.N.); (C.O.R.)
| | - Onyemaechi Okpara Azu
- Department of Medical Biosciences, University of the Western Cape, Bellville 7535, South Africa;
| |
Collapse
|
6
|
Michael HU, Rapulana AM, Smit T, Xulu N, Danaviah S, Ramlall S, Oosthuizen F. The Association Between Serum Mature and Precursor Brain-Derived Neurotrophic Factor and Neurocognitive Function in People With Human Immunodeficiency Virus: A Longitudinal Study. Open Forum Infect Dis 2024; 11:ofae463. [PMID: 39192994 PMCID: PMC11347942 DOI: 10.1093/ofid/ofae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Background Despite antiretroviral therapy (ART), human immunodeficiency virus (HIV)-associated neurocognitive impairment persists. We investigated the association between serum levels of mature brain-derived neurotrophic factor (mBDNF), precursor brain-derived neurotrophic factor (proBDNF), and neurocognitive changes over time among adults with HIV in sub-Saharan Africa, seeking to elucidate the interplay between neurotrophic factors and neurocognitive outcomes post-ART. Methods Utilizing data from the ACTG 5199 study in Johannesburg and Harare, serum mBDNF and proBDNF levels were measured via enzyme-linked immunosorbent assay. Neurocognitive performance was assessed at baseline and 24, 48, and 96 weeks using neuropsychological tests. The Friedman test and linear mixed-effects models were used to assess changes in mBDNF, proBDNF, and neurocognitive performance over time, accounting for individual variability and adjusting for multiple comparisons. Results Among 155 participants, there were significant cognitive improvements (P < .001) and a rise in mBDNF levels from baseline to 96 weeks. The proBDNF levels initially remained stable (P = .57) but notably increased by 48 weeks (P = .04). Higher mBDNF levels were positively associated with enhanced neurocognitive performance at 48 weeks (β = .16, P = .01) and 96 weeks (β = .32, P < .001). Similarly, higher proBDNF levels were positively associated with neurocognitive performance at 96 weeks (β = .25, P < .001). Conclusions This study highlights the significant association between serum BDNF levels and neurocognitive improvement post-ART in adults with HIV. However, more research is needed to replicate these findings, establish causal relationships, and explore whether BDNF-enhancing activities can improve neurocognitive outcomes in people with HIV.
Collapse
Affiliation(s)
- Henry U Michael
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for Outcomes Research and Evaluation, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Antony M Rapulana
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- UCL Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Theresa Smit
- Africa Health Research Institute, Durban, South Africa
| | - Njabulo Xulu
- Africa Health Research Institute, Durban, South Africa
| | | | - Suvira Ramlall
- Department of Psychiatry, University of KwaZulu-Natal, Durban, South Africa
| | - Frasia Oosthuizen
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Lawal SK, Olojede SO, Faborode OS, Aladeyelu OS, Matshipi MN, Sulaiman SO, Naidu ECS, Rennie CO, Azu OO. Nanodelivery of antiretroviral drugs to nervous tissues. Front Pharmacol 2022; 13:1025160. [PMID: 36425574 PMCID: PMC9680985 DOI: 10.3389/fphar.2022.1025160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 01/06/2025] Open
Abstract
Despite the development of effective combined antiretroviral therapy (cART), the neurocognitive impairments associated with human immunodeficiency virus (HIV) remain challenging. The presence of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCFB) impedes the adequate penetration of certain antiretroviral drugs into the brain. In addition, reports have shown that some antiretroviral drugs cause neurotoxicity resulting from their interaction with nervous tissues due to long-term systemic exposure. Therefore, the research into the effective therapeutic modality that would cater for the HIV-associated neurocognitive disorders (HAND) and ART toxicity is now receiving broad research attention. Thus, this review explores the latest information in managing HAND using a nanoparticle drug delivery system (NDDS). We discussed the neurotoxicity profile of various approved ART. Also, we explained the applications of silver nanoparticles (AgNPs) in medicine, their different synthesis methods and their interaction with nervous tissues. Lastly, while proposing AgNPs as useful nanoparticles in properly delivering ART to enhance effectiveness and minimize neurocognitive disorders, we hypothesize that the perceived toxicity of AgNPs could be minimized by taking appropriate precautions. One such precaution is using appropriate reducing and stabilizing agents such as trisodium citrate to reduce silver ion Ag + to ground state Ag0 during the synthesis. Also, the usage of medium-sized, spherical-shaped AgNPs is encouraged in AgNPs-based drug delivery to the brain due to their ability to deliver therapeutic agents across BBB. In addition, characterization and functionalization of the synthesized AgNPs are required during the drug delivery approach. Putting all these factors in place would minimize toxicity and enhance the usage of AgNPs in delivering therapeutic agents across the BBB to the targeted brain tissue and could cater for the HIV-associated neurocognitive disorders and neurotoxic effects of antiretroviral drugs (ARDs).
Collapse
Affiliation(s)
- Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Matome Nadab Matshipi
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sheu Oluwadare Sulaiman
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
- Graduate Program in Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Edwin Coleridge Stephen Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological and Translational Medical Sciences, School of Medicine, Hage Geingob Campus, University of Namibia, Windhoek, Namibia
| |
Collapse
|
8
|
Saro A, Gao Z, Kambey PA, Pielnaa P, Marcellin DFH, Luo A, Zheng R, Huang Z, Liao L, Zhao M, Suo L, Lu S, Li M, Cai D, Chen D, Yu H, Huang J. HIV-Proteins-Associated CNS Neurotoxicity, Their Mediators, and Alternative Treatments. Cell Mol Neurobiol 2022; 42:2553-2569. [PMID: 34562223 PMCID: PMC11421612 DOI: 10.1007/s10571-021-01151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV)-infected people's livelihoods are gradually being prolonged with the use of combined antiretroviral therapy (ART). Conversely, despite viral suppression by ART, the symptoms of HIV-associated neurocognitive disorder (HAND) endure. HAND persists because ART cannot really permanently confiscate the virus from the body. HAND encompasses a variety of conditions based on clinical presentation and severity level, comprising asymptomatic neurocognitive impairment, moderate neurocognitive disorder, and HIV-associated dementia. During the early stages of HIV infection, inflammation compromises the blood-brain barrier, allowing toxic virus, infected monocytes, macrophages, T-lymphocytes, and cellular products from the bloodstream to enter the brain and eventually the entire central nervous system. Since there are no resident T-lymphocytes in the brain, the virus will live for decades in macrophages and astrocytes, establishing a reservoir of infection. The HIV proteins then inflame neurons both directly and indirectly. The purpose of this review is to provide a synopsis of the effects of these proteins on the central nervous system and conceptualize avenues to be considered in mitigating HAND. We used bioinformatics repositories extensively to simulate the transcription factors that bind to the promoter of the HIV-1 protein and possibly could be used as a target to circumvent HIV-associated neurocognitive disorders. In the same vein, a protein-protein interaction complex was also deduced from a Search Tool for the Retrieval of Interacting Genes. In conclusion, this provides an alternative strategy that could be used to avert HAND.
Collapse
Affiliation(s)
- Adonira Saro
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zhaolin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Paul Pielnaa
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | | | - Aixiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Ruping Zheng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zhongjun Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Mingxuan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Liangpeng Suo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Deyang Cai
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Haiyang Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
9
|
Bryant J, Andhavarapu S, Bever C, Guda P, Katuri A, Gupta U, Arvas M, Asemu G, Heredia A, Gerzanich V, Simard JM, Makar TK. 7,8-Dihydroxyflavone improves neuropathological changes in the brain of Tg26 mice, a model for HIV-associated neurocognitive disorder. Sci Rep 2021; 11:18519. [PMID: 34531413 PMCID: PMC8446048 DOI: 10.1038/s41598-021-97220-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB-Akt-NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.
Collapse
Affiliation(s)
- Joseph Bryant
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Christopher Bever
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
| | | | - Akhil Katuri
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | - Udit Gupta
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Girma Asemu
- Institute of Human Virology, Baltimore, MD, 21201, USA
| | | | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - J Marc Simard
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA
- Department of Neurosurgery, University of Maryland, Baltimore, MD, 21201, USA
| | - Tapas Kumar Makar
- Institute of Human Virology, Baltimore, MD, 21201, USA.
- Research Service, Veterans Affairs Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Manjeese W, Mvubu NE, Steyn AJC, Mpofana T. Mycobacterium tuberculosis causes a leaky blood-brain barrier and neuroinflammation in the prefrontal cortex and cerebellum regions of infected mice offspring. Int J Dev Neurosci 2021; 81:428-437. [PMID: 33932039 DOI: 10.1002/jdn.10116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022] Open
Abstract
The maternal system's exposure to pathogens influences foetal brain development through the influx of maternal cytokines and activation of the foetal immune status to a persistent inflammatory state characterised by glia cell activation. Neuroinflammation influences the blood-brain barrier's (BBB) permeability allowing peripheral immune cell trafficking into the brain. Mycobacterium tuberculosis (Mtb) is a pathogen that causes Tuberculosis (TB), a global pandemic responsible for health and economic burdens. Although it is known that maternal infections increase the risk of Autism spectrum disorder (ASD), it is not known whether gestational Mtb infections also contribute to impaired foetal neurodevelopment. Here we infect pregnant Balb/c mice with Mtb H37Rv and Valproic acid (VPA) individually and in combination. Neuroinflammation was measured by assessing microglia and astrocyte population in the prefrontal cortex (PFC) and cerebellum (CER) of pups. Mtb infection increased the microglia population and caused morphological changes to a reactive phenotype in the PFC. Also, the astrocyte population was significantly increased in the PFC of Mtb pups. The BBB permeability was determined by measuring the Evans Blue (EB) dye concentration in the PFC and CER 1 hr post receiving intravenous EB-dye injection. We found that prenatal Mtb exposure significantly increased the BBB's permeability in the PFC and CER of pups versus saline. Overall, our data demonstrate that prenatal exposure to Mtb predisposes offspring to a higher risk of BBB damage while inducing persistent neuroinflammation, which could lead to impaired neuronal development and function. These findings implicate a potential role of gestational Mtb infections in the aetiology of ASD.
Collapse
Affiliation(s)
- Wadzanai Manjeese
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu Natal, Durban, South Africa
| | - Nontobeko E Mvubu
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban, South Africa
| | - Adrie J C Steyn
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban, South Africa.,Africa Health Research Institute, K-Rith Tower Building, Nelson Mandela School of Medicine, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thabisile Mpofana
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu Natal, Durban, South Africa
| |
Collapse
|
11
|
Zulu SS, Abboussi O, Simola N, Mabandla MV, Daniels WMU. Effects of combination antiretroviral drugs (cART) on hippocampal neuroplasticity in female mice. J Neurovirol 2021; 27:325-333. [PMID: 33710598 DOI: 10.1007/s13365-021-00967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
The incidence of HIV-associated neurocognitive disorder (HAND) continues despite the introduction of combination antiretroviral drugs (cART). Several studies have reported the neurotoxicity of individual antiretroviral drugs (monotherapy), while the common approach for HIV treatment is through cART. Hence, the current study investigated the effects of long-term exposure to cART on cognitive function, oxidative damage, autophagy, and neuroplasticity in the hippocampus of mice. Female Balb/c mice received a once-a-day oral dose of cART composed of emtricitabine + tenofovir disoproxil fumarate or vehicle for 8 weeks. On week 7 of drug administration, all mice were assessed for spatial learning in the Morris water maze (MWM), and then on week 8, mice were sacrificed, and hippocampal tissue dissected from the brain. For biochemical analyses, we measured the concentration of 4-hydroxynonenal, and the expression of autophagic marker LC3B, synaptophysin, and brain-derived neurotrophic factor (BDNF) in the hippocampus. Our results showed that cART exposure increased escape latency in the MWM test. The cART-treated mice also showed increased 4-hydroxynonenal concentration and expression of LC3B. Furthermore, cART treatment decreased the expression of synaptophysin and BDNF. These findings further support the evidence that cART may be neurotoxic and therefore may play a role in the neuropathogenesis of HAND.
Collapse
Affiliation(s)
- Simo Siyanda Zulu
- School of Laboratory Medicine , and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa. .,Department of Human Biology, Faculty of Health Sciences, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Musa Vuyisile Mabandla
- School of Laboratory Medicine , and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - William Mark Uren Daniels
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Bertrand L, Velichkovska M, Toborek M. Cerebral Vascular Toxicity of Antiretroviral Therapy. J Neuroimmune Pharmacol 2021; 16:74-89. [PMID: 31209776 PMCID: PMC7952282 DOI: 10.1007/s11481-019-09858-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 01/14/2023]
Abstract
HIV infection is associated with comorbidities that are likely to be driven not only by HIV itself, but also by the toxicity of long-term use of antiretroviral therapy (ART). Indeed, increasing evidence demonstrates that the antiretroviral drugs used for HIV treatment have toxic effects resulting in various cellular and tissue pathologies. The blood-brain barrier (BBB) is a modulated anatomophysiological interface which separates and controls substance exchange between the blood and the brain parenchyma; therefore, it is particularly exposed to ART-induced toxicity. Balancing the health risks and gains of ART has to be considered in order to maximize the positive effects of therapy. The current review discusses the cerebrovascular toxicity of ART, with the focus on mitochondrial dysfunction. Graphical Abstract Graphical representation of the interactions between HIV, antiretroviral therapy (ART), and the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Abstract
OBJECTIVES Growing evidence suggested that antiretroviral (ARV) drugs may promote amyloid beta (Aβ) accumulation in HIV-1-infected brain and the persistence of HIV-associated neurocognitive disorders (HANDs). It has also been shown that lipid peroxidation upregulates β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) expression and subsequently promotes Aβ peptide production. In the present study, we examined whether chronic exposure to the anti-HIV drugs tenofovir disoproxil fumarate (TDF) and nevirapine induces lipid peroxidation thereby promoting BACE1 and Aβ generation and consequently impair cognitive function in mice. METHODS TDF or nevirapine was orally administered to female BALB/c mice once a day for 8 weeks. On the 7th week of treatment, spatial learning and memory were assessed using the Morris water maze test. The levels of lipid peroxidation, BACE1, amyloid β 1-42 (Aβ1-42) and Aβ deposits were measured in the hippocampal tissue upon completion of treatment. RESULTS Chronic administration of nevirapine induced spatial learning and memory impairment in the Morris water maze test, whereas TDF did not have an effect. TDF and nevirapine administration increased hippocampal lipid peroxidation and Aβ1-42 concentration. Nevirapine further upregulated BACE1 expression and Aβ deposits. CONCLUSION Our results suggest that chronic exposure to TDF and nevirapine contributes to hippocampal lipid peroxidation and Aβ accumulation, respectively, as well as spatial learning and memory deficits in mice even in the absence of HIV infection. These findings further support a possible link between ARV drug toxicity, Aβ accumulation and the persistence of HANDs.
Collapse
|
14
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
15
|
Michael H, Mpofana T, Ramlall S, Oosthuizen F. The Role of Brain Derived Neurotrophic Factor in HIV-Associated Neurocognitive Disorder: From the Bench-Top to the Bedside. Neuropsychiatr Dis Treat 2020; 16:355-367. [PMID: 32099373 PMCID: PMC6999762 DOI: 10.2147/ndt.s232836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) remains prevalent in the anti-retroviral (ART) era. While there is a complex interplay of many factors in the neuropathogenesis of HAND, decreased neurotrophic synthesis has been shown to contribute to synaptic degeneration which is a hallmark of HAND neuropathology. Brain derived neurotrophic factor (BDNF) is the most abundant and synaptic-promoting neurotrophic factor in the brain and plays a critical role in both learning and memory. Reduced BDNF levels can worsen neurocognitive impairment in HIV-positive individuals across several domains. In this paper, we review the evidence from pre-clinical and clinical studies showing the neuroprotective roles of BDNF against viral proteins, effect on co-morbid mental health disorders, altered human microbiome and ART in HAND management. Potential applications of BDNF modulation in pharmacotherapeutic, cognitive and behavioral interventions in HAND are also discussed. Finally, research gaps and future research direction are identified with the aim of helping researchers to direct efforts to make these BDNF driven interventions improve the quality of life of patients living with HAND.
Collapse
Affiliation(s)
- Henry Michael
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Thabisile Mpofana
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Suvira Ramlall
- Department of Psychiatry, University of KwaZulu-Natal, Durban, South Africa
| | - Frasia Oosthuizen
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Alese OO, Rakgantsho C, Mkhize NV, Zulu S, Mabandla MV. Prolonged febrile seizure history exacerbates seizure severity in a pentylenetetrazole rat model of epilepsy. Brain Res Bull 2019; 155:137-144. [PMID: 31837458 DOI: 10.1016/j.brainresbull.2019.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/07/2019] [Accepted: 11/30/2019] [Indexed: 12/29/2022]
Abstract
Epilepsy is a debilitating neurological illness that affects all aspect of an individual life. Despite advancement in research there is little reduction in the incidence of this disease. Prolonged febrile seizure (PFS) has been linked to epilepsy however, the pathophysiology of this is still not clear. We therefore looked at the effect of PFS on the development of epilepsy in a pentylenetetrazole (PTZ) rat model of epilepsy. A total of 42 male Sprague-Dawley rats were used for the experiment. On post-natal day (PND) 14, PFS was induced in 14 rats. This was followed by the induction of epilepsy in the 14 PFS animal and 14 animals from the remaining 28 rats by an initial injection of PTZ at a dose of 60 mg/kg on day one followed by 35 mg/kg on alternate day until kindle. We looked at the effect of PFS on the onset and the stage of convulsion at kindle. We also observed it effect on the hippocampal glial fibrillary acidic protein (GFAP), synaptophysin and metabotropic glutamate receptor 3 (mGluR3) expression measured with immunofluorescence, LI Cor Tissue florescence and immunohistochemistry respectively. Our study showed that PFS reduced seizure threshold by decreasing the time it took animals to kindle and also increased the stage of convulsion. The hippocampal GFAP, synaptophysin and mGluR3 expressions where upregulated in PTZ rats with PFS history when compared to PTZ rats alone.These findings indicated that PFS may increase the severity of epilepsy and alter brain expression of GFAP, synaptophysin and mGluR3 proteins.
Collapse
Affiliation(s)
- Oluwole Ojo Alese
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa.
| | - Cleopatra Rakgantsho
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| | - Nombuso V Mkhize
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| | - Simo Zulu
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| | - Musa V Mabandla
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, South Africa
| |
Collapse
|
17
|
Guo ML, Buch S. Neuroinflammation & pre-mature aging in the context of chronic HIV infection and drug abuse: Role of dysregulated autophagy. Brain Res 2019; 1724:146446. [PMID: 31521638 DOI: 10.1016/j.brainres.2019.146446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
In the era of combined antiretroviral therapy (cART), HIV-1 infection has transformed from adeath sentenceto a manageable, chronic disease. Although the lifeexpectancy of HIV+ individuals is comparable to that of the uninfectedsubjects paradoxically, there is increased prevalence ofage-associatedcomorbidities such asatherosclerosis, diabetes, osteoporosis & neurological deficits in the context of HIV infection. Drug abuse is a commoncomorbidityofHIV infection andis often associated withincreased neurological complications. Chronic neuroinflammation (abnormal microglial and astrocyte activation) and neuronal synaptodendritic injury are the features of CNS pathology observed inHIV (+) individualsthat are takingcART & that abuse drugs. Neuroinflammation is thedrivingforceunderlying prematureaging associated with HIV (+) infection, cART and drugs of abuse. Autophagy is a highly conserved process critical for maintaining cellular homeostasis. Dysregulated autophagyhas been shown to be linked with abnormal immune responses & aging. Recent emerging evidence implicatesthe role ofHIV/HIV proteins, cART, & abused drugsin disrupting theautophagy process in brain cells such as microglia, astrocytes, and neurons. It can thus be envisioned that co-exposure of CNS cells to HIV proteins, cART and/or abused drugs couldhavesynergistic effects on theautophagy process, thereby leading to exaggerated microglial/astrocyte activation, ultimately, promotingthe aging process. Restoration of autophagic functioncould thusprovide an alternative therapeuticstrategy formitigating neuroinflammation & ameliorating the premature aging process. The current review aims to unravel the role of dysregulated autophagy in the context of single or co-exposure of microglia, astrocytes, and neurons to HIV/HIV proteins, drugs of abuse &/or cART and will also discuss the pathways involved in dysregulated autophagy-mediated neuroinflammation.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|