1
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
2
|
Zhong G, Wang X, Li J, Xie Z, Wu Q, Chen J, Wang Y, Chen Z, Cao X, Li T, Liu J, Wang Q. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Curr Neuropharmacol 2024; 22:1650-1671. [PMID: 38037913 PMCID: PMC11284712 DOI: 10.2174/1570159x22666231103085859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 12/02/2023] Open
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Maghool F, Emami MH, Alipour R, Mohammadzadeh S, Sereshki N, Dehkordi SAE, Fahim A, Tayarani-Najaran Z, Sheikh A, Kesharwani P, Sahebkar A. Rescue effect of curcumin against copper toxicity. J Trace Elem Med Biol 2023; 78:127153. [PMID: 36989586 DOI: 10.1016/j.jtemb.2023.127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Turmeric has long been used not only as an indispensable part of Asian cuisine but as a medicinal herb for dressing wounds, bites, burns, treating eye infections and acne. Curcuminoids are the active substances and their synthetic derivatives (i.e. diacetylcurcumin (DAC) and metal-curcumin complexes) possess an incredibly wide range of medicinal properties that encompass chelation capacity for multiple heavy metals, antioxidant activity, anti-inflammatory properties, cytotoxicity against cancerous cells, antiviral and antibacterial effects, antihypertensive and insulin sensitizing role, and regulatory role on apoptosis. The aforementioned properties have put curcumin on spotlight as a potential treatment for ailments such as, hepatic diseases, neurodegenerative diseases, metabolic syndrome, dyslipidemia, cardiovascular disease, auto-immune diseases, malignancies and conditions associated with metal overload. Copper is essential for major biological functions, however, an excess causes chronic ailments including neurodegenerative disorders. The fascinating approach of curcumin could alleviate such effect by forming a complex. Thus, this review aims to present available data on the effect of copper-curcumin interaction in various in vitro, ex-vivo in vivo, and clinical studies.
Collapse
Affiliation(s)
- Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Alipour
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Sereshki
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Tamegart L, Abbaoui A, Oukhrib M, Bouyatas MM, Gamrani H. Physiological Alterations of Subchronic Lead Exposure Induced Degeneration of Epithelial Cells in Proximal Tubules and the Remedial Effect of Curcumin-III in Meriones shawi: a Possible Link with Vasopressin Release. Biol Trace Elem Res 2022; 200:1303-1311. [PMID: 34176078 DOI: 10.1007/s12011-021-02751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
At the industrial working conditions, lead exposure could induce several alterations for the human body. Subchronic lead exposure is linked with several injuries including cerebral and renal dysfunctions. The present work discusses the effects of subchronic lead toxicity (3 g/l) in drinking water during the period of treatment (6 weeks) on vasopressin system and epithelial cells in proximal tubules. Also, we aimed to evaluate the protective effect of curcumin-III administered orally by gavage (30 mg/kg BW), against subchronic Pb exposure in Meriones shawi. The biochemical and histopathological examinations demonstrate renal damages induced by lead toxicity. In addition, the behavioral and immunohistochemical studies revealed that Pb neurotoxicity exhibited an anxious behavior with a significant elevation of the vasopressin (AVP) staining within the paraventricular nuclei. The study showed also curcumin-III restored the renal alterations with an anxiolytic effect. Moreover, it restored the AVP level in the studying nuclei. Our work supports a possible link between AVP release and epithelial degeneration in the proximal tubules, and shows a new pharmacological effect of curcumin-III as an anxiolytic agent against lead toxicity.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mjid Oukhrib
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mouly Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- Department of Biology, Multidisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
- Neurosciences, Pharmacology and Environment Unit, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Avenue My Abdellah, B.P. 2390, Marrakesh, Morocco.
| |
Collapse
|
5
|
Tohamy HG, El Okle OS, Goma AA, Abdel-Daim MM, Shukry M. Hepatorenal protective effect of nano-curcumin against nano‑copper oxide-mediated toxicity in rats: Behavioral performance, antioxidant, anti-inflammatory, apoptosis, and histopathology. Life Sci 2022; 292:120296. [PMID: 35045342 DOI: 10.1016/j.lfs.2021.120296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metal oxide nanoparticles (NPs) induce oxidative stress that can cause cellular toxicity. A natural antioxidant that can be used to protect tissues from oxidative stress is curcumin. PURPOSE In the present study, we evaluated the protective effect of curcumin nanoparticles (curcumin-NPs) against copper oxide nanoparticles (CuO-NPs)-mediated hepatorenal effects on behavioral performance, biochemical markers, antioxidants, inflammation, apoptosis, and histopathology in rats. STUDY DESIGN Twenty Wistar adult male rats were randomly divided into four groups (n = 5); Group Ι served as a control, group ΙΙ was orally gavaged with curcumin-NPs (100 mg/Kg), group ΙΙI orally received CuO-NPs (100 mg/kg), and group ΙV received both CuO-NPs and curcumin-NPs orally for 14 days. METHODS Behavioral performance, biochemical markers, antioxidants, inflammatory mediators, and apoptotic gene expression were evaluated in addition to histopathological and immunohistochemical examination. RESULTS The results revealed that rats exposed to CuO-NPs suffered from behavioral alterations and hepatic and renal damages, which indicated by a marked elevation of serum biochemical parameters, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, urea, uric acid, and creatinine and a decline of total protein. Moreover, there was a significant downregulation in the expression of antioxidants genes, whereas inflammatory mediators expression were upregulated. The histopathological and immunohistochemical examination also corroborated these findings. In contrast, rats co-treated with curcumin-NPs exhibited better behavioral performance, biochemical profile, gene expression, histological architecture, and immunohistochemical staining results. CONCLUSION These findings strongly indicated that curcumin-NPs exert significant protection against the behavioral and hepatorenal disorders induced by CuO-NPs toxicity by modulating oxidative stress regulators and gene expression.
Collapse
Affiliation(s)
- Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Osama S El Okle
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Amira A Goma
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
6
|
Wang M, Zhang R, Dehaen W, Fang Y, Qian S, Ren Y, Cheng F, Guo Y, Guo C, Li Y, Deng Y, Cao Z, Peng C. Specific recognition, intracellular assay and detoxification of fluorescent curcumin derivative for copper ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126490. [PMID: 34252661 DOI: 10.1016/j.jhazmat.2021.126490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Recognition and excretion of metal ions play an important role in the diagnosis and treatment of various diseases and poisoning. Although copper (Cu) is a cofactor of many key enzymes in the human body, its accumulation caused by genetic ATP7B mutation or environmental pollution can lead to hepatotoxicity, renal failure, Wilson's disease, inflammation, and even Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, in this work, a difluoroboron curcumin derivative (DF-Cur) was used for the specific recognition of copper ions (Cu2+). DF-Cur could be further used to as a rapid diagnostic agent for the copper detection in cells and zebrafish at the nanomolar level. DF-Cur could significantly reduce the toxic damage caused by high Cu2+ dose. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis indicated that DF-Cur could promote the excretion of copper ions in the urine and bile and reduce the accumulation of copper ions in vivo. In addition, DF-Cur could selectively detect cholesterol in the blood and adipose tissue in vivo by fluorescent staining. These results demonstrated that this molecule might represent a new and promising diagnostic and therapeutic agent to combat diseases related to copper ions accumulation.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Chemistry, KU Leuven, Celestijnenlaan 200f-bus 02404, 3001 Leuven, Belgium.
| | - Shan Qian
- Department of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuying Guo
- Department of Pharmaceutical Engineering, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chuanjie Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Tamegart L, Abbaoui A, El Khiat A, Bouyatas MM, Gamrani H. Lead (Pb) exposure induces physiological alterations in the serotoninergic and vasopressin systems causing anxiogenic-like behavior in Meriones shawi: Assessment of BDMC as a neuroprotective compound for Pb-neurotoxicity and kidney damages. J Trace Elem Med Biol 2021; 65:126722. [PMID: 33524682 DOI: 10.1016/j.jtemb.2021.126722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/25/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies have shown that lead (Pb) is one of hazardous heavy metals with various adverse effects on human health including mental health; Pb can induce psychiatric disorders like anxiety. In the present work, we examined the potential of bisdemethoxycurcumin (BDMC) as a neuroprotective agent against lead induced anxiety inMeriones shawi (M. shawi). METHODS We asses, the potential of three consecutive day exposure to Pb (25 mg/kg body weight) in inducing anxiogenic effect, serotoninergic and vasopressinergic disruptions inM. shawi. This was done using neurobehavioral tests (open field, elevated plus maze), immunohistochemestry by anti-serotonin (5-HT), and anti-vasopressin (AVP) antibodies. We also measured the possible restorative potential of BDMC (30 mg/kg body weight), delivered by oral gavage. After that, a biochemical and histopathological studies were done. RESULTS Our results showed that lead exposure for three consecutive days increases significantly the 5-HT-immunoreactivity in dorsal raphe nucleus (DRN) accompanied with a significant enhancement of AVP-immunoreactivity in the cell bodies and fibers in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus. In the collecting tube, AVP binds to the V2 receptor of the epithelial cells and increases the water permeability. Our results showed clearly the epithelial cells degeneration after lead exposure, then we suggest that the increased AVP could be a response to the hydric balance disrupted after degenerative effect of lead exposure on epithelial cells. BDMC produced an anxiolytic effect in meriones. Moreover, it restored 5-HT and AVP immunoreactivity within studying nuclei. The biochemical and histopathological studies showed that Pb induced renal damages. In addition, BDMC restored the renal alterations. CONCLUSION According to the obtained results, we suggest new pharmacological effects of BDMC; while it has an anxiolytic effect against Pb-induced anxiety by working on serotoninergic and vasopressinergic systems with an obvious restoration of the renal injuries induced by lead exposure.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdelaati El Khiat
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Moulay Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco; Cadi Ayyad University, Multidisciplinary Faculty of Safi, Department of Biology, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.
| |
Collapse
|
8
|
Lamtai M, Zghari O, Azirar S, Ouakki S, Mesfioui A, El Hessni A, Berkiks I, Marmouzi I, Ouichou A. Melatonin modulates copper-induced anxiety-like, depression-like and memory impairments by acting on hippocampal oxidative stress in rat. Drug Chem Toxicol 2021; 45:1707-1715. [PMID: 33412940 DOI: 10.1080/01480545.2020.1858853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Copper (Cu) is a heavy metal with the ability to induce, at high levels, neurobehavioral alterations, and oxidative stress (OS). On the other hand, melatonin (Mel) is a neurohormone that protects neurons from OS and has a modulatory effect on several behavioral processes. The present experiment was aimed to examine the effect of Mel treatment on Cu-induced anxiety-like, depression-like behaviors, memory impairment, and OS in hippocampus. Herein, adult Wistar rats of both genders received daily Mel (4 mg/kg) thirty minutes before CuCl2 (1 mg/kg), by intraperitoneal injections for 8 weeks. After the administration period, all rats were submitted to the behavioral tests. Thereafter, OS parameters and histology of the hippocampus were evaluated. The results demonstrate that Mel treatment attenuated Cu-induced anxiety-like and depression-like behaviors, and it improved memory deficits Cu-treated rats. Furthermore, Mel attenuated Cu-provoked OS by reducing lipid peroxidation (LPO) and nitric oxide (NO) levels and enhancing superoxide dismutase (SOD) and catalase (CAT) activities in the hippocampus. The histopathological analysis also supported these results. In conclusion, these findings show that Mel treatment exerted neuroprotective effects against Cu-induced neurobehavioral changes which may be related to reduction of hippocampal OS. Besides, the effects of Cu and Mel were gender dependent, being more marked in females compared to male rats.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Sofia Azirar
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Inssaf Berkiks
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Ilias Marmouzi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
9
|
Laabbar W, Abbaoui A, Elgot A, Mokni M, Amri M, Masmoudi-Kouki O, Gamrani H. Aluminum induced oxidative stress, astrogliosis and cell death in rat astrocytes, is prevented by curcumin. J Chem Neuroanat 2020; 112:101915. [PMID: 33370573 DOI: 10.1016/j.jchemneu.2020.101915] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Aluminum (Al) is recognized potent neurotoxic metal, which causes oxidative stress leading to intracellular accumulation of reactive oxygen species (ROS) and neuronal cell death in various neurodegenerative diseases. Among several medicinal plants with beneficial effects on health, curcumin acts as a multi-functional drug with antioxidant activity. Thus, the purpose of the present study was to evaluate the protective effect of curcumin against aluminum induced-oxidative stress and astrocytes death, in vitro ad in vivo. Incubation of cultured rat astrocytes with two concentrations of Al (37 μM and 150 μM) for 1 h provoked a dose-dependent reduction of the number of living cells as evaluated by Fluorescein diacetate and lactate dehydrogenase assay. Al-treated cells exhibited a reduction of both superoxide dismutase (SOD) and catalase activities. Pretreatment of astrocytes with curcumin (81 μM) prevented Al-induced cell death. Regarding in vivo study, rats were exposed acutely during three consecutive days to three different doses of Al (25 mg/kg, 50 mg/kg and 100 mg/kg, i.p injection), together with curcumin treatment (30 mg/kg). For the chronic model, animals were exposed to Al (3 g/l) in drinking water from intrauterine age to 4 months ages, plus curcumin treatment (175 mg/kg). Data showed that both acute and chronic Al intoxication induced an obvious astrogliosis within motor cortex and hippocampus, while, such effects were restored by curcumin. We showed herein that Al was highly toxic, induced astrocytes death. Then, curcumin protected astrocytes against Al-toxicity. The cytoprotective potential of curcumin is initiated by stimulation of endogenous antioxidant system.
Collapse
Affiliation(s)
- Wafaa Laabbar
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdeljalil Elgot
- Epidemiology and Biomedical Sciences Unit, Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Meherzia Mokni
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia.
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.
| |
Collapse
|
10
|
Lamtai M, Zghari O, Ouakki S, Marmouzi I, Mesfioui A, El Hessni A, Ouichou A. Chronic copper exposure leads to hippocampus oxidative stress and impaired learning and memory in male and female rats. Toxicol Res 2020; 36:359-366. [PMID: 33005595 PMCID: PMC7494722 DOI: 10.1007/s43188-020-00043-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/18/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
Environmental and occupational exposures to copper (Cu) play a pivotal role in the etiology of some neurological diseases and reduced cognitive functions. However, the precise mechanisms of its effects on cognitive function have not been yet thoroughly established. In our study, we aimed to investigate the behavior and neurochemical alterations in hippocampus of male and female rats, chronically exposed to copper chloride (CuCl2) and the possible involvement of oxidative stress. Twenty-four rats, for each gender, were divided into control and three test groups (n = 6), and were injected intraperitoneally with saline (0.9% NaCl) or CuCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After the treatment period, Y-maze test was used for the evaluation of spatial working memory and the Morris Water Maze (MWM) to test the spatial learning and memory. Biochemical determination of oxidative stress levels in hippocampus was performed. The main results of the present work are working memory impairment in spatial Y-maze which induced by higher Cu intake (1 mg/kg) in male and female rats. Also, In the MWM test, the spatial learning and memory were significantly impaired in rats treated with Cu at dose of 1 mg/kg. Additionally, markers of oxidative stress such as catalase, superoxide dismutase, lipid peroxidation products and nitric oxide levels were significantly altered following Cu treatments. These data propose that compromised behavior following Cu exposure is associated with increase in oxidative stress.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, Rabat Instituts, Rabat, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| |
Collapse
|
11
|
Goma AA, El Okle OS, Tohamy HG. Protective effect of methylene blue against copper oxide nanoparticle-induced neurobehavioral toxicity. Behav Brain Res 2020; 398:112942. [PMID: 33010384 DOI: 10.1016/j.bbr.2020.112942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
Increasing attention has been paid in the past decade to assessing the toxicological effects of nanoparticles and finding a protectant; thus, the current study aimed to investigate the protective effect of the mitochondria-targeting drug methylene blue (MB) against copper oxide nanoparticle (CuO-NP)-induced neurobehavioral toxicity in rats. For this purpose, twenty rats were allocated to four equal groups (n = 5). The negative control group received distilled water intraperitoneally (IP) and Tween 80 (10 %) orally. The CuO-NP group was given a dose of 100 mg/kg of CuO-NPs, administered orally, and the positive control group was treated with 1 mg/kg MB intraperitoneally (IP). The final group was concurrently exposed to CuO-NPs and MB for 14 consecutive days. At the end of the study, each group was neurobehaviorally blind tested relative to other experimental animals, then brain tissue markers were determined and a histopathological examination was conducted. The results showed that supplementation with CuO-NPs induced neurobehavioral alterations; increased Cu content in the brain; and enhanced lipid peroxidation (malondialdehyde [MDA]), protein peroxidation (protein carbonyl [PC]), and DNA oxidative damage (8-hydroxy-2-deoxyguanosine [8-OH-dG]) compared to other treatments. In addition, a decrease was noted in the mitochondrial dehydrogenases' (aldehyde dehydrogenase 2 [ALDH2], and glutamate dehydrogenase [GDH]) activity in Cu-exposed rats. The histopathological findings revealed shrunken, pyknotic, and hypereosinophic cortical neurons and increased immune positive brown staining of caspase-3 protein, indicating apoptosis. Co-treatment with methylene blue ameliorated the neurotoxic effects of CuO-NPs; therefore, MB evidently had a powerful modulatory effect against the neurotoxicity of nano-Cu oxide via its antioxidant and mitochondrial protection properties.
Collapse
Affiliation(s)
- Amira A Goma
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Osama S El Okle
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| |
Collapse
|
12
|
Chatoui H, Abbaoui A, El Hiba O, Draoui A, Gamrani H. Neurobehavioral and neurophysiological effects of prolonged osmotic stress in rats: A focus on anxiety state and pain perception. J Chem Neuroanat 2020; 106:101789. [DOI: 10.1016/j.jchemneu.2020.101789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
|
13
|
El Fari R, Abbaoui A, Bourziq A, Zroudi M, Draoui A, El Khiat A, Belkouch M, Elgot A, Gamrani H. Neuroprotective effects of docosahexaenoic acid against sub-acute manganese intoxication induced dopaminergic and motor disorders in mice. J Chem Neuroanat 2019; 102:101686. [DOI: 10.1016/j.jchemneu.2019.101686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023]
|
14
|
Neurobehavioral effects of acute and chronic lead exposure in a desert rodent Meriones shawi: Involvement of serotonin and dopamine. J Chem Neuroanat 2019; 102:101689. [PMID: 31580902 DOI: 10.1016/j.jchemneu.2019.101689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
Lead (Pb) is a non physiological metal that has been implicated in toxic processes affecting several organs and biological systems, including the central nervous system. Several studies have focused on changes in lead-associated neurobehavioral and neurochemical alterations that occur due to Pb exposure. The present study evaluates the effects of acute and chronic Pb acetate exposure on serotoninergic and dopaminergic systems within the dorsal raphe nucleus, regarding motor activity and anxiety behaviours. Experiments were carried out on adult male Meriones shawi exposed to acute lead acetate intoxication (25 mg/kg b.w., 3 i.p. injections) or to a chronic lead exposure (0,5%) in drinking water from intrauterine age to adult age. Immunohistochemical staining demonstrated that both acute and chronic lead exposure increased anti-serotonin (anti-5HT) and tyrosine hydroxylase (anti-TH) immuno-reactivities in the dorsal raphe nucleus. In parallel, our results demonstrated that a long term Pb-exposure, but not an acute lead intoxication, induced behavioural alterations including, hyperactivity (open field test), and anxiogenic like-effects. Such neurobehavioral impairments induced by Pb-exposure in Meriones shawi may be related to dopaminergic and serotoninergic injuries identified in the dorsal raphe nucleus.
Collapse
|
15
|
Subcommissural organ-Reissner's fiber complex plasticity in two animal models of copper intoxication and modulatory effect of curcumin: Involvement of serotonin. J Chem Neuroanat 2019; 97:80-86. [PMID: 30794879 DOI: 10.1016/j.jchemneu.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 11/23/2022]
Abstract
Metal neurotoxicity is a universal health preoccupation. Previous data revealed an obvious neurochemical impairment induced by metal elements as copper. This investigation was conducted to study the subcommissural organ (SCO) response to acute and subchronic Cu exposure as well as its serotoninergic innervation in Wistar rats, and the probable protective potential of curcumin in these toxicological circumstances. By mean of immunohistochemistry using antibodies against Reissner's fiber (RF) and serotonin (5-HT) in acute model (10 mg/kg i.p. for 3 days) and subchronic model (0.125% in drinking water for six weeks), we noted a significant decrease of RF-immunoreactivity and a whole amplified 5-HT innervation of SCO and ventricular borders in intoxicated rats. Co-treatment with curcumin-I (30 mg/kg B.W) has shown a beneficial effect, reinstating both SCO secretory activity and serotoninergic innervation damaged by Cu exposure. This data revealed for the first time an obvious response of SCO-RF complex to Cu intoxication as well as the neuroprotective effect of curcumin-I. Thus, SCO could play a fundamental role in the strategies of brain resistance to neurotoxicity induced by metal elements in rats, and may be used as biomarker to assist in the diagnosis of this neurotoxicological conditions in rodents.
Collapse
|