1
|
Li Z, Zhang Z, Yu B. Correction to "Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease". J Med Chem 2025; 68:9018-9024. [PMID: 40214661 DOI: 10.1021/acs.jmedchem.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
|
2
|
AlHayani DA, Kubaev A, Uthirapathy S, Mandaliya V, Ballal S, Kalia R, Arya R, Gabble BC, Alasheqi MQ, Kadhim AJ. Insights Into the Therapeutic Potential of SIRT1-modifying Compounds for Alzheimer's Disease: A Focus on Molecular Mechanisms. J Mol Neurosci 2025; 75:29. [PMID: 40000535 DOI: 10.1007/s12031-025-02324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, significantly impacting patients' quality of life. Recent studies have highlighted the roles of sirtuin 1 (SIRT1), a NAD + -dependent deacetylase, in regulating various biological pathways associated with AD pathology, including amyloid-beta metabolism, tau hyperphosphorylation, and neuroinflammation. This review focuses on the therapeutic potential of synthetic and natural compounds that modulate SIRT1 levels, emphasizing their molecular mechanisms of action. We explore a range of SIRT1-modifying agents, including polyphenols such as resveratrol, as well as synthetic analogs and novel pharmaceuticals that aim to enhance SIRT1 activity. Additionally, we discuss emerging innovative therapies, including pharmacological agents that improve SIRT1 signaling through mechanisms like photobiomodulation and nutritional interventions. These compounds not only target SIRT1 but also integrate into broader metabolic and neuroprotective pathways, presenting a promising approach to ameliorating AD symptoms. By elucidating the intricate interactions between SIRT1-modifying compounds and their effects on AD pathology, this review aims to advance the understanding of potential therapeutic strategies that could delay or prevent the progression of AD.
Collapse
Affiliation(s)
- Dhyauldeen Aftan AlHayani
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, 31003, Ramadi, Al Anbar, Iraq
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering/Al, Nisour University College, Baghdad, Iraq
| |
Collapse
|
3
|
Li Z, Zhang Z, Yu B. Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease. J Med Chem 2025; 68:2377-2402. [PMID: 39865664 DOI: 10.1021/acs.jmedchem.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory loss and cognitive decline. With current treatments offering limited effectiveness, researchers are turning to natural products that can target various aspects of AD pathology. Clinically approved natural products, such as galantamine and huperzine A, have shown success in AD treatments. Furthermore, compounds such as epigallocatechin gallate, quercetin, and resveratrol are in clinical trials. This Perspective examines nearly 100 natural compounds with promising neuroprotective effects in preclinical and clinical studies. These compounds exhibit diverse pharmacological actions that help to prevent neurodegeneration while improving cognitive functions. Their unique structures further enhance their biological activities, making them promising candidates for drug discovery. This Perspective stresses the importance of further clinical research to maximize the medical benefits of these compounds and highlights their potential as innovative remedies for AD. Continued exploration of these compounds is crucial to fully leverage their capabilities in combating AD.
Collapse
Affiliation(s)
- Zhonghua Li
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Kose S, Cinar E, Akyel H, Cakir-Aktas C, Tel BC, Karatas H, Kelicen-Ugur P. Cerliponase alfa decreases Aβ load and alters autophagy- related pathways in mouse hippocampal neurons exposed to fAβ 1-42. Life Sci 2024; 357:123105. [PMID: 39362589 DOI: 10.1016/j.lfs.2024.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Extracellular aggregation of amyloid-beta (Aβ) in the brain plays a central role in the onset and progression of Alzheimer's disease (AD). Moreover, intraneuronal accumulation of Aβ via oligomer internalization might play an important role in the progression of AD. Deficient autophagy, which is a lysosomal degradation process, occurs during the early stages of AD. Tripeptidyl peptidase-1 (TPP1) functions as a lysosomal enzyme, and TPP1 gene mutations are associated with type 2 late infantile neuronal ceroid lipofuscinosis (LINCL). Nevertheless, there is little information about the role of TPP1 in the pathogenesis of AD; therefore, the present study aimed to measure the decrease in intraneuronal Aβ accumulation by a recombinant analog of the TPP1 enzyme, cerliponase alfa (CER) (Brineura®), and to determine whether autophagy pathways play a role in this decrease. In this study, endogenous Aβ accumulation was induced by fAβ1-42 (a toxic fragment of full-length Aβ) exposure, and mouse hippocampal neuronal cells (HT-22) were treated with CER (human recombinant rhTPP1 1 mg mL-1). Soluble Aβ, TPP1, and the proteins involved in autophagy, including mammalian target of rapamycin (p-mTOR/mTOR), p62/sequestosome-1 (p62/SQSTM1), and microtubule-associated protein 1 A/1B-light chain 3 (LC3), were evaluated using western blotting. The sirtuin-1, beclin-1, and Atg5 genes were also studied using RT-PCR. Aβ and TPP1 localizations were observed via immunocytochemistry. CER reduced the Aβ load in HT-22 cells by inducing TPP1 expression and converting pro-TPP1 into the mature form. Furthermore, exposure to CER and fAβ1-42 induced the autophagy-regulatory/related pathways in HT-22 cells and exposure to CER alone increased sirtuin-1 activity. Based on the present findings, we suggest that augmentation of TPP1 with enzyme replacement therapy may be a potential therapeutic option for the treatment of AD.
Collapse
Affiliation(s)
- Selma Kose
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye
| | - Elif Cinar
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkiye.
| | - Hilal Akyel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye; Baskent University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkiye
| | - Canan Cakir-Aktas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Sihhiye, Ankara, Turkiye.
| | - Banu Cahide Tel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye.
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Sihhiye, Ankara, Turkiye.
| | - Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye.
| |
Collapse
|
5
|
Sánchez-Gutiérrez M, Izquierdo-Vega AJ, Madrigal-Santillán EO, Velázquez-González C, Izquierdo-Vega JA. Icariin as a Treatment Proposal in Mammalian Reproduction. Pharmaceuticals (Basel) 2024; 17:1104. [PMID: 39338269 PMCID: PMC11434857 DOI: 10.3390/ph17091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Icariin (ICA), one of the main active components of Herba Epimedii, is a natural prenylated flavonol glycoside that possesses a wide range of pharmacological effects, including antioxidant, antiosteoporotic, anti-aging, neuroprotective, immunomodulatory, antitumor, and aphrodisiac effects, and prevents numerous health disorders, such as cardiovascular diseases, osteoporosis, cancer, sexual dysfunction, menstrual disorders, neurodegenerative diseases, asthma, chronic inflammation, and diabetes. In the reproductive system, it has been observed that ICA may play a role in preserving fertility by regulating different signalling pathways, such as PI3K/AKT, which improves ovarian function, and ERα/Nrf2, which enhances testicular function and prevents ROS generation. In contrast, regulating the NF/kB signalling pathway causes anti-inflammatory effects, reducing spontaneous abortions. In this study, we review and examine the relevant literature on the therapeutic potential of ICA in reproduction, highlight the various mechanisms of action and limitations for the therapeutic applications of ICA, and summarise and highlight the existing preclinical research on its effects on male and female reproduction.
Collapse
Affiliation(s)
- Manuel Sánchez-Gutiérrez
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico (A.J.I.-V.); (E.O.M.-S.)
| | - Aleli Julieta Izquierdo-Vega
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico (A.J.I.-V.); (E.O.M.-S.)
| | - Eduardo Osiris Madrigal-Santillán
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico (A.J.I.-V.); (E.O.M.-S.)
| | - Claudia Velázquez-González
- Academic Area of Pharmacy, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico;
| | - Jeannett Alejandra Izquierdo-Vega
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico (A.J.I.-V.); (E.O.M.-S.)
| |
Collapse
|
6
|
Dhapola R, Sharma P, Kumari S, Bhatti JS, HariKrishnaReddy D. Environmental Toxins and Alzheimer's Disease: a Comprehensive Analysis of Pathogenic Mechanisms and Therapeutic Modulation. Mol Neurobiol 2024; 61:3657-3677. [PMID: 38006469 DOI: 10.1007/s12035-023-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease is a leading cause of mortality worldwide. Inorganic and organic hazards, susceptibility to harmful metals, pesticides, agrochemicals, and air pollution are major environmental concerns. As merely 5% of AD cases are directly inherited indicating that these environmental factors play a major role in disease development. Long-term exposure to environmental toxins is believed to progress neuropathology, which leads to the development of AD. Numerous in-vitro and in-vivo studies have suggested the harmful impact of environmental toxins at cellular and molecular level. Common mechanisms involved in the toxicity of these environmental pollutants include oxidative stress, neuroinflammation, mitochondrial dysfunction, abnormal tau, and APP processing. Increased expression of GSK-3β, BACE-1, TNF-α, and pro-apoptotic molecules like caspases is observed upon exposure to these environmental toxins. In addition, the expression of neurotrophins like BDNF and GAP-43 have been found to be reduced as a result of toxicity. Further, modulation of signaling pathways involving PARP-1, PGC-1α, and MAPK/ERK induced by toxins have been reported to contribute in AD pathogenesis. These pathways are a promising target for developing novel AD therapeutics. Drugs like epigallocatechin-gallate, neflamapimod, salsalate, dexmedetomidine, and atabecestat are in different phases of clinical trials targeting the pathways for possible treatment of AD. This review aims to culminate the correlation between environmental toxicants and AD development. We emphasized upon the signaling pathways involved in the progression of the disease and the therapeutics under clinical trial targeting the altered pathways for possible treatment of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151 401, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India.
| |
Collapse
|
7
|
Yan C, Yang S, Shao S, Zu R, Lu H, Chen Y, Zhou Y, Ying X, Xiang S, Zhang P, Li Z, Yuan Y, Zhang Z, Wang P, Xie Z, Wang W, Ma H, Sun Y. Exploring the anti-ferroptosis mechanism of Kai-Xin-San against Alzheimer's disease through integrating network pharmacology, bioinformatics, and experimental validation strategy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117915. [PMID: 38360383 DOI: 10.1016/j.jep.2024.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai Xin San (KXS), first proposed by Sun Simiao during the Tang Dynasty, has been utilized to treat dementia by tonifying qi and dispersing phlegm. AIM OF THE STUDY This study aimed to elucidate the mechanism by which KXS exerts its therapeutic effects on Alzheimer's disease (AD) by targeting ferroptosis, using a combination of network pharmacology, bioinformatics, and experimental validation strategies. MATERIALS AND METHODS The active target sites and the further potential mechanisms of KXS in protecting against AD were investigated through molecular docking, molecular dynamics simulation, and network pharmacology, and combined with the validation of animal experiments. RESULTS Computational and experimental findings provide the first indication that KXS significantly improves learning and memory defects and inhibits neuronal ferroptosis by repairing mitochondria damage and upregulating the protein expression of ferroptosis suppressor protein 1 (FSP1) in vivo APP/PS1 mice AD model. According to bioinformatics analysis, the mechanism by which KXS inhibits ferroptosis may involve SIRT1. KXS notably upregulated the mRNA and protein expression of SIRT1 in both vivo APP/PS1 mice and in vitro APP-overexpressed HT22 cells. Additionally, KXS inhibited ferroptosis induced by APP-overexpression in HT22 cells through activating the SIRT1-FSP1 signal pathway. CONCLUSIONS Collectively, our findings suggest that KXS may inhibit neuronal ferroptosis through activating the SIRT1/FSP1 signaling pathway. This study reveals the scientific basis and underlying modern theory of replenishing qi and eliminating phlegm, which involves the inhibition of ferroptosis. Moreover, it highlights the potential application of SIRT1 or FSP1 activators in the treatment of AD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Simai Shao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Runru Zu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hao Lu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yangang Zhou
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiran Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Peixu Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, PR China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| |
Collapse
|
8
|
Rakshe PS, Dutta BJ, Chib S, Maurya N, Singh S. Unveiling the interplay of AMPK/SIRT1/PGC-1α axis in brain health: Promising targets against aging and NDDs. Ageing Res Rev 2024; 96:102255. [PMID: 38490497 DOI: 10.1016/j.arr.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The escalating prevalence of neurodegenerative diseases (NDDs) within an aging global population presents a pressing challenge. The multifaceted pathophysiological mechanisms underlying these disorders, including oxidative stress, mitochondrial dysfunction, and neuroinflammation, remain complex and elusive. Among these, the AMPK/SIRT1/PGC-1α pathway emerges as a pivotal network implicated in neuroprotection against these destructive processes. This review sheds light on the potential therapeutic implications of targeting this axis, specifically emphasizing the promising role of flavonoids in mitigating NDD-related complications. Expanding beyond conventional pharmacological approaches, the exploration of non-pharmacological interventions such as exercise and calorie restriction (CR), coupled with the investigation of natural compounds, offers a beacon of hope. By strategically elucidating the intricate connections within these pathways, this review aims to pave the ways for novel multi-target agents and interventions, fostering a renewed optimism in the quest to combat and manage the debilitating impacts of NDDs on global health and well-being.
Collapse
Affiliation(s)
- Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
9
|
Wan M, Sun S, Di X, Zhao M, Lu F, Zhang Z, Li Y. Icariin improves learning and memory function in Aβ 1-42-induced AD mice through regulation of the BDNF-TrκB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117029. [PMID: 37579923 DOI: 10.1016/j.jep.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium brevicornu Maxim. is a traditional medicinal Chinese herb that is enriched with flavonoids, which have remarkably high medicinal value. Icariin (ICA) is a marker compound isolated from the total flavonoids of Epimedium brevicornu Maxim. It has been shown to improve Neurodegenerative disease, therefore, ICA is probably a potential drug for treating AD. MATERIALS AND METHODS The 6-8-week-old SPF-class male ICR mice were randomly divided into 8 groups for modeling, and then the mice were administered orally with ICA for 21 days. The behavioral experiments were conducted to evaluate if learning and memory behavior were absent in mice, confirming that infusion of Amyloid β-protein (Aβ)1-42 caused significant memory impairment. The morphological changes and damage of neurons in the mice's brains were observed by HE and Nissl staining. The spinous protrusions (dendritic spines) on neuronal dendrites were investigated by Golgi-Cox staining. The molecular mechanism of ICA was examined by Western Blot. The protein docking of ICA and Donepezil with BDNF were analyzed to determine their interaction. RESULTS The behavioral experimental results showed that in Aβ1-42-induced AD mice, the learning and memory abilities were improved after using ICA. At the same time, the low, medium, and high doses of ICA could reduce the content of Aβ1-42 in the hippocampus of AD mice, repair neuronal damage, enhance synaptic plasticity, as well as increase the expression of BDNF, TrκB, CREB, Akt, GAP43, PSD95, and SYN proteins in the hippocampus of mice. However, the effect with high doses of ICA is more pronounced. The high-dose administration of ICA has the best therapeutic effect on AD mice. After administering the inhibitor k252a, the therapeutic effect of ICA was reversed. The macromolecular docking results of ICA and BDNF protein demonstrated a strong interaction of -7.8 kcal/mol, which indicates that ICA plays a therapeutic role in AD mice by regulating the BDNF-TrκB signaling pathway. CONCLUSIONS The results confirm that ICA can repair neuronal damage, enhance synaptic plasticity, as well as ultimately improve learning and memory impairment through the regulation of the BDNF-TrκB signaling pathway.
Collapse
Affiliation(s)
- Meiyu Wan
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Shengqi Sun
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Xiaoke Di
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Minghui Zhao
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Fengjuan Lu
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Zhifei Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Yang Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, People's Republic of China.
| |
Collapse
|
10
|
Lu CS, Wu CY, Wang YH, Hu QQ, Sun RY, Pan MJ, Lu XY, Zhu T, Luo S, Yang HJ, Wang D, Wang HW. The protective effects of icariin against testicular dysfunction in type 1 diabetic mice Via AMPK-mediated Nrf2 activation and NF-κB p65 inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155217. [PMID: 37992492 DOI: 10.1016/j.phymed.2023.155217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Owing to the early suffering age and the rising incidence of type 1 diabetes (T1D), the resulting male reproductive dysfunction and fertility decline have become a disturbing reality worldwide, with no effective strategy being available. Icariin (ICA), a flavonoid extracted from Herba Epimedium, has been proved its promising application in improving diabetes-related complications including diabetic nephropathy, endothelial dysfunction and erectile dysfunction. Ensuring the future reproductive health of children and adolescents with T1D is crucial to improve global fertility. However, its roles in the treatment of T1D-induced testicular dysfunction and the potential mechanisms remain elusive. PURPOSE The purpose of this present study was to investigate whether ICA ameliorates T1D-induced testicular dysfunction as well as its potential mechanisms. METHODS T1D murine model was established by intraperitoneal injection of STZ with or without treated with ICA for eleven weeks. Morphological, pathological and serological experiments were used to determine the efficacy of ICA on male reproductive function of T1D mice. Western blotting, Immunohistochemistry analysis, qRT-PCR and kit determination were performed to investigated the underlying mechanisms. RESULTS We found that replenishment of ICA alleviated testicular damage, promoted testosterone production and spermatogenesis, ameliorated apoptosis and blood testis barrier impairment in streptozotocin-induced T1D mice. Functionally, ICA treatment triggered adenosine monophosphate protein kinase (AMPK) activation, which in turn inhibited the nuclear translocation of nuclear factor kappa B p65 (NF-κB p65) to reduce inflammatory responses in the testis and activated nuclear factor erythroid 2-related factor 2(Nrf2), thereby enhancing testicular antioxidant capacity. Further studies revealed that supplementation with the AMPK antagonist Compound C or depletion of Nrf2 weakened the beneficial effects of ICA on testicular dysfunction of T1D mice. CONCLUSION Collectively, these results demonstrate the feasibility of ICA in the treatment of T1D-induced testicular dysfunction, and reveal the important role of AMPK-mediated Nrf2 activation and NF-κB p65 inhibition in ICA-associated testicular protection during T1D.
Collapse
Affiliation(s)
- Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chen-Yu Wu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Hong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qing-Qing Hu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rong-Yue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Min-Jie Pan
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xin-Yu Lu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ting Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuang Luo
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Jing Yang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Hong-Wei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
11
|
Ma Y, Wang W, Liu S, Qiao X, Xing Y, Zhou Q, Zhang Z. Epigenetic Regulation of Neuroinflammation in Alzheimer's Disease. Cells 2023; 13:79. [PMID: 38201283 PMCID: PMC10778497 DOI: 10.3390/cells13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease and clinically manifests with cognitive decline and behavioral disabilities. Over the past years, mounting studies have demonstrated that the inflammatory response plays a key role in the onset and development of AD, and neuroinflammation has been proposed as the third major pathological driving factor of AD, ranking after the two well-known core pathologies, amyloid β (Aβ) deposits and neurofibrillary tangles (NFTs). Epigenetic mechanisms, referring to heritable changes in gene expression independent of DNA sequence alterations, are crucial regulators of neuroinflammation which have emerged as potential therapeutic targets for AD. Upon regulation of transcriptional repression or activation, epigenetic modification profiles are closely involved in inflammatory gene expression and signaling pathways of neuronal differentiation and cognitive function in central nervous system disorders. In this review, we summarize the current knowledge about epigenetic control mechanisms with a focus on DNA and histone modifications involved in the regulation of inflammatory genes and signaling pathways in AD, and the inhibitors under clinical assessment are also discussed.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| |
Collapse
|
12
|
Zhang Q, Yan Y. The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer's disease: a narrative review. Neural Regen Res 2023; 18:2582-2591. [PMID: 37449593 DOI: 10.4103/1673-5374.373680] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disease that affects a large proportion of older adult people and is characterized by memory loss, progressive cognitive impairment, and various behavioral disturbances. Although the pathological mechanisms underlying Alzheimer's disease are complex and remain unclear, previous research has identified two widely accepted pathological characteristics: extracellular neuritic plaques containing amyloid beta peptide, and intracellular neurofibrillary tangles containing tau. Furthermore, research has revealed the significant role played by neuroinflammation over recent years. The inflammatory microenvironment mainly consists of microglia, astrocytes, the complement system, chemokines, cytokines, and reactive oxygen intermediates; collectively, these factors can promote the pathological process and aggravate the severity of Alzheimer's disease. Therefore, the development of new drugs that can target neuroinflammation will be a significant step forward for the treatment of Alzheimer's disease. Flavonoids are plant-derived secondary metabolites that possess various bioactivities. Previous research found that multiple natural flavonoids could exert satisfactory treatment effects on the neuroinflammation associated with Alzheimer's disease. In this review, we describe the pathogenesis and neuroinflammatory processes of Alzheimer's disease, and summarize the effects and mechanisms of 13 natural flavonoids (apigenin, luteolin, naringenin, quercetin, morin, kaempferol, fisetin, isoquercitrin, astragalin, rutin, icariin, mangiferin, and anthocyanin) derived from plants or medicinal herbs on neuroinflammation in Alzheimer's disease. As an important resource for the development of novel compounds for the treatment of critical diseases, it is essential that we focus on the exploitation of natural products. In particular, it is vital that we investigate the effects of flavonoids on the neuroinflammation associated with Alzheimer's disease in greater detail.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| |
Collapse
|
13
|
Yang Y, Fu Y, Qin Z, Pei H, Zhai L, Guan Q, Wu S, Shen H. Icariin improves cognitive impairment by inhibiting ferroptosis of nerve cells. Aging (Albany NY) 2023; 15:11546-11553. [PMID: 37889523 PMCID: PMC10637794 DOI: 10.18632/aging.205144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
AIM We investigated the effect and mechanism of Icariin (ICA) on improving neurobehavioral ability of mice with Alzheimer's disease (AD). METHODS We selected 10-month-old APP/PS1 mice (AD) and wild-type C57BL/6J mice (Normal). After intragastric administration of ICA, Morris water maze was employed to detect neurobehavioral improvements, and to assay key ferroptosis indicators and oxidative stress levels. The common target of ICA for resisting ferroptosis and AD was predicted by network pharmacology. RESULTS ICA could improve the neurobehavioral, memory and motor abilities of AD mice. It could lower the ferroptosis level and enhance the resistance to oxidative stress. After inhibition of MDM2, ICA could no longer improve the cognitive ability of AD mice, nor could it further inhibit ferroptosis. Network pharmacological analysis revealed that MDM2 might be the target of ICA action. CONCLUSIONS We found that ICA can inhibit ferroptosis of nerve cells, thereby ameliorating neural damage in mice with AD.
Collapse
Affiliation(s)
- Yang Yang
- Shenyang Medical College, Shenyang 110000, Liaoning Province, China
| | - Yiming Fu
- Criminal Investigation Police University of China, Shenyang 110000, Liaoning Province, China
| | - Zhipeng Qin
- Criminal Investigation Police University of China, Shenyang 110000, Liaoning Province, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Liping Zhai
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Qiaobing Guan
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Shasha Wu
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Heping Shen
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| |
Collapse
|
14
|
Wang J, Zhou F, Xiong CE, Wang GP, Chen LW, Zhang YT, Qi SG, Wang ZH, Mei C, Xu YJ, Zhan JB, Cheng J. Serum sirtuin1: a potential blood biomarker for early diagnosis of Alzheimer's disease. Aging (Albany NY) 2023; 15:9464-9478. [PMID: 37742223 PMCID: PMC10564418 DOI: 10.18632/aging.205015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Sirtuin 1, a nicotinamide adenine dinucleotide-dependent deacetylase that is highly expressed in the hippocampus and anterior cortex tissues related to Alzheimer's Disease pathology, can cross the blood-brain barrier and is a promising biomarker. METHODS A 1:1:1 case-control study was conducted and serum fasting blood glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, SIRT1, IL-6, Aβ1-42, T-tau and P-tau-181 levels were evaluated in blood samples of 26 patients form the Alzheimer's Disease group, 26 patients form the mild cognitive impairment group, and 26 individuals form the normal control group. Receiver operator characteristic curves were used to evaluate the diagnostic significance. RESULTS Serum SIRT1 level was significantly down-regulated in the mild cognitive impairment patients and Alzheimer's Disease patients compared with that in the normal control group (P<0.05). ROC curve analysis demonstrated that SIRT1 was a promising biomarker to distinguish Alzheimer's Disease patients from the mild cognitive impairment patients and the normal control group. In addition, SIRT1 was estimated to perform well in the diagnosis of Alzheimer's Disease ([AUC] = 0.742). CONCLUSIONS In summary, the present study suggested that serum SIRT1 might be an early promising diagnostic biomarker for Alzheimer's Disease.
Collapse
Affiliation(s)
- Jia Wang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Fang Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, Hubei, China
| | - Chang-E Xiong
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Gui-Ping Wang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Lin-Wanyue Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Yu-Tong Zhang
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shi-Ge Qi
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhi-Hui Wang
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Can Mei
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Yu-Jia Xu
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Jian-Bo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, Hubei, China
| | - Jing Cheng
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| |
Collapse
|
15
|
Lei X, Xu H, Wang Y, Gao H, Zhao D, Zhang J, Zhu Z, Zuo K, Liu Y, Li X, Zhang N. Integrating Network Pharmacology and Component Analysis to Study the Potential Mechanisms of Qi-Fu-Yin Decoction in Treating Alzheimer's Disease. Drug Des Devel Ther 2023; 17:2841-2858. [PMID: 37727255 PMCID: PMC10506672 DOI: 10.2147/dddt.s402624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose To elucidate the potential mechanisms of QFY for the treatment of Alzheimer's Disease (AD), and explore the effective substances of QFY. Materials and Methods UPLC-LTQ-Orbitrap-MS was used to identify the chemical constituents of the serum samples and the cerebrospinal fluid samples of rats after QFY administration. Network pharmacology was used to predict potential targets and pathways of QFY against AD. The AD mice model was established by subcutaneous injection of D-gal for 8 consecutive weeks. New object recognition (NOR) and Morris water maze test (MWM) were used to evaluate the learning and memory abilities of mice. Moreover, the levels of TNF-α, IL-1β, and IL-18 in the brain hippocampus of mice were determined by ELISA. The expression of Bax, Bcl-2, Caspase-1, PSD95, SYP, ICAM-1 and MCP-1 proteins in the hippocampus was detected by Western blotting. Furthermore, qRT-PCR was used to detect the gene expressions of PSD95, SYP, M1 and M2 polarization markers of microglia, including iNOS, CD16, ARG-1, and IL-10 in the hippocampus. Results A total of 51 prototype compounds were detected in rat serum and 15 prototype components were identified in rat cerebrospinal fluid. Behavioral experiments revealed that QFY significantly increased the recognition index, decreased the escape latency, increased the platform crossing times and increased the residence time in the target quadrant. QFY also could alleviate the ultrastructural pathological changes in the hippocampus of AD mice. Meanwhile, QFY treatment suppressed the expression of inflammatory factors, such as TNF-α, IL-1β, and IL-18. QFY improved the synaptic plasticity of the hippocampus in D-gal model mice by significantly increasing the expression of proteins and mRNAs of PSD95 and SYP. Conclusion QFY could effectively improve the learning and memory impairment of D-gal-induced AD mice by inhibiting the excessive activation of microglia, enhancing the expression of M2 microglia, inhibiting the increase of inflammatory factors, cell adhesion factors and chemokines, anti-apoptosis, and improving synaptic plasticity.
Collapse
Affiliation(s)
- Xia Lei
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, People’s Republic of China
| | - Hongdan Xu
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, 214000, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Hainan Gao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Deping Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Jinfeng Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Ziyue Zhu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Kun Zuo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Ying Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xiaoliang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| |
Collapse
|
16
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
17
|
Liu Y, Li H, Wang X, Huang J, Zhao D, Tan Y, Zhang Z, Zhang Z, Zhu L, Wu B, Chen Z, Peng W. Anti-Alzheimers molecular mechanism of icariin: insights from gut microbiota, metabolomics, and network pharmacology. J Transl Med 2023; 21:277. [PMID: 37095548 PMCID: PMC10124026 DOI: 10.1186/s12967-023-04137-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Icariin (ICA), an active ingredient extracted from Epimedium species, has shown promising results in the treatment of Alzheimer's disease (AD), although its potential therapeutic mechanism remains largely unknown. This study aimed to investigate the therapeutic effects and the underlying mechanisms of ICA on AD by an integrated analysis of gut microbiota, metabolomics, and network pharmacology (NP). METHODS The cognitive impairment of mice was measured using the Morris Water Maze test and the pathological changes were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and multi-metabolomics were performed to analyze the alterations in the gut microbiota and fecal/serum metabolism. Meanwhile, NP was used to determine the putative molecular regulation mechanism of ICA in AD treatment. RESULTS Our results revealed that ICA intervention significantly improved cognitive dysfunction in APP/PS1 mice and typical AD pathologies in the hippocampus of the APP/PS1 mice. Moreover, the gut microbiota analysis showed that ICA administration reversed AD-induced gut microbiota dysbiosis in APP/PS1 mice by elevating the abundance of Akkermansia and reducing the abundance of Alistipe. Furthermore, the metabolomic analysis revealed that ICA reversed the AD-induced metabolic disorder via regulating the glycerophospholipid and sphingolipid metabolism, and correlation analysis revealed that glycerophospholipid and sphingolipid were closely related to Alistipe and Akkermansia. Moreover, NP indicated that ICA might regulate the sphingolipid signaling pathway via the PRKCA/TNF/TP53/AKT1/RELA/NFKB1 axis for the treatment of AD. CONCLUSION These findings indicated that ICA may serve as a promising therapeutic approach for AD and that the ICA-mediated protective effects were associated with the amelioration of microbiota disturbance and metabolic disorder.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaowei Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha, 410013, People's Republic of China
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Changsha, 410013, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhibao Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
18
|
Jiang P, Zhou L, Du Z, Zhao L, Tang Y, Fei X, Wang L, Li D, Li S, Yang H, Fan X, Liao H. Icariin alleviates autistic-like behavior, hippocampal inflammation and vGlut1 expression in adult BTBR mice. Behav Brain Res 2023; 445:114384. [PMID: 36889463 DOI: 10.1016/j.bbr.2023.114384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complicated, heterogeneous disorder characterized by social interaction deficits and repetitive stereotypical behaviors. Neuroinflammation and synaptic protein dysregulation have been implicated in ASD pathogenesis. Icariin (ICA) has proven to exert neuroprotective function through anti-inflammatory function. Therefore, this study aimed to clarify the effects of ICA treatment on autism-like behavioral deficits in BTBR mice and whether these changes were related to modifications in the hippocampal inflammation and the balance of excitatory/inhibitory synapses. ICA supplementation (80 mg/kg, once daily for ten days, i.g.) ameliorated social deficits, repetitive stereotypical behaviors, and short-term memory deficit without affecting locomotor activity or anxiety-like behaviors of BTBR mice. Furthermore, ICA treatment inhibited neuroinflammation via decreasing microglia number and the soma size in the CA1 region of the hippocampus, as well as the protein levels of proinflammatory cytokines in the hippocampus of BTBR mice. In addition, ICA treatment also rescued excitatory-inhibitory synaptic protein imbalance by inhibiting the increased vGlut1 level without affecting the vGAT level in the BTBR mouse hippocampus. Collectively, the observed results indicate that ICA treatment alleviates ASD-like features, mitigates disturbed balance of excitatory-inhibitory synaptic protein, and inhibits hippocampal inflammation in BTBR mice, and may represent a novel promising drug for ASD treatment.
Collapse
Affiliation(s)
- Peiyan Jiang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Zhulin Du
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Linyang Zhao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Yexi Tang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xinghang Fei
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Dabing Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| | - Huiling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
19
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
20
|
Wan C, Liu XQ, Chen M, Ma HH, Wu GL, Qiao LJ, Cai YF, Zhang SJ. Tanshinone IIA ameliorates Aβ transendothelial transportation through SIRT1-mediated endoplasmic reticulum stress. J Transl Med 2023; 21:34. [PMID: 36670462 PMCID: PMC9854034 DOI: 10.1186/s12967-023-03889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The disruption of blood-brain barrier (BBB), predominantly made up by brain microvascular endothelial cells (BMECs), is one of the characteristics of Alzheimer's disease (AD). Thus, improving BMEC function may be beneficial for AD treatment. Tanshinone IIA (Tan IIA) has been proved to ameliorate the cognitive dysfunction of AD. Herein, we explored how Tan IIA affected the function of BMECs in AD. METHODS Aβ1-42-treated brain-derived endothelium cells.3 (bEnd.3 cells) was employed for in vitro experiments. And we performed molecular docking and qPCR to determine the targeting molecule of Tan IIA on Sirtuins family. The APPswe/PSdE9 (APP/PS1) mice were applied to perform the in vivo experiments. Following the behavioral tests, protein expression was determined through western blot and immunofluorescence. The activities of oxidative stress-related enzymes were analyzed by biochemically kits. Nissl staining and thioflavin T staining were conducted to reflect the neurodegeneration and Aβ deposition respectively. RESULTS Molecular docking and qPCR results showed that Tan IIA mainly acted on Sirtuin1 (SIRT1) in Sirtuins family. The inhibitor of SIRT1 (EX527) was employed to further substantiate that Tan IIA could attenuate SIRT1-mediated endoplasmic reticulum stress (ER stress) in BMECs. Behavioral tests suggested that Tan IIA could improve the cognitive deficits in APP/PS1 mice. Tan IIA administration increased SIRT1 expression and alleviated ER stress in APP/PS1 mice. In addition, LRP1 expression was increased and RAGE expression was decreased after Tan IIA administration in both animals and cells. CONCLUSION Tan IIA could promote Aβ transportation by alleviating SIRT1-mediated ER stress in BMECs, which ameliorated cognitive deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Can Wan
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China ,grid.9227.e0000000119573309Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xiao-Qi Liu
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Mei Chen
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Hui-Han Ma
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Guang-Liang Wu
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Li-Jun Qiao
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Ye-Feng Cai
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Shi-Jie Zhang
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| |
Collapse
|
21
|
Huang HY, Tsai ST. Network pharmacology implicates traditional Chinese medicine in regulating systemic homeostasis to benefit Alzheimer's disease. Tzu Chi Med J 2023. [DOI: 10.4103/tcmj.tcmj_125_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
22
|
Yang M, Zhang X, Qiao O, Ji H, Zhang Y, Han X, Wang W, Li X, Wang J, Guo L, Huang L, Gao W. Rosmarinic acid potentiates and detoxifies tacrine in combination for Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154600. [PMID: 36610144 DOI: 10.1016/j.phymed.2022.154600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND There is no doubt that Alzheimer's disease (AD) is one of the greatest threats facing mankind today. Within the next few decades, Acetylcholinesterase inhibitors (AChEIs) will be the most widely used treatment for Alzheimer's disease. The withdrawal of the first generation AChEIs drug Tacrine (TAC)/ Cognex from the market as a result of hepatotoxicity has always been an interesting case study. Rosmarinic acid (RA) is a natural compound of phenolic acids that has pharmacological activity for inhibiting Alzheimer's disease, as well as liver protection. PURPOSE AND STUDY DESIGN In this study, we determined that RA can reduce the hepatotoxicity of TAC, and both of them act synergistically to inhibit the progression of AD in mice. METHODS In addition to the wild type mice (WT) group, the 6-month-old APP/PS1 (APPswe/PSEN1dE9) double-transgenic (Tg) mice were randomly divided into 6 groups: Tg group, TAC group, RA group, TAC+Silymarin (SIL) group, TAC+RA-L (Rosmarinic Acid Low Dose) goup and TAC+RA-H (Rosmarinic Acid High Dose) group. A series of experiments were carried out, including open field test, Morris water maze test, Hematoxylin - Eosin (HE) staining, Nissl staining, biochemical analysis, immunofluorescence analysis, western blotting analysis and so on. RESULTS RA combined with TAC could enter the brain tissue of AD mice, and the combination of drugs could better improve the cognitive behavior and brain pathological damage of AD mice, reduce the expression of A β oligomer, inhibit the deposition of A β, inhibit the activity of AChE and enhance the level of Ach in hippocampus. Both in vivo and in vitro experiments showed that RA could alleviate the hepatotoxicity or liver injury induced by TAC. The Western blot analysis of the liver of AD mice showed that RA combined with TAC might inhibit the apoptosis of Bcl-2/Bax, reduce the programmed apoptosis mediated by caspase-3 and reduce the burden of liver induced by TAC, could inhibit the development of liver apoptosis by alleviating the hepatotoxicity of TAC and inhibiting the phosphorylation of JNK. CONCLUSION The potential drug combination that combines rosmarinic acid with tacrine could reduce tacrine's hepatotoxicity as well as enhance its therapeutic effect on Alzheimer's disease.
Collapse
Affiliation(s)
- Mingjuan Yang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xinyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Haixia Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Yi Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xiaoying Han
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Wenzhe Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
23
|
You M, Yuan P, Li L, Xu H. HIF-1 signalling pathway was identified as a potential new pathway for Icariin's treatment against Alzheimer's disease based on preclinical evidence and bioinformatics. Front Pharmacol 2022; 13:1066819. [PMID: 36532735 PMCID: PMC9751333 DOI: 10.3389/fphar.2022.1066819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 10/05/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is a neurodegenerative condition that is characterized by the gradual loss of memory and cognitive function. Icariin, which is a natural chemical isolated from Epimedii herba, has been shown to protect against AD. This research examined the potential mechanisms of Icariin's treatment against AD via a comprehensive review of relevant preclinical studies coupled with network pharmacology. Methods: The PubMed, Web of Science, CNKI, WANFANG, and VIP databases were used to identify the relevant studies. The pharmacological characteristics of Icariin were determined using the SwissADME and TCMSP databases. The overlapping targets of Icariin and AD were then utilized to conduct disease oncology (DO) analysis to identify possible hub targets of Icariin in the treatment of AD. The hub targets were then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the interactions of the targets and Icariin were assessed via molecular docking and molecular dynamics simulation (MDS). Results: According to the literature review, Icariin alleviates cognitive impairment by regulating the expression of Aβ1-42, Aβ1-40, BACE1, tau, hyperphosphorylated tau, and inflammatory mediators. DO analysis revealed 35 AD-related hub targets, and the HIF-1 signalling pathway was ranked first according to the KEGG pathway analysis. Icariin effectively docked with the 35 hub targets and HIF-1α, and the dynamic binding of the HIF-1-Icariin complex within 100 ns indicated that Icariin contributed to the stability of HIF-1α. Conclusion: In conclusion, our research used a literature review and network pharmacology methods to identify the HIF-1 signalling pathway as a potential pathway for Icariin's treatment against AD.
Collapse
Affiliation(s)
| | | | | | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
24
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
25
|
Liu Z, Meng Y, Wei Q, Miao Y, Yu L, Li Y, Zhang B. The Protective Activity of Penehyclidine Hydrochloride against Renal Ischemia/Reperfusion-Mediated NLRP3 Inflammasome Activation is Induced by SIRT1. J INVEST SURG 2021; 35:1050-1061. [PMID: 34696682 DOI: 10.1080/08941939.2021.1995541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: The activation of alveolar macrophages (AMs) modulated via leucine-rich repeat (NLR) pyrin domain containing 3 (NLRP3) inflammasome activation is key to the progression of renal ischemia/reperfusion (rI/R)-mediated acute lung injury (ALI). Sirtuin-1 (SIRT1) can attenuate NLRP3 inflammasome activation during I/R stress and may be an important mechanism underlying ALI pathogenesis. Penehyclidine hydrochloride (PHC), an anticholinergic drug, exerts protective effects against rI/R-mediated ALI. This study aimed to decipher the effects of PHC on SIRT1 activation and the underlying mechanism of the protective activity of PHC against rI/R-mediated ALI.Materials and methods: We used an ALI rat model and the rat AMs cell line NR8383 to assess the degree of lung injury in vivo and in vitro.Results: The results show that PHC attenuates rI/R-mediated lung injury indices, myeloperoxidase, and apoptosis in vivo. It decreases the rI/R-mediated release of prostaglandin E2 and nitric oxide, mitochondrial reactive oxygen species production, and the activity of NADPH oxidase-4 in vitro. PHC ameliorates the rI/R-induced activation of the thioredoxin-interacting protein, caspase 1 (P10 unit), and NLRP3 inflammasome, along with reduced activation of interleukin-1β and interleukin-18 in vitro. We show that PHC alleviates the rI/R-induced reduction of SIRT1 and the depletion of SIRT1 eliminates the ameliorating activity of PHC on the NLRP3 inflammasome activation in vitro. Conclusions: In summary, the findings suggest that PHC ameliorates the rI/R-mediated ALI through the SIRT1-mediated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanli Meng
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qianjie Wei
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yu Miao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yuqing Li
- Department of Anesthesiology, Botou Hospital, Cangzhou, Hebei, China
| | - Bing Zhang
- Department of Anesthesiology, Botou Hospital, Cangzhou, Hebei, China
| |
Collapse
|