1
|
Salyer LG, Wang Y, Ma X, Foryst-Ludwig A, Kintscher U, Chennappan S, Kontaridis MI, McKinsey TA. Modulating the Secretome of Fat to Treat Heart Failure. Circ Res 2025; 136:1363-1381. [PMID: 40403114 DOI: 10.1161/circresaha.125.325593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/24/2025]
Abstract
Heart failure afflicts >6 million individuals in the United States alone and is associated with significant mortality (≈40% within 5 years of diagnosis) and cost (estimated to exceed $70 billion in the United States by 2030). Obesity is a major risk factor for the development of heart failure. The contribution of excess adipose tissue to heart failure pathogenesis is multifactorial. For example, adipose tissue-driven inflammation contributes to the development of other cardiometabolic comorbidities, such as hypertension, leading to left ventricular pressure overload and adverse remodeling of the heart. Adipose tissue also functions as an endocrine organ, and altered secretion of proteins, lipid mediators, metabolites, and small extracellular vesicles (collectively referred to as the secretome) from dysfunctional fat can lead to cardiac inflammation and oxidative stress, which drive changes in structure and function of the heart. In this review, we begin with an overview of current therapies for obesity and what is known about how they influence the heart. Then we focus on mechanisms by which fat communicates with the heart via secreted factors and highlight druggable nodes in this circuit that could be exploited to develop next-generation therapies for heart failure.
Collapse
Affiliation(s)
- Lorien G Salyer
- Division of Cardiology, Department of Medicine (L.G.S., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
- Consortium for Fibrosis Research & Translation (L.G.S., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL (Y.W.)
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (X.M.)
| | - Anna Foryst-Ludwig
- Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany (A.F.-L., U.K.)
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany (A.F.-L., U.K.)
| | - Ulrich Kintscher
- Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany (A.F.-L., U.K.)
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany (A.F.-L., U.K.)
| | - Saravanakkumar Chennappan
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY (S.C., M.I.K.)
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY (S.C., M.I.K.)
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (M.I.K.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA (M.I.K.)
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine (L.G.S., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
- Consortium for Fibrosis Research & Translation (L.G.S., T.A.M.), University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
2
|
Pugliese NR, Paneni F, Tricò D, Bacca AV, De Biase N, Dalpiaz H, Mengozzi A, Virdis A, Ghiadoni L, Taddei S, Kreutz R, Tsioufis K, Masi S. Refining the link between obesity and heart failure: insights from GLP-1 receptor agonist trials and studies adopting direct adiposity measures. Cardiovasc Diabetol 2025; 24:224. [PMID: 40405237 PMCID: PMC12096527 DOI: 10.1186/s12933-025-02778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
Overweight and obesity are major risk factors for heart failure (HF), contributing to its development through metabolic, neurohormonal, haemodynamic, and inflammatory alterations. While overweight/obesity increases the risk of developing HF, its impact on patient outcomes remains complex. The "obesity paradox" suggests that a higher BMI may be associated with improved survival in patients with established HF. However, recent GLP-1 receptor agonist (GLP-1 RA) trials suggest that intentional weight loss positively influences outcomes in overweight/obese patients with HF. This seemingly contradictory evidence highlights the need for a deeper understanding of the mechanisms linking adiposity to HF outcomes. A more precise characterization of adiposity phenotypes using alternative and accurate measures of pathological fat accumulation is crucial in identifying individuals who may benefit most from anti-obesity treatments. In this context, recent research underscores the role of epicardial adipose tissue (EAT) in HF pathophysiology, as it directly influences cardiac function and structure through inflammatory, metabolic, and mechanical effects. This narrative review summarises current evidence on the impact of weight loss on HF outcomes, focusing on recent GLP-1 RA trial results. Additionally, it highlights epidemiological and molecular data supporting EAT as a novel adiposity measure that might allow refining patient selection for pharmacological weight-loss treatments. Finally, it emphasizes the need for future research to identify causal pathways linking alternative measures of visceral fat accumulation to HF outcomes. These efforts will be essential in optimizing the benefits of novel weight-loss treatments, ensuring effective and individualized therapeutic strategies for overweight or obese patients with HF.
Collapse
Affiliation(s)
- Nicola Riccardo Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | | | - Nicolò De Biase
- PhD Program in Clinical and Translational Science, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Hermann Dalpiaz
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Lorenzo Ghiadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantinos Tsioufis
- Hippokration Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| |
Collapse
|
3
|
Reddy YNV, Frantz RP, Hemnes AR, Hassoun PM, Horn E, Leopold JA, Rischard F, Rosenzweig EB, Hill NS, Erzurum SC, Beck GJ, Finet JE, Jellis CL, Mathai SC, Tang WHW, Borlaug BA. Disentangling the Impact of Adiposity From Insulin Resistance in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol 2025; 85:1774-1788. [PMID: 40335254 DOI: 10.1016/j.jacc.2025.03.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Obesity, insulin resistance (IR), and diabetes are common in heart failure with preserved ejection fraction (HFpEF) and are associated with worsening heart failure, but their independent contributions remain unknown. OBJECTIVES In this study, we sought to determine the contribution of diabetes vs obesity to left heart abnormalities in HFpEF METHODS: Indices of adiposity (body mass index [BMI], bioimpedance fat mass, waist circumference) and IR (homeostasis-model assessment [HOMA]) were measured among PVDOMICS study participants with HFpEF. Rest and exercise pulmonary capillary wedge pressure (PCWP) responses were compared, stratified by obesity (BMI ≥30 kg/m2), IR status (HOMA-IR ≥2.6), and diabetes diagnosis. Findings were also tested in an independent HFpEF cohort. RESULTS Of 276 patients with HFpEF, 246 (89%) had increased waist/height ratio, and 166 (60%) had BMI ≥30 kg/m2, with 114 (69%) of the latter having IR and 75 (45%) having diabetes. Of 110 (40%) with HFpEF and BMI <30 kg/m2, 44 (40%) had IR and 27 (25%) had diabetes (both P < 0.0001 vs obesity phenotype). The presence of IR was not associated with worse left heart remodeling or PCWP. In contrast, obesity (regardless of IR status) was associated with greater biventricular enlargement, worse exercise performance, poorer quality of life, and higher rest and exercise PCWP (P < 0.01 for all). Obesity was associated with higher rest and dynamic PCWP responses (+4.4 mm Hg; 95% CI: +2.5 to +6.4 mm Hg; P < 0.0001), even after adjustment for HOMA-IR (+4.7 mm Hg; 95% CI: +2.7 to +6.7 mm Hg; P < 0.0001). Greater fat mass, BMI, and waist circumference were associated with higher PCWP at rest and exercise (P < 0.0009 for all), but HOMA-IR was not (+0.01 mm Hg; 95% CI: -0.13 to +0.16 mm Hg; P = 0.84). Findings were similar evaluating diabetes in place of IR, and were replicated in the independent HFpEF cohort (n = 254), where BMI remained independently associated with higher rest and exercise PCWP (+0.19 mm Hg [95% CI: +0.11 to +0.27 mm Hg] per kg/m2; P < 0.0001), but diabetes was not. CONCLUSIONS Excess adiposity is present in most patients with HFpEF, even among those not considered obese according to BMI, calling for further study of cardiometabolic therapies among patients with HFpEF and excess adiposity with BMI <30 kg/m2. Although excess body fat is associated with IR and diabetes, cardiac remodeling, hemodynamics, and functional impairment are independently correlated with body fat, but not IR. These findings suggest that diabetes is primarily a marker of greater adiposity in HFpEF, with less direct impact on heart failure severity. (Pulmonary Vascular Disease Phenomics Program [PVDOMICS]; NCT02980887).
Collapse
Affiliation(s)
- Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA. https://twitter.com/yreddyhf
| | - Robert P Frantz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evelyn Horn
- Perkin Heart Failure Center, Division of Cardiology, Weill Cornell Medicine, New York, New York, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz Rischard
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona, Tucson, Arizona, USA
| | - Erika B Rosenzweig
- Maria Fareri Children's Hospital, Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Nicholas S Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Serpil C Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gerald J Beck
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - J Emanuel Finet
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine L Jellis
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
4
|
Upadhya B, Rose GA, Stacey RB, Palma RA, Ryan T, Pendyal A, Kelsey AM. The role of echocardiography in the diagnosis of heart failure with preserved ejection fraction. Heart Fail Rev 2025:10.1007/s10741-025-10516-z. [PMID: 40355665 DOI: 10.1007/s10741-025-10516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common form of HF in older adults. While manifest as distinct clinical phenotypes, almost all patients with HFpEF will present with exercise intolerance or exertional dyspnea. Distinguishing HFpEF from other clinical conditions remains challenging, as the accurate diagnosis of HFpEF involves integrating a diverse array of cardiovascular (CV) structural and physiologic inputs. Owing to its intrinsic ability to characterize the structure and function of the myocardium, cardiac valves, pericardium, and vasculature, echocardiography (TTE) has emerged as an essential modality for diagnosing HFpEF. In contrast to HF with reduced EF, however, no single TTE variable defines HFpEF. Abnormal diastolic function is typically associated with HFpEF, but "diastolic dysfunction" per se is not synonymous with "HFpEF": the pathophysiology of HFpEF is more complex than diastolic dysfunction alone. HFpEF may involve abnormalities at multiple loci within the CV system, including (1) dysfunction of the left ventricle, left atrium, or right ventricle; (2) pulmonary hypertension or pulmonary vascular disease; (3) pericardial restraint; (4) abnormal systemic vascular impedance; (5) coronary or peripheral microcirculatory dysfunction; and (6) defects of tissue oxygen uptake within the periphery. Thus, the accurate diagnosis of HFpEF - and its specific clinical phenotypes - requires diagnostic algorithms that comprise multiple clinical variables, many of which may be derived from TTE data. Refining such algorithms to better discriminate among specific HFpEF phenotypes is the subject of continued investigation.
Collapse
Affiliation(s)
- Bharathi Upadhya
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, 2301 Erwin Rd, Durham, NC, 27710, USA.
| | - Geoffrey A Rose
- Sanger Heart & Vascular Institute, Atrium Health, Charlotte, NC, USA
| | - R Brandon Stacey
- Section On Cardiovascular Medicine, Department of Internal Medicine, Atrium Health, Wake Forest Baptist, Winston-Salem, NC, USA
| | - Richard A Palma
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, 2301 Erwin Rd, Durham, NC, 27710, USA
| | - Thomas Ryan
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, 2301 Erwin Rd, Durham, NC, 27710, USA
| | - Akshay Pendyal
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, 2301 Erwin Rd, Durham, NC, 27710, USA
| | - Anita M Kelsey
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, 2301 Erwin Rd, Durham, NC, 27710, USA
| |
Collapse
|
5
|
Savarese G, Schiattarella GG, Lindberg F, Anker MS, Bayes-Genis A, Bäck M, Braunschweig F, Bucciarelli-Ducci C, Butler J, Cannata A, Capone F, Chioncel O, D'Elia E, González A, Filippatos G, Girerd N, Hulot JS, Lam CSP, Lund LH, Maack C, Moura B, Petrie MC, Piepoli M, Shehab A, Yilmaz MB, Seferovic P, Tocchetti CG, Rosano GMC, Metra M. Heart failure and obesity: Translational approaches and therapeutic perspectives. A scientific statement of the Heart Failure Association of the ESC. Eur J Heart Fail 2025. [PMID: 40328668 DOI: 10.1002/ejhf.3676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Obesity and heart failure (HF) represent two growing pandemics. In the general population, obesity affects one in eight adults and is linked with an increased risk for HF. Obesity is even more common in patients with HF, where it complicates the diagnosis of HF and is linked with worse symptoms and impaired exercise capacity. Over the past few years, new evidence on the mechanisms linking obesity with HF has been reported, particularly in relation to HF with preserved ejection fraction. Novel therapies inducing weight loss appear to have favourable effects on health status and cardiovascular risk. Against the backdrop of this rapidly evolving evidence landscape, HF clinicians are increasingly required to tailor their preventive, diagnostic, and therapeutic approaches to HF in the presence of obesity. This scientific statement by the Heart Failure Association of the European Society of Cardiology provides an up-to-date summary on obesity in HF, covering key areas such as epidemiology, translational aspects, diagnostic challenges, therapeutic approaches, and trial design.
Collapse
Affiliation(s)
- Gianluigi Savarese
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Felix Lindberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Markus S Anker
- Department of Cardiology CBF German Heart Center Charité, DZHK, BCRT, University Medicine Berlin FU and HU, Berlin, Germany
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germasn Trias I Pujol, CIBERCV, Badalona, Spain
| | - Magnus Bäck
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guys' and St Thomas NHS Trust, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College University, London, UK
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- University of Mississippi, Jackson, MS, USA
| | - Antonio Cannata
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine, Faculty of Life Science, King's College London, London, UK
- Cardiology Department, King's College Hospital NHS Foundation Trust, London, UK
| | - Federico Capone
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Unit of Internal Medicine III, Department of Medicine (DIMED), Padua University Hospital, University of Padua, Padova, Italy
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu', University of Medicine Carol Davila, Bucharest, Romania
| | - Emilia D'Elia
- Cardiovascular Department, Papa Giovanni XXIII Hospital, Bergamo, Italy
- School of Medicine and Surgery, University Milano-Bicocca, Milan, Italy
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology and Cardiac Surgery, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Gerasimos Filippatos
- Department of Cardiology, University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Nicolas Girerd
- Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France
| | - Jean-Sébastien Hulot
- Université Paris Cité, INSERM, PARCC, Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Carolyn S P Lam
- National Heart Centre Singapore & Duke-National University of Singapore, Singapore
| | - Lars H Lund
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- Medical Clinic 1, University Clinic Würzburg, Würzburg, Germany
| | - Brenda Moura
- Department of Cardiology, Armed Forces Hospital, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mark C Petrie
- School of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Massimo Piepoli
- Clinical Cardiology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Preventive Cardiology, University of Wroclaw, Wroclaw, Poland
| | - Abdullah Shehab
- Department of Cardiology, Royal Burjeel Hospital, UAE University, Al Ain, UAE
| | - Mehmet B Yilmaz
- Department of Cardiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Peter Seferovic
- Faculty of Medicine, University of Belgrade, and Serbian Academy of Sciences and Arts, Belgrade, Serbia
- University of Belgrade, Belgrade, Serbia
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Giuseppe M C Rosano
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
- Cardiology, San Raffaele Cassino Hospital, Cassino, Italy
| | - Marco Metra
- Cardiology and Cardiac Catheterization Laboratory, Cardio-Thoracic Department, Civil Hospitals, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
6
|
Zhang SJ, Wang SW, Liu SY, Li P, Huang DL, Zeng XX, Lan T, Ruan YP, Shi HJ, Zhang X. Epicardial adipose tissue: a new link between type 2 diabetes and heart failure-a comprehensive review. Heart Fail Rev 2025; 30:477-491. [PMID: 39730926 DOI: 10.1007/s10741-024-10478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Diabetic cardiomyopathy is a unique cardiomyopathy that is common in diabetic patients, and it is also a diabetic complication for which no effective treatment is currently available. Moreover, relevant studies have revealed that a link exists between type 2 diabetes and heart failure and that abnormal thickening of EAT is inextricably linked to the development of diabetic heart failure. Numerous clinical studies have demonstrated that EAT is implicated in the pathophysiologic process of diabetic myocardial disease. In this overview, we will introduce the physiology, pathophysiology of the disease and potential therapeutic strategies, knowledge gaps, and future directions of the role of epicardial adipose tissue in type 2 diabetes mellitus and heart failure to promote the development of novel therapeutic approaches to improve the prognosis of patients with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Si-Jia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - De-Lian Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory Animal Resources Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Jiao Shi
- The Third Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning, 116600, China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Kim SE, Yoo BS. Obesity and heart failure with preserved ejection fraction: focus on new drugs and future direction in medical treatment. Korean J Intern Med 2025; 40:357-370. [PMID: 40360219 PMCID: PMC12081111 DOI: 10.3904/kjim.2024.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 02/12/2025] [Indexed: 05/15/2025] Open
Abstract
Obesity is a major risk factor for heart failure with preserved ejection fraction (HFpEF) and contributes through multiple pathophysiological pathways, including systemic inflammation, neurohormonal activation, and mechanical inhibition. The treatment of obesity has shown significant potential for improving HFpEF outcomes. Sodium-glucose cotransporter 2 inhibitors have emerged as effective treatments for improving symptoms and quality of life in patients with HFpEF while aiding in weight control. Furthermore, a recent demonstration of the clinical benefits of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in HFpEF showed promising results in reducing weight loss, and improving symptoms and clinical outcomes. In this review article, we discuss the association between HFpEF and obesity, the emerging role of GLP-1 RAs, and future directions for medical therapies targeting obesity-associated HFpEF.
Collapse
Affiliation(s)
- Se-Eun Kim
- Division of Cardiology, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Byung-Su Yoo
- Division of Cardiology, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
8
|
Hsu JC, Huang KC, Lin TT, Lee JK, Su MYM, Juang JMJ, Wu CK, Lin LY. Epicardial Adipose Tissue Is Associated With Geometry Alteration and Diastolic Dysfunction in Prediabetic Cardiomyopathy. J Clin Endocrinol Metab 2025; 110:1478-1487. [PMID: 38864548 DOI: 10.1210/clinem/dgae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Diastolic dysfunction and alterations in cardiac geometry are early indicators of diabetic cardiomyopathy. However, the association between cardiac changes across the glucose continuum and the contribution of epicardial adipose tissue (EAT) to these changes has not yet been investigated. PURPOSE In this study, we aimed to investigate the EAT on cardiac diastolic function and structural alterations along the diabetic continuum using cardiac magnetic resonance imaging (CMRI). METHODS We enrolled individuals who were categorized into groups based on glucose tolerance status. Left ventricular structure and diastolic function were assessed using echocardiography and CMRI to determine the EAT, intramyocardial fat, and associated parameters. Multivariable logistic regression models were also used. RESULTS In a study of 370 patients (209 normal glucose tolerance, 82 prediabetes, 79 diabetes), those with prediabetes and diabetes showed increased heart dimensions and diastolic dysfunction, including the ratio of early mitral inflow velocity to mitral annular early diastolic velocity (7.9 ± 0.51 vs 8.5 ± 0.64 vs 10.0 ± 0.93, P = .010), left atrial volume index (28.21 ± 14.7 vs 33.2 ± 12.8 vs 37.4 ± 8.2 mL/m2, P < .001), and left ventricular peak filling rate (4.46 ± 1.75 vs 3.61 ± 1.55 vs 3.20 ± 1.30 mL/s, P < .001). EAT significantly increased in prediabetes and diabetes (26.3 ± 1.16 vs 31.3 ± 1.83 vs 33.9 ± 1.9 gm, P = .001), while intramyocardial fat did not differ significantly. Prediabetes altered heart geometry but not diastolic function (odds ratio [OR] 1.22 [1.02-1.83], P = .012; and 1.70 [0.79-3.68], P = .135). Diabetes significantly affected both heart structure and diastolic function (OR 1.42 [1.11-1.97], P = .032; and 2.56 [1.03-5.40], P = .034) after adjusting for covariates. CONCLUSION Elevated EAT was observed in patients with prediabetes and is associated with adverse alterations in cardiac structure and diastolic function, potentially serving as an underlying mechanism for the early onset of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jung-Chi Hsu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Jinshan Branch, New Taipei City 20844, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
| | - Kuan-Chih Huang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300195, Taiwan
| | - Ting-Tse Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
| | - Jen-Kuang Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
| | - Mao-Yuan M Su
- Department of Medical Imaging, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jyh-Ming Jimmy Juang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
- Heart Failure Center, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Cho-Kai Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine, College of Medicine National Taiwan University, Taipei 100233, Taiwan
- Master's Program in Smart Medicine and Health Informatics, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
9
|
Janssen-Telders C, Eringa EC, de Groot JR, de Man FS, Handoko ML. The role of epicardial adipose tissue remodelling in heart failure with preserved ejection fraction. Cardiovasc Res 2025:cvaf056. [PMID: 40238568 DOI: 10.1093/cvr/cvaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 04/18/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing global health problem characterized by high morbidity and mortality, with limited effective therapies available. Obesity significantly influences haemodynamic and structural changes in the myocardium and vasculature, primarily through the accumulation and action of visceral adipose tissue. Particularly, epicardial adipose tissue (EAT) contributes to HFpEF through inflammation and lipotoxic infiltration of the myocardium. However, the precise signalling pathways leading to diastolic stiffness in HFpEF require further elucidation. This review explores the dynamic role of EAT in health and disease. Drawing upon insights from studies in other conditions, we discuss potential EAT-mediated inflammatory pathways in HFpEF and how they may contribute to functional and structural myocardial and endothelial derangements, including intramyocardial lipid infiltration, fibrosis, endothelial dysfunction, cardiomyocyte stiffening, and left ventricular hypertrophy. Lastly, we propose potential targets for novel therapeutic avenues.
Collapse
Affiliation(s)
- Carolina Janssen-Telders
- Department of Cardiology Amsterdam UMC, Heart Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Etto C Eringa
- Amsterdam Cardiovascular Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht UMC, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Joris R de Groot
- Department of Cardiology Amsterdam UMC, Heart Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Frances S de Man
- Amsterdam Cardiovascular Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht UMC, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - M Louis Handoko
- Department of Cardiology Amsterdam UMC, Heart Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Pulmonology, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
10
|
Yu YL, Jiang Q. Advances in Pathophysiological Mechanisms of Degenerative Aortic Valve Disease. Cardiol Res 2025; 16:86-101. [PMID: 40051666 PMCID: PMC11882237 DOI: 10.14740/cr2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Degenerative aortic valve disease (DAVD) represents the most prevalent valvular ailment among the elderly population, which significantly impacts their physical well-being and potentially poses a lethal risk. Currently, the underlying mechanisms of DAVD remain incompletely understood. While the progression of this disease has traditionally been attributed to degenerative processes associated with aging, numerous recent studies have revealed that heart valve calcification may represent a response of valve tissue to a specific initiating factor, involving the interaction of various genes and signaling pathways. This calcification process is further influenced by a range of factors, including genetic predispositions, environmental exposures, metabolic factors, and hemodynamic considerations. Based on the identification of its biomarkers, potential innovative therapeutic targets are proposed for the treatment of this complex condition. The present article primarily delves into the underlying pathophysiological mechanisms and advancements in diagnostic and therapeutic modalities pertaining to this malady.
Collapse
Affiliation(s)
- Ya Lu Yu
- School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
| | - Qin Jiang
- School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, 610072 Chengdu, Sichuan, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China
| |
Collapse
|
11
|
Hathorn B, Haykowsky MJ, Almandoz J, Pandey A, Sarma S, Hearon CM, Babb TG, Balmain BN, Fu Q, Zaha VG, Levine BD, Nelson MD. Insights Into the Role of Obesity in Heart Failure With Preserved Ejection Fraction Pathophysiology and Management. Can J Cardiol 2025:S0828-282X(25)00199-0. [PMID: 40122162 DOI: 10.1016/j.cjca.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
Heart failure (HF) is a significant global health issue, categorized by left ventricular ejection fraction, being either reduced (HFrEF < 0.40) or preserved (HFpEF > 0.50), or in the middle of this range. Although the overall incidence of HF remains stable, HFpEF cases are increasing, representing about 50% of all HF cases. Outcomes for HFpEF are similar to those for HFrEF, leading to substantial health-care resource use. Despite extensive research over the past 2 decades, the prognosis and mortality rates for HFpEF remain high. A key feature of HFpEF is exercise intolerance, characterized by severe exertional dyspnea and fatigue, which significantly impacts quality of life. The underlying mechanisms of exercise intolerance are not fully understood due to the complex pathophysiology and multisystem involvement. Obesity is a common comorbidity in HFpEF, especially in North America, leading to worsening symptoms, hemodynamics, and mortality rates. Increased adiposity leads to inflammation, hypertension, dyslipidemia, and insulin resistance, and impairing cardiac, vascular, pulmonary, and skeletal muscle function. Therefore, managing obesity is crucial in treating HFpEF. In this review we explore the pathophysiologic mechanisms of HFpEF, emphasizing obesity's role, and we discuss current management strategies while identifying areas needing further research.
Collapse
Affiliation(s)
- Brandon Hathorn
- Applied Physiology and Advanced Imaging Laboratory, University of Texas at Arlington, Arlington, Texas, USA
| | - Mark J Haykowsky
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jaime Almandoz
- Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Satyam Sarma
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bryce N Balmain
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Qi Fu
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Clinical Imaging Research Center, University of Texas at Arlington, Arlington, Texas, USA
| | - Benjamin D Levine
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Michael D Nelson
- Applied Physiology and Advanced Imaging Laboratory, University of Texas at Arlington, Arlington, Texas, USA; Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Clinical Imaging Research Center, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
12
|
Pecchia B, Samuel R, Shah V, Newman E, Gibson GT. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction (HFpEF). Heart Fail Rev 2025:10.1007/s10741-025-10504-3. [PMID: 40080287 DOI: 10.1007/s10741-025-10504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Exercise intolerance is a well-established symptom of heart failure with preserved ejection fraction (HFpEF) and is associated with impaired quality of life and worse clinical outcomes. Historically attributed to diastolic dysfunction of the left ventricle, exercise intolerance in HFpEF is now known to result not only from diastolic dysfunction, but also from impairments in left ventricular systolic function, left atrial pathology, right ventricular dysfunction, and valvular disease. Disorders of heart rate and rhythm such as chronotropic incompetence and atrial fibrillation have also been implicated in exercise intolerance in this population. Pathologic changes to extra-cardiac organ systems including the respiratory, vascular, hormonal, and skeletal muscle systems are also thought to play a role in exercise impairment. Finally, comorbidities such as obesity, inflammation, and anemia are common and likely contributory in many cases. The role of each of these factors is discussed in this review of exercise intolerance in patients with HFpEF.
Collapse
Affiliation(s)
- Brandon Pecchia
- Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Roy Samuel
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Vacha Shah
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Emily Newman
- Division of Cardiology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, US, Philadelphia, PA, 19107, USA
| | - Gregory T Gibson
- Division of Cardiology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, US, Philadelphia, PA, 19107, USA.
| |
Collapse
|
13
|
Du J, Liu J, Wang X, Wang X, Ma Y, Zhang S, Li Z, Ma J, Liu J. The role of estrogen in the sex difference for the risk factors of heart failure with preserved ejection fraction. Biol Direct 2025; 20:28. [PMID: 40065410 PMCID: PMC11895175 DOI: 10.1186/s13062-025-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major subtype of heart failure, primarily characterized by a normal or mildly reduced left ventricular ejection fraction along with left ventricular diastolic dysfunction. Recent studies have shown that the prevalence of HFpEF is higher in women than that in men, particularly in postmenopausal women. Concurrently, it has been observed that the incidence of risk factors contributing to HFpEF (such as obesity, hypertension, diabetes, and atrial fibrillation) also notably increases post-menopause, affecting the incidence of HFpEF. This review aimed to examine the relationship between estrogen and risk factors associated with HFpEF, clarifying the underlying mechanisms through which estrogen affects these risk factors from epidemiological and pathophysiological perspectives. This review also provides a comprehensive understanding of the association between estrogen and the risk factors for HFpEF, thus helping explore potential targets for HFpEF treatment.
Collapse
Affiliation(s)
- Jun Du
- Xi'an Medical University, Xi'an, People's Republic of China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiaqi Liu
- Xi'an Medical University, Xi'an, People's Republic of China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Sipan Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
14
|
Dell’Aversana F, Tuccillo R, Monfregola A, De Angelis L, Ferrandino G, Tedeschi C, Cacciapuoti F, Tamburro F, Liguori C. Epicardial Adipose Tissue Volume Assessment in the General Population and CAD-RADS 2.0 Score Correlation Using Dual Source Cardiac CT. Diagnostics (Basel) 2025; 15:681. [PMID: 40150024 PMCID: PMC11941225 DOI: 10.3390/diagnostics15060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives: Our study aims to investigate the correlation between epicardial adipose tissue (EAT) volume assessed with non-contrast cardiac CT (NCCCT) and sex, age, coronary artery disease reporting and data system (CAD-RADS 2.0) categories, and coronary artery calcification (CAC) extent. The secondary aim is to establish the average values of EAT in a population considered healthy for coronary artery disease (CAD). Materials and Methods: We retrospectively analyzed patients who underwent coronary computed tomography angiography (CCTA) at our institution from January 2023 to August 2024. The CAD-RADS 2.0 scoring system was applied to assess the extent of CAD; CAC extent was quantified according to the Agatston score. EAT was segmented semi-automatically in NCCCT images, and its volume was subsequently measured. Correlation analyses between EAT volume, sex, patient age, CAC, and CAD-RADS categories were conducted. Results: A total of 489 consecutive patients met the inclusion criteria (63.96 ± 12.18 years; 214 females). The mean EAT volume ± SD in those categorized as CAD-RADS 0 (57.25 ± 15.45 years, 120 patients) was 117.43 ± 50.30 cm3: values were higher in men (121.07 ± 53.31 cm3) than in women (114.54 ± 47.98 cm3). EAT volumes positively correlated with age, male sex, CAD severity, and CAC scores. Conclusions: According to our results, males in all CAD-RADS categories have a greater amount of EAT than females. A positive correlation between the volume of EAT and factors such as age (p = 0.003), CAD-RADS categories (p: 0.004), and coronary calcium score (p = 0.0001) with a strong influence exerted by sex was demonstrated. Our results reinforce the observation that higher EAT volumes are associated with a more severe coronary artery disease.
Collapse
Affiliation(s)
- Federica Dell’Aversana
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.D.); (R.T.)
| | - Renato Tuccillo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.D.); (R.T.)
| | - Alessandro Monfregola
- Division of Radiology, University of Napoli “Federico II”, 80131 Naples, Italy; (A.M.); (L.D.A.)
| | - Leda De Angelis
- Division of Radiology, University of Napoli “Federico II”, 80131 Naples, Italy; (A.M.); (L.D.A.)
| | - Giovanni Ferrandino
- Department of Radiology, Ospedale del Mare-ASL Napoli 1, 80147 Naples, Italy; (G.F.); (F.T.)
| | - Carlo Tedeschi
- Operational Unit of Cardiology, Presidio Sanitario Intermedio Napoli Est, ASL-Napoli 1 Centro, 80144 Naples, Italy;
| | - Fulvio Cacciapuoti
- Department of Cardiology, Azienda Ospedaliera di Rilievo Nazionale Antonio Cardarelli, 80131 Naples, Italy;
| | - Fabio Tamburro
- Department of Radiology, Ospedale del Mare-ASL Napoli 1, 80147 Naples, Italy; (G.F.); (F.T.)
| | - Carlo Liguori
- Department of Radiology, San Giovanni Bosco-ASL Napoli 1, 80144 Naples, Italy
| |
Collapse
|
15
|
Abbassi M, Besbes B, Elkadri N, Hachicha S, Boudiche S, Daly F, Ben Halima M, Jebberi Z, Ouali S, Mghaieth F. Characterization of epicardial adipose tissue thickness and structure by ultrasound radiomics in acute and chronic coronary patients. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025; 41:477-488. [PMID: 39915372 DOI: 10.1007/s10554-025-03329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/01/2025] [Indexed: 03/06/2025]
Abstract
We hypothesize that epicardial adipose tissue (EAT) structure differs between patients with coronary disease and healthy individuals and that EAT may undergo changes during an acute coronary syndrome (ACS). This study aimed to investigate EAT thickness (EATt) and structure using ultrasound radiomics in patients with ACS, patients with chronic coronary syndrome (CCS), and controls and compare the findings between the three groups. This prospective monocentric comparative cohort study included three patient groups: ACS, CCS, and asymptomatic controls. EATt was assessed using transthoracic echocardiography. Geometrical features (as mean gray value and raw integrated density) and texture features (as angular second moment, contrast and correlation) were computed from grayscale Tagged Image File Format biplane images using ImageJ software. EATt did not significantly differ between the ACS group (8.14 ± 3.17 mm) and the control group (6.92 ± 2.50 mm), whereas CCS patients (9.96 ± 3.19 mm) had significantly thicker EAT compared to both the ACS group (p = 0.025) and the control group (p < 0.001). Radiomics analysis revealed differences in geometrical parameters with discriminatory capabilities between both ACS group and controls and CCS group and controls. A multivariate analysis comparing ACS and CCS patients revealed that differences in EAT characteristics were significant only in patients with a body mass index below 26.25 kg/m². In this subgroup, patients older than 68 exhibited a higher modal gray value (p = 0.016), whereas those younger than 68 had a lower minimum gray value (p = 0.05). Radiomic analysis highlights its potential in developing imaging biomarkers for early diagnosis and coronary artery disease progression monitoring.
Collapse
Affiliation(s)
- Manel Abbassi
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia.
- University of Medicine, Tunis, Tunisia.
| | - Bouthaina Besbes
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
| | | | - Salmen Hachicha
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
| | - Selim Boudiche
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
| | - Foued Daly
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| | - Manel Ben Halima
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| | - Zeynab Jebberi
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| | - Sana Ouali
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| | - Fathia Mghaieth
- Department of Cardiology, The Rabta Teaching Hospital, University of Medicine, Tunis, Tunisia
- University of Medicine, Tunis, Tunisia
| |
Collapse
|
16
|
Kramer CM, Borlaug BA, Zile MR, Ruff D, DiMaria JM, Menon V, Ou Y, Zarante AM, Hurt KC, Murakami M, Packer M. Tirzepatide Reduces LV Mass and Paracardiac Adipose Tissue in Obesity-Related Heart Failure: SUMMIT CMR Substudy. J Am Coll Cardiol 2025; 85:699-706. [PMID: 39566869 DOI: 10.1016/j.jacc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Obesity is a known risk factor for heart failure with preserved ejection fraction (HFpEF) and is considered a distinct phenotype with more concentric remodeling. Epicardial adipose tissue (EAT) is also increased in obesity-related HFpEF and is associated with adverse events. OBJECTIVES The cardiac magnetic resonance (CMR) substudy of the SUMMIT trial aimed to examine the effects of tirzepatide on cardiac structure and function with the underlying hypothesis that it would reduce left ventricular (LV) mass and EAT in obesity-related HFpEF. METHODS A total of 175 patients with obesity-related HFpEF from the parent study of tirzepatide (2.5 mg subcutaneously weekly, increasing to a maximum of 15 mg weekly) or matching placebo underwent CMR at baseline, which consisted of multiplanar cine imaging. A total of 106 patients completed the CMR and had adequate image quality for analysis of LV and left atrial structure and function and paracardiac (epicardial plus pericardial) adipose tissue at both baseline and 52 weeks. The prespecified primary endpoint of this substudy was between-group changes in LV mass. RESULTS LV mass decreased by 11 g (95% CI: -19 to -4 g) in the treated group (n = 50) when corrected for placebo (n = 56) (P = 0.004). Paracardiac adipose tissue decreased in the treated group by 45 mL (95% CI: -69 to -22 mL) when corrected for placebo (P < 0.001). The change in LV mass in the treated group correlated with changes in body weight (P < 0.02) and tended to correlate with changes in waist circumference and blood pressure (P = 0.06 for both). The LV mass change also correlated with changes in LV end-diastolic volume and left atrial end-diastolic and end-systolic volumes (P < 0.03 for all). CONCLUSIONS The CMR substudy of the SUMMIT trial demonstrated that tirzepatide therapy in obesity-related HFpEF led to reduced LV mass and paracardiac adipose tissue as compared with placebo, and the change in LV mass paralleled weight loss. These physiologic changes may contribute to the reduction in heart failure events seen in the main SUMMIT trial. (A Study of Tirzepatide [LY3298176] in Participants With Heart Failure With Preserved Ejection Fraction [HFpEF] and Obesity: The SUMMIT Trial; NCT04847557).
Collapse
Affiliation(s)
- Christopher M Kramer
- Cardiovascular Division, Department of Medicine, University of Virginia Health, Charlottesville, Virginia, USA.
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael R Zile
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dustin Ruff
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Joseph M DiMaria
- Cardiovascular Division, Department of Medicine, University of Virginia Health, Charlottesville, Virginia, USA
| | - Venu Menon
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yang Ou
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Karla C Hurt
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Koskinas KC, Van Craenenbroeck EM, Antoniades C, Blüher M, Gorter TM, Hanssen H, Marx N, McDonagh TA, Mingrone G, Rosengren A, Prescott EB. Obesity and cardiovascular disease: an ESC clinical consensus statement. Eur J Prev Cardiol 2025; 32:184-220. [PMID: 39210708 DOI: 10.1093/eurjpc/zwae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
The global prevalence of obesity has more than doubled over the past four decades, currently affecting more than a billion individuals. Beyond its recognition as a high-risk condition that is causally linked to many chronic illnesses, obesity has been declared a disease per se that results in impaired quality of life and reduced life expectancy. Notably, two-thirds of obesity-related excess mortality is attributable to cardiovascular disease. Despite the increasingly appreciated link between obesity and a broad range of cardiovascular disease manifestations including atherosclerotic disease, heart failure, thromboembolic disease, arrhythmias, and sudden cardiac death, obesity has been underrecognized and sub-optimally addressed compared with other modifiable cardiovascular risk factors. In the view of major repercussions of the obesity epidemic on public health, attention has focused on population-based and personalized approaches to prevent excess weight gain and maintain a healthy body weight from early childhood and throughout adult life, as well as on comprehensive weight loss interventions for persons with established obesity. This clinical consensus statement by the European Society of Cardiology discusses current evidence on the epidemiology and aetiology of obesity; the interplay between obesity, cardiovascular risk factors and cardiac conditions; the clinical management of patients with cardiac disease and obesity; and weight loss strategies including lifestyle changes, interventional procedures, and anti-obesity medications with particular focus on their impact on cardiometabolic risk and cardiac outcomes. The document aims to raise awareness on obesity as a major risk factor and provide guidance for implementing evidence-based practices for its prevention and optimal management within the context of primary and secondary cardiovascular disease prevention.
Collapse
Affiliation(s)
- Konstantinos C Koskinas
- Department of Cardiology, Bern University Hospital-INSELSPITAL, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland
| | - Emeline M Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Antwerp 2650, Belgium
- Research group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matthias Blüher
- Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Thomas M Gorter
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Henner Hanssen
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Nikolaus Marx
- Department of Internal Medicine I-Cardiology, RWTH Aachen University, Aachen, Germany
| | - Theresa A McDonagh
- Cardiology Department, King's College Hospital, London, UK
- King's College, London, UK
| | - Geltrude Mingrone
- Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli & Catholic University, Rome, Italy
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital/Ostra, Västra Götaland Region, Gothenburg, Sweden
| | - Eva B Prescott
- Bispebjerg Frederiksberg Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen 2400, Denmark
| |
Collapse
|
18
|
Qiu H, Chen J, Mei Z, Chen W, Jun L, Chen Y, Tan Y, Wang T, Chen Y, Li J. Dysregulated fatty acid metabolism in pericardiac adipose tissue of pulmonary hypertension due to left heart disease mice. FASEB J 2025; 39:e70355. [PMID: 39932146 PMCID: PMC11812284 DOI: 10.1096/fj.202402842r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Pulmonary hypertension associated with left heart disease (PH-LHD) represents the most prevalent form of pulmonary hypertension; however, being lacks precise and effective treatment strategies. Recent clinical studies have indicated a positive correlation between the volume of pericardiac adipose tissue (PAT) and the severity of PH-LHD. Nonetheless, there is a paucity of research characterizing PAT phenotypes in PH-LHD disease models. This study aimed to elucidate the gene-level characteristics of PAT in PH-LHD through RNA sequencing and targeted metabolomic analysis of PAT in order to identify potential therapeutic targets for PH-LHD by modulating PAT. This study developed a mouse model of PH-LHD through cardiac overload combined with metabolic syndrome and verified that PAT volume and adipocyte size were significantly increased in PH-LHD mice. We used RNA sequencing to reveal that DEGs in PAT were primarily enriched in fatty acid metabolism pathways. Then, real-time PCR showed no significant differences in the mRNA expression of inflammatory markers or adipocytokines; however, genes of fatty acid synthesis (Fasn, Acaca, and Scd1) and fatty acid decomposition (Ehhadh, Acot4, and Pdk1) significantly changed between the two groups. Consistently, targeted metabolomic analysis showed levels of most types of medium- and long-chain fatty acids substantially reduced in PAT, suggesting that PAT in PH-LHD mice exhibits suppressed fatty acid de novo synthesis and enhanced fatty acid breakdown, resulting in impaired fatty acid storage. These findings highlight the potential of targeting PAT fatty acid synthesis and metabolism pathways as a novel therapeutic approach for PH-LHD.
Collapse
Affiliation(s)
- Haihua Qiu
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jingyuan Chen
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhang Mei
- Xiangya School of Nursing of Central South UniversityChangshaHunanChina
| | - Wenjie Chen
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Luo Jun
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yusi Chen
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yingjie Tan
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Tianyu Wang
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yaqin Chen
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jiang Li
- Department of Cardiovascular MedicineSecond Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
19
|
Radakrishnan A, Agrawal S, Singh N, Barbieri A, Shaw LJ, Gulati M, Lala A. Underpinnings of Heart Failure With Preserved Ejection Fraction in Women - From Prevention to Improving Function. A Co-publication With the American Journal of Preventive Cardiology and the Journal of Cardiac Failure. J Card Fail 2025:S1071-9164(25)00037-5. [PMID: 39971643 DOI: 10.1016/j.cardfail.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a major clinical challenge with rising global prevalence. Women have a nearly double lifetime risk of developing HFpEF compared to heart failure with reduced ejection fraction (HFrEF). In HFpEF, sex differences emerge both in how traditional cardiovascular risk factors (such as hypertension, obesity, and diabetes) affect cardiac function and through distinct pathophysiological mechanisms triggered by sex-specific events like menopause and adverse pregnancy outcomes. These patterns influence not only disease development, but also therapeutic responses, necessitating sex-specific approaches to treatment. This review aims to synthesize existing knowledge regarding HFpEF in women including traditional and sex-specific risk factors, pathophysiology, presentation, and therapies, while outlining important knowledge gaps that warrant further investigation. The impact of HFpEF spans a woman's entire lifespan, requiring prevention and management strategies tailored to different life stages. While understanding of sex-based differences in HFpEF has improved, significant knowledge gaps persist. Through examination of current evidence and challenges, this review highlights promising opportunities for innovative research, therapeutic development, and clinical care approaches that could transform the management of HFpEF in women.
Collapse
Affiliation(s)
- Ankitha Radakrishnan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saloni Agrawal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nausheen Singh
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Barbieri
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leslee J Shaw
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martha Gulati
- Department of Cardiology, Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, California, USA.
| | - Anuradha Lala
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
20
|
Borlaug BA, Zile MR, Kramer CM, Baum SJ, Hurt K, Litwin SE, Murakami M, Ou Y, Upadhyay N, Packer M. Effects of tirzepatide on circulatory overload and end-organ damage in heart failure with preserved ejection fraction and obesity: a secondary analysis of the SUMMIT trial. Nat Med 2025; 31:544-551. [PMID: 39551891 PMCID: PMC11835708 DOI: 10.1038/s41591-024-03374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Patients with obesity-related heart failure with preserved ejection fraction (HFpEF) display circulatory volume expansion and pressure overload contributing to cardiovascular-kidney end-organ damage. In the SUMMIT trial, patients with HFpEF and obesity were randomized to the long-acting glucose-dependent insulinotropic polypeptide receptor and glucagon-like peptide-1 receptor agonist tirzepatide (n = 364, 200 women) or placebo (n = 367, 193 women). As reported separately, tirzepatide decreased cardiovascular death or worsening heart failure. Here, in this mechanistic secondary analysis of the SUMMIT trial, tirzepatide treatment at 52 weeks, as compared with placebo, reduced systolic blood pressure (estimated treatment difference (ETD) -5 mmHg, 95% confidence interval (CI) -7 to -3; P < 0.001), decreased estimated blood volume (ETD -0.58 l, 95% CI -0.63 to -0.52; P < 0.001) and reduced C-reactive protein levels (ETD -37.2%, 95% CI -45.7 to -27.3; P < 0.001). These changes were coupled with an increase in estimated glomerular filtration rate (ETD 2.90 ml min-1 1.73 m-2 yr-1, 95% CI 0.94 to 4.86; P = 0.004), a decrease in urine albumin-creatinine ratio (ETD 24 weeks, -25.0%, 95% CI -36 to -13%; P < 0.001; 52 weeks, -15%, 95% CI -28 to 0.1; P = 0.051), a reduction in N-terminal prohormone B-type natriuretic peptide levels (ETD 52 weeks -10.5%, 95% CI -20.7 to 1.0%; P = 0.07) and a reduction in troponin T levels (ETD 52 weeks -10.4%, 95% CI -16.7 to -3.6; P = 0.003). In post hoc exploratory analyses, decreased estimated blood volume with tirzepatide treatment was significantly correlated with decreased blood pressure, reduced microalbuminuria, improved Kansas City Cardiomyopathy Questionnaire Clinical Summary Score and increased 6-min walk distance. Moreover, decreased C-reactive protein levels were correlated with reduced troponin T levels and improved 6-min walk distance. In conclusion, tirzepatide reduced circulatory volume-pressure overload and systemic inflammation and mitigated cardiovascular-kidney end-organ injury in patients with HFpEF and obesity, providing new insights into the mechanisms of benefit from tirzepatide. ClinicalTrials.gov registration: NCT04847557 .
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Michael R Zile
- Division of Cardiology, Medical University of South Carolina and the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Christopher M Kramer
- Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, University of Virginia Health, Charlottesville, VA, USA
| | | | - Karla Hurt
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Sheldon E Litwin
- Division of Cardiology, Medical University of South Carolina and the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | | | - Yang Ou
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Milton Packer
- Baylor University Medical Center, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
21
|
Chartrand DJ, Larose E, Poirier P, Mathieu P, Alméras N, Pibarot P, Lamarche B, Rhéaume C, Lemieux I, Després JP, Piché ME. Visceral adiposity: A major mediator of the relationship between epicardial adiposity and cardiorespiratory fitness in adults. Nutr Metab Cardiovasc Dis 2025; 35:103740. [PMID: 39455333 DOI: 10.1016/j.numecd.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND AND AIMS Epicardial adiposity has been positively associated with visceral adipose tissue (VAT). Few studies have examined the association between cardiorespiratory fitness (CRF) and epicardial adiposity. Furthermore, whether this relationship was independent of VAT remains unexplored. Our purpose was to investigate the contribution of VAT in the relationships between CRF, physical activity (PA) and epicardial adipose tissue (EAT) in asymptomatic women and men. METHODS AND RESULTS We examined the associations between EAT and VAT measured by magnetic resonance imaging, CRF measured by cardiopulmonary exercise testing, and PA assessed using pedometers and a 3-day PA journal in 239 apparently healthy adults (43 % women). Participants were compared according to EAT tertiles and CRF level in both sexes. Participants with the highest EAT level presented more VAT (p < 0.001), lower CRF (p < 0.01), and a more deteriorated cardiometabolic health score (p < 0.01) than those with the lowest EAT level. CRF was negatively associated with EAT in both sexes (p < 0.01). No significant relationship was found with PA (p = NS). Stepwise multivariable regression analyses showed that VAT explained most of the variance in EAT in women and men. Mediation analyses confirmed that VAT was a mediator of the association between CRF and EAT in both sexes. CONCLUSION In women and men, VAT appears as a major mediator of the association between CRF and EAT thereby suggesting that managing VAT by improving CRF could help in the prevention of cardiometabolic disorders related to excess EAT.
Collapse
Affiliation(s)
- Dominic J Chartrand
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Eric Larose
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Paul Poirier
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Natalie Alméras
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Philippe Pibarot
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoît Lamarche
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, QC, Canada; School of Nutrition, Université Laval, Québec, QC, Canada
| | - Caroline Rhéaume
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada; VITAM - Centre de recherche en santé durable, CIUSSS de la Capitale-Nationale, Québec, QC, Canada
| | - Isabelle Lemieux
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Jean-Pierre Després
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada; VITAM - Centre de recherche en santé durable, CIUSSS de la Capitale-Nationale, Québec, QC, Canada
| | - Marie-Eve Piché
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
22
|
Lin S, Liu C, Wang S, Ding X, Wu J, Wang X, Jianzhong S. The prognostic value of epicardial and pericoronary adipose tissue in heart failure with preserved ejection fraction using coronary computed tomography angiography. Br J Radiol 2025; 98:229-236. [PMID: 39454024 DOI: 10.1093/bjr/tqae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 10/27/2024] Open
Abstract
OBJECTIVES To assess the prognostic significance of epicardial adipose tissue volume (EATv) and pericoronary adipose tissue attenuation (PCATa) in patients with heart failure with preserved ejection fraction (HFpEF). METHODS This retrospective study was based on HFpEF and controls who underwent coronary CT angiography (CCTA) screening to rule out coronary disease. Comparisons of EATv and PCATa were made between HFpEF patients and a control group, using statistical analyses including Kaplan-Meier and Cox regression to assess prognostic significance. RESULTS A total of 224 patients were retrospectively analysed. The EATv was 56.1 ± 11.9 cm3 and PCATa in the right coronary artery (PCATa-RCA) was -74.7 HU ± 3.82 in HFpEF patients, which increased significantly compared with controls. Among them, 112 HFpEF patients (mean age: 71.9 ± 8.5 years; 40% male) were followed up for a median of 27 ± 0.6 months (range 2-47 months). EATv and PCATa-RCA were predictive of outcome with an optimal threshold of 56.29 cm3 and -71.17 HU, respectively. In Kaplan-Meier analysis, the high EATv and PCATa-RCA attenuation had significantly higher rates of composite outcomes (log-rank test, all P < .01). EATv and PCATa-RCA were independently predictive of outcome following adjustment for confounding variables (EATv: hazard ratio [HR] 1.03; 95% CI (1.01-1.06); P < .01, PCTAa-RCA: HR 1.44; 95% CI 1.27-1.62; P < .001)). CONCLUSIONS Increased EATv and PCATa-RCA are associated with worse clinical outcomes in HFpEF patients. ADVANCES IN KNOWLEDGE This study highlights the potential of CCTA-derived adipose tissue metrics as novel, non-invasive biomarkers for risk stratification in HFpEF.
Collapse
Affiliation(s)
- Shuangxiang Lin
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Chenjia Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Xingfa Ding
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Jiaxing Wu
- Department of CT, Siemens Healthineers, Shanghai, 200126, China
| | - Xinhong Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Sun Jianzhong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
23
|
Pérez MS, Rodríguez-Capitán J, Requena-Ibáñez JA, Santos-Gallego CG, Urooj Zafar M, Escolar G, Mancini D, Mitter S, Lam D, Contreras JP, Fergus I, Atallah-Lajam F, Abascal V, Lala A, Moreno P, Moss N, Lerakis S, Sanz J, Fuster V, Badimon JJ. Rationale and Design of the SOTA-P-CARDIA Trial (ATRU-V): Sotagliflozin in HFpEF Patients Without Diabetes. Cardiovasc Drugs Ther 2025; 39:155-164. [PMID: 37318685 DOI: 10.1007/s10557-023-07469-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure (HF). This syndrome is associated with an elevated morbi-mortality, and effective therapies are urgently needed. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are the first pharmacological class that has demonstrated to reduce hospitalization and cardiovascular mortality in large clinical trials in HFpEF. Furthermore, the dual SGLT 1/2 inhibitor sotagliflozin has shown a reduction in cardiovascular outcomes in diabetic HF patients, regardless of ejection fraction Sotagliflozin on Cardiovascular Events in Patients with Type 2 Diabetes Post Worsening Heart Failure (SOLOIST-WHF) Trial, and prevents the development of HF in patients with diabetes and chronic kidney disease Sotagliflozin on Cardiovascular and Renal Events in Patients with Type 2 Diabetes and Moderate Renal Impairment Who Are at Cardiovascular Risk (SCORED) trial. The major objective of the Sotagliflozin in Heart Failure With Preserved Ejection Fraction Patients (SOTA-P-CARDIA) trial (NCT05562063) is to investigate whether the observed cardiorenal benefits of sotagliflozin in HF patients with diabetes can be extended to a non-diabetic population. The SOTA-P-CARDIA is a prospective, randomized, double-blinded, placebo-controlled study that will randomize non-diabetic patients with the universal definition of HFpEF (ejection fraction > 50% assessed the day of randomization). Qualifying patients will be randomized, in blocks of 4, to receive either sotagliflozin or placebo for a period of 6 months. The primary outcome is changes in left ventricular mass by cardiac magnetic resonance from randomization to end of the study between the groups. Secondary end points include changes in peak VO2; myocardial mechanics, interstitial myocardial fibrosis, and volume of epicardial adipose tissue; distance in the 6-min walk test; and quality of life. Finally, the authors expect that this trial will help to clarify the potential benefits of the use of sotagliflozin in non-diabetic HFpEF patients.
Collapse
Affiliation(s)
- Maeve Soto Pérez
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, 10029-0310, USA.
- Cardiology Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
| | - Jorge Rodríguez-Capitán
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, 10029-0310, USA.
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Cardiology Department (Hospital, Universitario Virgen de La Victoria), IBIMA-Plataforma BIONAND, Universidad de Málaga, Málaga, Spain.
| | - Juan Antonio Requena-Ibáñez
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, 10029-0310, USA
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Carlos G Santos-Gallego
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, 10029-0310, USA
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - M Urooj Zafar
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, 10029-0310, USA
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Ginés Escolar
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, 10029-0310, USA
- Department of Hematopathology, Hospital Clinic, Barcelona, Spain
| | - Donna Mancini
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Sumeet Mitter
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - David Lam
- Endocrine, Diabetes and Bone Diseases. Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Johanna P Contreras
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Icilma Fergus
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Farah Atallah-Lajam
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Vivian Abascal
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Anu Lala
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Pedro Moreno
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Noah Moss
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Stamatios Lerakis
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Javier Sanz
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Valentin Fuster
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA
| | - Juan José Badimon
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, 10029-0310, USA.
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, NY, USA.
| |
Collapse
|
24
|
Li G, Zhao H, Cheng Z, Liu J, Li G, Guo Y. Single-cell transcriptomic profiling of heart reveals ANGPTL4 linking fibroblasts and angiogenesis in heart failure with preserved ejection fraction. J Adv Res 2025; 68:215-230. [PMID: 38346487 PMCID: PMC11785561 DOI: 10.1016/j.jare.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
INTRODUCTION Despite the high morbidity and mortality, the effective therapies for heart failure with preserved fraction (HFpEF) are limited as the poor understand of its pathophysiological basis. OBJECTIVE This study was aimed to characterize the cellular heterogeneity and potential mechanisms of HFpEF at single-cell resolution. METHODS An HFpEF mouse model was induced by a high-fat diet with N-nitro-L-arginine methyl ester. Cells from the hearts were subjected to single-cell sequencing. The key protein expression was measured with Immunohistochemistry and immunofluorescence staining. RESULTS In HFpEF hearts, myocardial fibroblasts exhibited higher levels of fibrosis. Furthermore, an increased number of fibroblasts differentiated into high-metabolism and high-fibrosis phenotypes. The expression levels of genes encoding certain pro-angiogenic secreted proteins were decreased in the HFpEF group, as confirmed by bulk RNA sequencing. Additionally, the proportion of the endothelial cell (EC) lineages in the HFpEF group was significantly downregulated, with low angiogenesis and high apoptosis phenotypes observed in these EC lineages. Interestingly, the fibroblasts in the HFpEF heart might cross-link with the EC lineages via over-secretion of ANGPTL4, thus displaying an anti-angiogenic function. Immunohistochemistry and immunofluorescence staining then revealed the downregulation of vascular density and upregulation of ANGPTL4 expression in HFpEF hearts. Finally, we predicted ANGPTL4as a potential druggable target using DrugnomeAI. CONCLUSION In conclusion, this study comprehensively characterized the angiogenesis impairment in HFpEF hearts at single-cell resolution and proposed that ANGPTL4 secretion by fibroblasts may be a potential mechanism underlying this angiogenic abnormality.
Collapse
Affiliation(s)
- Guoxing Li
- Institute of Life Sciences, Chongqing Medical University, 400016, China
| | - Huilin Zhao
- Institute of Life Sciences, Chongqing Medical University, 400016, China
| | - Zhe Cheng
- Department of Cardiology, Chongqing University Three Gorges Hospital, Chongqing 404199, China
| | - Junjin Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, 400016, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 400016, China.
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
25
|
Kittipibul V, Lam CSP. Heart failure with preserved ejection fraction and atrial fibrillation: epidemiology, pathophysiology, and diagnosis interplay. Heart Fail Rev 2025:10.1007/s10741-025-10488-0. [PMID: 39849281 DOI: 10.1007/s10741-025-10488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) are increasingly prevalent cardiovascular conditions, particularly among the elderly population. These two conditions share common risk factors and often coexist, leading to a complex interplay that alters the clinical course of each other. The pathophysiology of HFpEF is multifaceted and intricately linked, with atrial disease serving as a common pathophysiological pathway. Diagnosis of HFpEF in the setting of AF, and vice versa, can be challenging; thus, effective screening and diagnostic strategies are needed. Understanding the complex relationship between HFpEF and AF is crucial for optimal patient management by timely disease recognition and identification of therapeutic interventions or treatment strategies.
Collapse
Affiliation(s)
- Veraprapas Kittipibul
- Duke Clinical Research Institute, Durham, NC, USA
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
26
|
Tanaka H. Association of Epicardial Adipose Tissue With Left Atrial Function in Heart Failure With Preserved Ejection Fraction. Echocardiography 2025; 42:e70072. [PMID: 39811894 DOI: 10.1111/echo.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Hidekazu Tanaka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
27
|
Doi S, Borlaug BA. Pericardiotomy as a novel treatment for heart failure with preserved ejection fraction. Heart Fail Rev 2025; 30:137-142. [PMID: 39377998 DOI: 10.1007/s10741-024-10451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 12/15/2024]
Abstract
The pericardium plays an important role in modulating cardiac performance and hemodynamics in patients with heart failure with preserved ejection fraction (HFpEF). Pericardial constraint increases filling pressures in patients with HFpEF, particularly those with the obesity phenotype, atrial myopathy, right ventricular dysfunction, and tricuspid regurgitation. Preclinical and early stage clinical studies indicate that pericardiotomy may become a novel treatment for HFpEF. This review summarizes and discusses the pathophysiology of pericardial restraint and the possibility of pericardiotomy in HFpEF.
Collapse
Affiliation(s)
- Shunichi Doi
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Thorp EB, Filipp M. Contributions of Inflammation to Cardiometabolic Heart Failure with Preserved Ejection Fraction. ANNUAL REVIEW OF PATHOLOGY 2025; 20:143-167. [PMID: 39357068 DOI: 10.1146/annurev-pathmechdis-111523-023405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The most common form of heart failure is heart failure with preserved ejection fraction (HFpEF). While heterogeneous in origin, the most common form of HFpEF is the cardiometabolic manifestation. Obesity and aging promote systemic inflammation that appears integral to cardiometabolic HFpEF pathophysiology. Accumulation of immune cells within the heart, fueled by an altered metabolome, contribute to cardiac inflammation and fibrosis. In spite of this, broad anti-inflammatory therapy has not shown significant benefit in patient outcomes. Thus, understanding of the nuances to metabolic and age-related inflammation during HFpEF is paramount for more targeted interventions. Here, we review clinical evidence of inflammation in the context of HFpEF and summarize our mechanistic understanding of immunometabolic inflammation, highlighting pathways of therapeutic potential along the way.
Collapse
Affiliation(s)
- Edward B Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| | - Mallory Filipp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| |
Collapse
|
29
|
Lee JE, Kim BG, Won JC. Molecular Pathways in Diabetic Cardiomyopathy and the Role of Anti-hyperglycemic Drugs Beyond Their Glucose Lowering Effect. J Lipid Atheroscler 2025; 14:54-76. [PMID: 39911956 PMCID: PMC11791414 DOI: 10.12997/jla.2025.14.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 02/07/2025] Open
Abstract
Epidemiological evidence has shown that diabetes is associated with overt heart failure (HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic cardiomyopathy (DCM) has not been easy to prove because the association between diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific biomarkers have been identified. Nonetheless, several mechanistic associations at the systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this review, we focus on recent clinical and preclinical advances in our understanding of the molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM beyond their glucose lowering effect.
Collapse
Affiliation(s)
- Jie-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Byung Gyu Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Wang TY, Yang Q, Cheng XY, Ding JC, Hu PF. Beyond weight loss: the potential of glucagon-like peptide-1 receptor agonists for treating heart failure with preserved ejection fraction. Heart Fail Rev 2025; 30:17-38. [PMID: 39269643 DOI: 10.1007/s10741-024-10438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with various phenotypes, and obesity is one of the most common and clinically relevant phenotypes of HFpEF. Obesity contributes to HFpEF through multiple mechanisms, including sodium retention, neurohormonal dysregulation, altered energy substrate metabolism, expansion of visceral adipose tissue, and low-grade systemic inflammation. Glucagon-like peptide-1 (GLP-1) is a hormone in the incretin family. It is produced by specialized cells called neuroendocrine L cells located in the distal ileum and colon. GLP-1 reduces blood glucose levels by promoting glucose-dependent insulin secretion from pancreatic β cells, suppressing glucagon release from pancreatic α cells, and blocking hepatic gluconeogenesis. Recent evidence suggests that GLP-1 receptor agonists (GLP-1 RAs) can significantly improve physical activity limitations and exercise capacity in obese patients with HFpEF. The possible cardioprotective mechanisms of GLP-1 RAs include reducing epicardial fat tissue thickness, preventing activation of the renin-angiotensin-aldosterone system, improving myocardial energy metabolism, reducing systemic inflammation and cardiac oxidative stress, and delaying the progression of atherosclerosis. This review examines the impact of obesity on the underlying mechanisms of HFpEF, summarizes the trial data on cardiovascular outcomes of GLP-1 RAs in patients with type 2 diabetes mellitus, and highlights the potential cardioprotective mechanisms of GLP-1 RAs to give a pathophysiological and clinical rationale for using GLP-1 RAs in obese HFpEF patients.
Collapse
Affiliation(s)
- Tian-Yu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin-Yi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Can Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng-Fei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
31
|
Wang W, Gao Y, Wang J, Ji C, Gu H, Yuan X, Yang S, Wang X. Prognostic Value of Epicardial Adipose Tissue in Heart Failure With Mid-Range and Preserved Ejection Fraction: A Multicenter Study. J Am Heart Assoc 2024; 13:e036789. [PMID: 39673347 PMCID: PMC11935535 DOI: 10.1161/jaha.124.036789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) accumulation is thought to play a role in the pathophysiology of heart failure (HF) with mid-range ejection fraction and HF with preserved ejection fraction, but its effect on outcome is unknown. METHODS AND RESULTS A total of 692 patients with HF with mid-range ejection fraction or HF with preserved ejection fraction who underwent cardiovascular magnetic resonance at 2 medical centers in China between October 2016 and October 2022 were included in this study. EAT volume and extracellular volume were calculated using cardiovascular magnetic resonance. The main outcome was the composite of all-cause mortality and first HF hospitalization. Of 692 participants, 41.3% were women. The mean age, body mass index, left ventricular ejection fraction, and EAT volume were 57.0 years, 27.2 kg/m2, 50.0%, and 67.1 mL/m2, respectively. During a median follow-up of 34 months, 169 patients (24.4%) died or were hospitalized for HF. EAT volume exhibited a strong unadjusted association with the composite outcome (hazard ratio per 1 mL/m2 [HR], 1.57 [95% CI, 1.40-1.76], P<0.001). After fully adjusting, EAT remained associated with the outcome (HR, 1.62 [95% CI, 1.42-1.86], P<0.001). We constructed a baseline multivariable model including comorbidities, New York Heart Association functional class, extracellular volume, age, body mass index, left ventricular ejection fraction, and N-terminal pro-brain natriuretic peptide. Addition of EAT volume to the baseline multivariable model significantly improved model performance (C statistic improvement: 0.711-0.760; P<0.001). CONCLUSIONS EAT accumulation is associated with an adverse prognosis in patients with HF with mid-range ejection fraction and those with HF with preserved ejection fraction. In addition, EAT provides incremental prognostic value beyond left ventricular ejection fraction and New York Heart Association class.
Collapse
Affiliation(s)
- Wenxian Wang
- School of Medical Imaging, Binzhou Medical UniversityYantaiShandongP. R. China
| | - Yan Gao
- Department of RadiologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Jian Wang
- Department of RadiologyCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Congshan Ji
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Hui Gu
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xianshun Yuan
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Shifeng Yang
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Ximing Wang
- Department of RadiologyShandong Provincial Hospital, Shandong UniversityJinanShandongChina
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
32
|
Paterek A, Załęska-Kocięcka M, Wojdyńska Z, Kalisz M, Litwiniuk A, Leszek P, Mączewski M. Epicardial fat in heart failure-Friend, foe, or bystander. Obes Rev 2024; 25:e13820. [PMID: 39187402 DOI: 10.1111/obr.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Epicardial adipose tissue (EAT) is a fat depot covering the heart. No physical barrier separates EAT from the myocardium, so EAT can easily affect the underlying cardiac muscle. EAT can participate in the development and progression of heart failure with preserved (HFpEF) and reduced ejection fraction (HFrEF). In healthy humans, excess EAT is associated with impaired cardiac function and worse outcomes. In HFpEF, this trend continues: EAT amount is usually increased, and excess EAT correlates with worse function/outcomes. However, in HFrEF, the opposite is true: reduced EAT amount correlates with worse cardiac function/outcomes. Surprisingly, although EAT has beneficial effects on cardiac function, it aggravates ventricular arrhythmias. Here, we dissect these phenomena, trying to explain these paradoxical findings to find a target for novel heart failure therapies aimed at EAT rather than the myocardium itself. However, the success of this approach depends on a thorough understanding of interactions between EAT and the myocardium.
Collapse
Affiliation(s)
- Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marta Załęska-Kocięcka
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Warsaw, Poland
| | - Zuzanna Wojdyńska
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Warsaw, Poland
| | - Małgorzata Kalisz
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Litwiniuk
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Przemysław Leszek
- Heart Failure and Transplantology Department, Mechanical Circulatory Support and Transplant Department, National Institute of Cardiology, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
33
|
Ju Y, Wang M, Ji Y, Wang Z, Wang W, Liu F, Yin S, Zhao Q. The influence of epicardial adipose tissue on the prognosis of atrial fibrillation patients undergoing radiofrequency ablation combined with left atrial appendage occlusion. Sci Rep 2024; 14:28164. [PMID: 39548183 PMCID: PMC11568301 DOI: 10.1038/s41598-024-79873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Atrial fibrillation is the most common arrhythmia in adults. The interplay between epicardial adipose tissue and atrial fibrillation has garnered significant scientific interest. Recently, the combined approach of radiofrequency ablation and left atrial appendage occlusion has become a widely adopted strategy for managing non-valvular atrial fibrillation patients at high risk of thrombus formation. This study aims to assess the prognostic significance of epicardial adipose tissue volume in patients undergoing radiofrequency ablation in conjunction with left atrial appendage occlusion. This study results indicate that in patients undergoing the one-stop procedure, which comprises catheter radiofrequency ablation and percutaneous left atrial appendage occlusion, epicardial adipose tissue volume is significantly associated with AF recurrence post-strategy. Higher EATV predicts AF recurrence (HR = 1.17, 95%CI1.047-1.192, P = 0.001) and thromboembolism (P = 0.002) following the one-stop procedure. Epicardial adipose tissue volume serves as a significant predictor of atrial fibrillation recurrence following the one-stop procedure (area under the curve 0.648, 95%CI0.571-0.725, P = 0.002, sensitivity 0.88, specificity 0.50).
Collapse
Affiliation(s)
- Yuefeng Ju
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - MaoJing Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Ji
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhihui Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenzhuo Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feiyue Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Siqi Yin
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Zhao
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Harada T, Tada A, Borlaug BA. Imaging and mechanisms of heart failure with preserved ejection fraction: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2024; 25:1475-1490. [PMID: 38912836 DOI: 10.1093/ehjci/jeae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
Understanding of the pathophysiology of heart failure with preserved ejection fraction (HFpEF) has advanced rapidly over the past two decades. Currently, HFpEF is recognized as a heterogeneous syndrome, and there is a growing movement towards developing personalized treatments based on phenotype-guided strategies. Left ventricular dysfunction is a fundamental pathophysiological abnormality in HFpEF; however, recent evidence also highlights significant roles for the atria, right ventricle, pericardium, and extracardiac contributors. Imaging plays a central role in characterizing these complex and highly integrated domains of pathophysiology. This review focuses on established evidence, recent insights, and the challenges that need to be addressed concerning the pathophysiology of HFpEF, with a focus on imaging-based evaluations and opportunities for further research.
Collapse
Affiliation(s)
- Tomonari Harada
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Atsushi Tada
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Dronkers J, van Veldhuisen DJ, van der Meer P, Meems LMG. Heart Failure and Obesity: Unraveling Molecular Mechanisms of Excess Adipose Tissue. J Am Coll Cardiol 2024; 84:1666-1677. [PMID: 39415402 DOI: 10.1016/j.jacc.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
Obesity is an ongoing pandemic and is associated with the development of heart failure (HF), and especially HF with preserved ejection fraction. The definition of obesity is currently based on anthropometric measurements but neglects the location and molecular properties of excess fat. Important depots associated with HF development are subcutaneous adipose tissue and visceral adipose tissue, both located in the abdominal region, and epicardial adipose tissue (EAT) surrounding the myocardium. However, mechanisms linking these different adipose tissue depots to HF development are incompletely understood. EAT in particular is of great interest because of its close proximity to the heart. In this review, we therefore focus on the characteristics of different adipose tissue depots and their response to obesity. In addition, we evaluate how different mechanisms associated with EAT expansion potentially contribute to HF and in particular HF with preserved ejection fraction development.
Collapse
Affiliation(s)
- Just Dronkers
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Laura M G Meems
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
36
|
Koskinas KC, Van Craenenbroeck EM, Antoniades C, Blüher M, Gorter TM, Hanssen H, Marx N, McDonagh TA, Mingrone G, Rosengren A, Prescott EB. Obesity and cardiovascular disease: an ESC clinical consensus statement. Eur Heart J 2024; 45:4063-4098. [PMID: 39210706 DOI: 10.1093/eurheartj/ehae508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The global prevalence of obesity has more than doubled over the past four decades, currently affecting more than a billion individuals. Beyond its recognition as a high-risk condition that is causally linked to many chronic illnesses, obesity has been declared a disease per se that results in impaired quality of life and reduced life expectancy. Notably, two-thirds of obesity-related excess mortality is attributable to cardiovascular disease. Despite the increasingly appreciated link between obesity and a broad range of cardiovascular disease manifestations including atherosclerotic disease, heart failure, thromboembolic disease, arrhythmias, and sudden cardiac death, obesity has been underrecognized and sub-optimally addressed compared with other modifiable cardiovascular risk factors. In the view of major repercussions of the obesity epidemic on public health, attention has focused on population-based and personalized approaches to prevent excess weight gain and maintain a healthy body weight from early childhood and throughout adult life, as well as on comprehensive weight loss interventions for persons with established obesity. This clinical consensus statement by the European Society of Cardiology discusses current evidence on the epidemiology and aetiology of obesity; the interplay between obesity, cardiovascular risk factors and cardiac conditions; the clinical management of patients with cardiac disease and obesity; and weight loss strategies including lifestyle changes, interventional procedures, and anti-obesity medications with particular focus on their impact on cardiometabolic risk and cardiac outcomes. The document aims to raise awareness on obesity as a major risk factor and provide guidance for implementing evidence-based practices for its prevention and optimal management within the context of primary and secondary cardiovascular disease prevention.
Collapse
Affiliation(s)
- Konstantinos C Koskinas
- Department of Cardiology, Bern University Hospital-INSELSPITAL, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland
| | - Emeline M Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Drie Eikenstraat 655, Antwerp 2650, Belgium
- Research group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matthias Blüher
- Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Thomas M Gorter
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Henner Hanssen
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Nikolaus Marx
- Department of Internal Medicine I-Cardiology, RWTH Aachen University, Aachen, Germany
| | - Theresa A McDonagh
- Cardiology Department, King's College Hospital, London, UK
- King's College, London, UK
| | - Geltrude Mingrone
- Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli & Catholic University, Rome, Italy
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital/Ostra, Västra Götaland Region, Gothenburg, Sweden
| | - Eva B Prescott
- Bispebjerg Frederiksberg Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen 2400, Denmark
| |
Collapse
|
37
|
He S, Zhao L, Zhang J, Yang X, Zhu H. Identification of molecular signatures in epicardial adipose tissue in heart failure with preserved ejection fraction. ESC Heart Fail 2024; 11:2510-2520. [PMID: 38454838 PMCID: PMC11424335 DOI: 10.1002/ehf2.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
AIMS The molecular signatures in epicardial adipose tissue (EAT) that contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF) are poorly characterized. In this study, we sought to elucidate molecular signatures including genetic transcripts and long non-coding RNAs (lncRNAs) in EAT that might modulate HFpEF development. METHODS RNA sequencing (RNA-seq) was performed to identify differentially expressed lncRNAs and mRNAs in EAT samples from patients with HFpEF (n = 5) and without HF (control, n = 5) who underwent coronary artery bypass grafting. The sequencing results were validated using quantitative real-time PCR (qRT-PCR). Bioinformatics analysis (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) of differentially expressed RNAs was performed to predict enriched functions. RESULTS HFpEF patients had higher EAT thickness and NT-proBNP levels than the control group. A total of 64 471 transcripts were detected including 35 395 protein-coding sequences, corresponding to 16 854 genes in EAT. RNA-seq identified a total of 741 dysregulated mRNA transcripts (394 up-regulated and 347 down-regulated) and 334 differentially expressed lncRNA transcripts (222 up-regulated and 112 down-regulated) in the HFpEF group compared with the control group (P < 0.05). qRT-PCR analysis confirmed that two lncRNAs ENST00000561775 (P = 0.0194) and ENST00000519093 (P = 0.027) and an mRNA POSTN (P = 0.003) were differentially expressed. Functional enrichment analysis of the differentially expressed mRNAs suggested their potential roles in immune response involving cytokine interaction and chemokine signalling. CONCLUSIONS We are the first group to report on the lncRNA and mRNA landscape in EAT in HFpEF patients. Our study suggests the possible role of lncRNAs in EAT.
Collapse
Affiliation(s)
- Shan He
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jianjun Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huagang Zhu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Fukuta H, Goto T, Kamiya T. Association of epicardial fat with cardiac structure and function and exercise capacity in heart failure with preserved ejection fraction: A systematic review and meta-analysis. IJC HEART & VASCULATURE 2024; 54:101444. [PMID: 39415965 PMCID: PMC11481611 DOI: 10.1016/j.ijcha.2024.101444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 06/08/2024] [Indexed: 10/19/2024]
Abstract
Background Studies have reported the association of epicardial adipose tissue (EAT) with cardiac structure and function as well as exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF), yielding inconsistent results. We aimed to conduct a meta-analysis of studies on the association of EAT with cardiac structure and function and exercise capacity in HFpEF patients. Methods and Results We searched studies examining the association of EAT quantified by echocardiography, computed tomography, or magnetic resonance imaging (MRI) with cardiac structure and function or exercise capacity in HFpEF patients through PubMed, Web of Science, and Scopus. In cases of significant heterogeneity (I2 > 50 %), data were pooled using a random-effects model; otherwise, a fixed-effects model was used. We identified five echocardiography studies (n = 825) and six MRI studies (n = 562), but found no computed tomography studies. In the echocardiography studies, EAT thickness correlated positively with left ventricular (LV) mass (P random < 0.01) and negatively with LV global longitudinal strain (P random < 0.01) and peak exercise oxygen uptake (P fix < 0.001). In the MRI studies, EAT volume correlated positively with LV mass (P fix < 0.01), left atrial volume (P fix < 0.001), and the ratio of LV early diastolic mitral inflow to early diastolic mitral annular velocity (E/e'; P random < 0.01) and negatively with LV ejection fraction (P fix < 0.01) and LV global longitudinal strain (P fix < 0.001). Conclusion Our meta-analysis indicates a potential association of increased EAT with altered cardiac structure and function and exercise intolerance in HFpEF patients. However, our meta-analysis included only two or three studies for each outcome and thus further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Hidekatsu Fukuta
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshihiko Goto
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Kamiya
- Department of Medical Innovation, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
39
|
Miller PE, Gajjar P, Mitchell GF, Khan SS, Vasan RS, Larson MG, Lewis GD, Shah RV, Nayor M. Clusters of multidimensional exercise response patterns and estimated heart failure risk in the Framingham Heart Study. ESC Heart Fail 2024; 11:3279-3289. [PMID: 38943268 PMCID: PMC11424363 DOI: 10.1002/ehf2.14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 07/01/2024] Open
Abstract
AIMS New tools are needed to identify heart failure (HF) risk earlier in its course. We evaluated the association of multidimensional cardiopulmonary exercise testing (CPET) phenotypes with subclinical risk markers and predicted long-term HF risk in a large community-based cohort. METHODS AND RESULTS We studied 2532 Framingham Heart Study participants [age 53 ± 9 years, 52% women, body mass index (BMI) 28.0 ± 5.3 kg/m2, peak oxygen uptake (VO2) 21.1 ± 5.9 kg/m2 in women, 26.4 ± 6.7 kg/m2 in men] who underwent maximum effort CPET and were not taking atrioventricular nodal blocking agents. Higher peak VO2 was associated with a lower estimated HF risk score (Spearman correlation r: -0.60 in men and -0.55 in women, P < 0.0001), with an observed overlap of estimated risk across peak VO2 categories. Hierarchical clustering of 26 separate CPET phenotypes (values residualized on age, sex, and BMI to provide uniformity across these variables) identified three clusters with distinct exercise physiologies: Cluster 1-impaired oxygen kinetics; Cluster 2-impaired vascular; and Cluster 3-favourable exercise response. These clusters were similar in age, sex distribution, and BMI but displayed distinct associations with relevant subclinical phenotypes [Cluster 1-higher subcutaneous and visceral fat and lower pulmonary function; Cluster 2-higher carotid-femoral pulse wave velocity (CFPWV); and Cluster 3-lower CFPWV, C-reactive protein, fat volumes, and higher lung function; all false discovery rate < 5%]. Cluster membership provided incremental variance explained (adjusted R2 increment of 0.10 in women and men, P < 0.0001 for both) when compared with peak VO2 alone in association with predicted HF risk. CONCLUSIONS Integrated CPET response patterns identify physiologically relevant profiles with distinct associations to subclinical phenotypes that are largely independent of standard risk factor-based assessment, which may suggest alternate pathways for prevention.
Collapse
Affiliation(s)
- Patricia E. Miller
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Priya Gajjar
- Section of Cardiovascular Medicine, Department of MedicineBoston University School of MedicineBostonMAUSA
| | | | - Sadiya S. Khan
- Division of Cardiology, Department of Medicine and Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Ramachandran S. Vasan
- Boston University's and NHLBI's Framingham Heart StudyFraminghamMAUSA
- University of Texas School of Public Health San AntonioSan AntonioTXUSA
- Department of MedicineUniversity of Texas Health Science CenterSan AntonioTXUSA
- Department of Population Health SciencesUniversity of Texas Health Science CenterSan AntonioTXUSA
| | - Martin G. Larson
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
- Boston University's and NHLBI's Framingham Heart StudyFraminghamMAUSA
| | - Gregory D. Lewis
- Division of Cardiology, Cardiovascular Research Center, and Pulmonary Critical Care Unit, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Ravi V. Shah
- Division of Cardiology, Vanderbilt Translational and Clinical Research CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Matthew Nayor
- Section of Cardiovascular Medicine, Department of MedicineBoston University School of MedicineBostonMAUSA
- Boston University's and NHLBI's Framingham Heart StudyFraminghamMAUSA
- Section of Preventive Medicine and Epidemiology, Department of MedicineBoston University School of Medicine72 E Concord Street, Suite L‐516BostonMA02118USA
| |
Collapse
|
40
|
Sidhu GS, Rabkin SW. Epicardial Fat in Heart Failure with Preserved Ejection Fraction Compared with Reduced Ejection Fraction. J Clin Med 2024; 13:5533. [PMID: 39337020 PMCID: PMC11432675 DOI: 10.3390/jcm13185533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The role of epicardial adipose tissue (EAT) in heart failure with preserved ejection fraction (HFpEF) remains to be defined. Methods: A consecutive series of outpatients with chronic heart failure-heart failure with reduced ejection fraction (HFrEF) and HFpEF and/or diastolic dysfunction-had EAT assessed by echocardiographic measurement and related to indices of cardiac structure and function. Results: Epicardial fat thickness was significantly (p < 0.05) greater in HFpEF (N = 141) with a mean of 6.7 ± 1.6 mm compared with a mean of 5.1 ± 1.0 mm in HFrEF (n = 40). After adjusting for the relationship with BMI, in HFpEF, epicardial fat was significantly (p < 0.05) negatively correlated with left ventricular internal diameter end diastole (LVIDd), left ventricular internal diameter end systole (LVIDs), left ventricular (LV) end-diastolic volume (EDV) index, lateral e', septal e', right atrial (RA) volume index, and hemoglobin (Hgb). The association with Hgb was no longer significant after adjusting for the effect of age. HFpEF was associated with smaller LVIDd, LVIDs, LV EDV indexes, and left atrial (LA) and RA volume indexes. Conclusions: Epicardial fat is significantly (p < 0.05) greater in HFpEF than HFrEF. Epicardial fat is associated with smaller cardiac chamber sizes in HFpEF suggesting that epicardial fat acts as a constraint to cardiac dilation.
Collapse
Affiliation(s)
- Gurwinder S Sidhu
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Simon W Rabkin
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
41
|
Karakasis P, Fragakis N, Patoulias D, Theofilis P, Sagris M, Koufakis T, Vlachakis PK, Rangraze IR, El Tanani M, Tsioufis K, Rizzo M. The Emerging Role of Glucagon-like Peptide-1 Receptor Agonists in the Management of Obesity-Related Heart Failure with Preserved Ejection Fraction: Benefits beyond What Scales Can Measure? Biomedicines 2024; 12:2112. [PMID: 39335625 PMCID: PMC11429383 DOI: 10.3390/biomedicines12092112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a significant predisposing factor for heart failure with preserved ejection fraction (HFpEF). Although a substantial proportion of individuals with HFpEF also have obesity, those with obesity are under-represented in clinical trials for heart failure. In turn, current guidelines provided limited recommendations for the medical management of this patient population. Both obesity and diabetes induce a pro-inflammatory state that can contribute to endothelial dysfunction and coronary microvascular impairment, finally resulting in HFpEF. Additionally, obesity leads to increased epicardial and chest wall adiposity, which enhances ventricular interdependence. This condition is further aggravated by plasma and blood volume expansion and excessive vasoconstriction, ultimately worsening HFpEF. Despite the well-documented benefits of GLP-1 receptor agonists in subjects with diabetes, obesity, or both, their role in obesity-related HFpEF remains unclear. In light of the recently published literature, this review aims to investigate the potential mechanisms and synthesize the available clinical evidence regarding the role of GLP-1 receptor agonists in patients with obesity-related HFpEF.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54642 Thessaloniki, Greece; (D.P.); (T.K.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.T.); (M.S.); (P.K.V.); (K.T.)
| | - Marios Sagris
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.T.); (M.S.); (P.K.V.); (K.T.)
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54642 Thessaloniki, Greece; (D.P.); (T.K.)
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.T.); (M.S.); (P.K.V.); (K.T.)
| | - Imran Rashid Rangraze
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (I.R.R.); (M.E.T.); (M.R.)
| | - Mohamed El Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (I.R.R.); (M.E.T.); (M.R.)
| | - Konstantinos Tsioufis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (P.T.); (M.S.); (P.K.V.); (K.T.)
| | - Manfredi Rizzo
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (I.R.R.); (M.E.T.); (M.R.)
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90100 Palermo, Italy
| |
Collapse
|
42
|
Jankowski J, Kozub KO, Kleibert M, Camlet K, Kleibert K, Cudnoch-Jędrzejewska A. The Role of Programmed Types of Cell Death in Pathogenesis of Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:9921. [PMID: 39337409 PMCID: PMC11432194 DOI: 10.3390/ijms25189921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition that develops in the course of many diseases and conditions, and its pathophysiology is still not well understood, but the involvement of programmed types of cell death in the development of this type of heart failure is becoming increasingly certain. In addition, drugs already widely used in clinical practice, with a good safety profile and efficacy demonstrated in large-group clinical trials, seem to be exerting their beneficial effects on cardiovascular health. Perhaps new drugs that reduce the susceptibility of cells to programmed types of cell death are under investigation and may improve the prognosis of patients with HFpEF. In this article, we summarize the current knowledge about the pathogenesis of HFpEF and the role of programmed types of cell death in its development. Additionally, we have described the future directions of research that may lead to the improvement of a patient's prognosis and potential treatment.
Collapse
Affiliation(s)
- Jan Jankowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Kamil Oskar Kozub
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Kleibert
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Katarzyna Camlet
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Kleibert
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
43
|
Shchendrygina A, Rakisheva A, Giverts I, Rustamova Y, Soloveva A. Effects of Glucagon-like Peptide-1 Receptor Agonists on Cardiac Function, Exercise Capacity and Quality of Life. Card Fail Rev 2024; 10:e10. [PMID: 39309521 PMCID: PMC11413987 DOI: 10.15420/cfr.2024.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/23/2024] [Indexed: 09/25/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are emerging glucose-lowering agents primarily used in managing diabetes and obesity. Recently, GLP-1 RAs have garnered attention for their cardiovascular benefits beyond glycaemic control in patients with type 2 diabetes, exhibiting patterns previously seen in cardiovascular outcomes trials on sodium-glucose cotransporter 2 inhibitors, which now receive a high level of recommendation for the treatment of heart failure (HF). GLP-1 RAs have been increasingly investigated in HF cohorts, but mainly in small-scale studies reporting inconclusive findings regarding clinical outcomes and different safety profiles in HF patients with reduced and preserved ejection fractions. This review discusses the effects of GLP-1 RAs on surrogate HF outcomes, such as cardiac structure and function, exercise capacity and quality of life, in HF patients across the spectrum of left ventricular ejection fraction, to provide insights into the potential of these agents to be investigated in large clinical trials to evaluate clinical outcomes.
Collapse
Affiliation(s)
- Anastasia Shchendrygina
- Department of Hospital Therapy No. 2, IM Sechenov First Moscow State Medical UniversityMoscow, Russia
| | - Amina Rakisheva
- Department of Cardiology, City Cardiology CenterAlmaty, Kazakhstan
| | - Ilya Giverts
- Department of Internal Medicine, Maimonides Medical CenterBrooklyn, NY, US
- The Cardiovascular Research Center, Massachusetts General CenterBoston, MA, US
| | - Yasmin Rustamova
- Department of Internal Medicine, Educational-Surgery Clinic, Azerbaijan Medical UniversityBaku, Azerbaijan
| | - Anzhela Soloveva
- Department of Cardiology, Almazov National Medical Research CentreSt Petersburg, Russia
| |
Collapse
|
44
|
Zhang Q, Tai S, Zhou S. Abdominal obesity is associated with increased worsening renal function risk in patients with heart failure with preserved ejection fraction. BMC Cardiovasc Disord 2024; 24:477. [PMID: 39251903 PMCID: PMC11382427 DOI: 10.1186/s12872-024-04118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Worsening renal function (WRF) is a frequent comorbidity of heart failure with preserved ejection fraction (HFpEF). However, its relationship with abdominal obesity in terms of HFpEF remains unclear. This study aimed to evaluate the value of waist circumference (WC) and body mass index (BMI) in predicting WRF and examine the correlation between abdominal obesity and the risk of WRF in the HFpEF population. METHODS Data were obtained from the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Abdominal obesity was defined as WC ≥ 102 cm for men and ≥ 88 cm for women. WRF was defined as doubling of serum creatinine concentration from baseline. Restricted cubic splines and receiver operating characteristic curves were used to evaluate the value of WC and BMI in predicting WRF. Cumulative incidence curves and cox proportional-hazards models were used to compare patients with and without abdominal obesity. RESULTS We included 2,806 patients with HFpEF in our study (abdominal obesity, n: 2,065). Although baseline creatinine concentrations did not differ, patients with abdominal obesity had higher concentrations during a median follow-up time of 40.9 months. Unlike BMI, WC exhibited a steady linear association with WRF and was a superior WRF predictor. Patients with abdominal obesity exhibited a higher risk of WRF after multivariable adjustment (hazard ratio: 1.632; 95% confidence interval: 1.015-2.621; P: 0.043). CONCLUSIONS Abdominal obesity is associated with an increased risk of WRF in the HFpEF population. TRIAL REGISTRATION URL: https://beta. CLINICALTRIALS gov . Unique identifier: NCT00094302.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
45
|
Huang K, Lu J, Li Q, Wang C, Ding S, Xu X, Han L. The Role of Epicardial Adipose Tissue-Derived Proteins in Heart Failure with Preserved Ejection Fraction and Atrial Fibrillation: A Bioinformatics Analysis. J Inflamm Res 2024; 17:6093-6111. [PMID: 39257896 PMCID: PMC11385935 DOI: 10.2147/jir.s466203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Background The accumulation of epicardial adipose tissue (EAT) is associated with cardiometabolic risks and adverse outcomes in heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF). This study aims to identify genes secreted by EAT that contribute to the shared pathogenesis of HFpEF and AF, potentially serving as biomarkers for diagnosis. Methods Data sets from the GEO database for HFpEF-EAT, HFpEF-heart tissue, AF-EAT, AF-PBMC, and AF-heart tissue were analyzed. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) identified key genes in EAT linked to HFpEF and AF. Functional enrichment and connectivity map analyses explored common pathways and therapeutic targets. Machine learning techniques, including LASSO regression, random forest, and support vector machine, identified shared biomarkers. CIBERSORT was used to assess immune cell infiltration, while gene set enrichment analysis identified pathways related to hub genes. Receiver operating characteristic (ROC) curve analysis and experimental validation assessed the bioinformatics findings. Results In the HFpEF dataset, 200 key genes were identified by intersecting HFpEF-EAT, HFpEF-heart tissue, WGCNA analyses, and secretory proteins. For AF, 232 related genes were identified through similar methods. Thirteen genes were common between HFpEF and AF, with two central genes, ITPKA and WNT9B, selected as potential biomarkers through machine learning and ROC analysis. Immune cell infiltration and gene set enrichment analysis revealed pathways related to ITPKA/WNT9B. These patterns were confirmed in human samples. Conclusion This study identified EAT-derived secretory proteins as potential biomarkers for HFpEF and AF, with ITPKA and WNT9B as central hub genes. These findings offer insights into potential diagnostic and therapeutic strategies for HFpEF and AF.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Jie Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Qin Li
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Chuyi Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Sufan Ding
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Xiangyang Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Lin Han
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Li Q, Muhib UR, Ma X, Liu Z, Gao F, Wang Z. Potential Mechanisms of Epicardial Adipose Tissue Influencing Heart Failure with Preserved Ejection Fraction. Rev Cardiovasc Med 2024; 25:311. [PMID: 39355598 PMCID: PMC11440401 DOI: 10.31083/j.rcm2509311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 10/03/2024] Open
Abstract
Heart failure (HF) is the predominant terminal stage and the leading cause of mortality in cardiac disease. Heart failure with preserved ejection fraction (HFpEF) affects roughly 50% of HF patients globally. Due to the global aging population, the prevalence, morbidity, and mortality of HFpEF have gradually increased. Epicardial adipose tissue (EAT), as a key visceral adipose tissue around the heart, affects cardiac diastolic function and exercise reserve capacity. EAT closely adheres to the myocardium and can produce inflammatory factors, neurotransmitters, and other factors through autocrine or paracrine mechanisms, affecting the heart function by inflammatory response, cardiac metabolism and energy supply, cardiomyocyte structure and electrical activity, and pericardial vascular function. Currently, research on the mechanism and treatment methods of HFpEF is constantly improving. EAT may play a multi-level impact on the occurrence and development of HFpEF. This review also summarizes the potential impact of EAT on the heart in HFpEF combined with other metabolism-related diseases such as obesity or diabetes over other obesity-related measures, such as body mass index (BMI) or other adipose tissue. Above all, this review comprehensively summarizes the potential mechanisms by which EAT may affect HFpEF. The objective is to enhance our comprehension and management of HFpEF. Future research should delve into the mechanistic relationship between EAT and HFpEF, and investigate interventions aimed at EAT to improve the prognosis of patients with HFpEF.
Collapse
Affiliation(s)
- Qiuxuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Ur Rehman Muhib
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Zaiqiang Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| |
Collapse
|
47
|
Kitzman DW, Lewis GD, Pandey A, Borlaug BA, Sauer AJ, Litwin SE, Sharma K, Jorkasky DK, Khan S, Shah SJ. A novel controlled metabolic accelerator for the treatment of obesity-related heart failure with preserved ejection fraction: Rationale and design of the Phase 2a HuMAIN trial. Eur J Heart Fail 2024; 26:2013-2024. [PMID: 38924328 DOI: 10.1002/ejhf.3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Compared with those without obesity, patients with obesity-related heart failure with preserved ejection fraction (HFpEF) have worse symptoms, haemodynamics, and outcomes. Current weight loss strategies (diet, drug, and surgical) work through decreased energy intake rather than increased expenditure and cause significant loss of skeletal muscle mass in addition to adipose tissue. This may have adverse implications for patients with HFpEF, who already have reduced skeletal muscle mass and function and high rates of physical frailty. Mitochondrial uncoupling agents may have unique beneficial effects by producing weight loss via increased catabolism rather than reduced caloric intake, thereby causing loss of adipose tissue while sparing skeletal muscle. HU6 is a controlled metabolic accelerator that is metabolized to the mitochondrial uncoupling agent 2,4-dinotrophenol. HU6 selectively increases carbon oxidation from fat and glucose while also decreasing toxic reactive oxygen species (ROS) production. In addition to sparing skeletal muscle loss, HU6 may have other benefits relevant to obesity-related HFpEF, including reduced specific tissue depots contributing to HFpEF; improved glucose utilization; and reduction in systemic inflammation via both decreased ROS production from mitochondria and decreased cytokine elaboration from excess, dysfunctional adipose. METHODS We describe the rationale and design of HuMAIN-HFpEF, a Phase 2a randomized, double-blind, placebo-controlled, dose-titration, parallel-group trial in patients with obesity-related HFpEF to evaluate the effects of HU6 on weight loss, body composition, exercise capacity, cardiac structure and function, metabolism, and inflammation, and identify optimal dosage for future Phase 3 trials. CONCLUSIONS HuMAIN will test a promising novel agent for obesity-related HFpEF.
Collapse
Affiliation(s)
- Dalane W Kitzman
- Section on Geriatrics and Gerontology, Department of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory D Lewis
- Department of Medicine, Massachusetts General Brigham, Boston, MA, USA
| | - Ambarish Pandey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew J Sauer
- Department of Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, MO, USA
| | - Sheldon E Litwin
- Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
- Division of Cardiology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Kavita Sharma
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
48
|
Dhore-Patil A, Urina-Jassir D, Samson R, Le Jemtel TH, Oparil S. Epicardial Adipose Tissue Thickness and Preserved Ejection Fraction Heart Failure. Curr Hypertens Rep 2024; 26:381-388. [PMID: 38642285 PMCID: PMC11324708 DOI: 10.1007/s11906-024-01302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF THE REVIEW Preserved ejection fraction heart failure and obesity frequently coexist. Whether obesity plays a consistent role in the pathogenesis of preserved ejection fraction heart failure is unclear. Accumulation of visceral adiposity underlies the pathogenic aftermaths of obesity. However, visceral adiposity imaging is assessed by computed tomography or magnetic resonance and thus not routinely available. In contrast, epicardial adiposity thickness is assessed by echocardiography and thus routinely available. We review the rationale for assessing epicardial adiposity thickness in patients with preserved ejection fraction heart failure and elevated body mass index. RECENT FINDINGS Body mass index correlates poorly with visceral, and epicardial adiposity. Visceral and epicardial adiposity enlarges as preserved ejection fraction heart failure progresses. Epicardial adiposity may hasten the progression of coronary artery disease and impairs left ventricular sub-endocardial perfusion and diastolic function. Epicardial adiposity thickness may help monitor the therapeutic response in patients with preserved ejection failure heart failure and elevated body mass index.
Collapse
Affiliation(s)
- Aneesh Dhore-Patil
- Division of Cardiovascular Imaging, Weill Cornell Medical College, Houston Methodist DeBakey Heart & Vascular Center, 6505 Fanin St., Houston, TX, 77030, USA
| | - Daniela Urina-Jassir
- Section of Cardiology, John W. Deming Department of Medicine, Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Rohan Samson
- Advanced Heart Failure Therapies Program, University of Louisville Health-Heart Hospital, 201Abraham Flexner Way, Suite 1001, Louisville, KY, 40202, USA
| | - Thierry H Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
49
|
Fu Z, Wang Y, Wang Y, Shi S, Li Y, Zhang B, Wu H, Song Q. Linking abnormal fat distribution with HFpEF and diastolic dysfunction: a systematic review, meta-analysis, and meta-regression of observational studies. Lipids Health Dis 2024; 23:277. [PMID: 39217346 PMCID: PMC11365188 DOI: 10.1186/s12944-024-02266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The global prevalence of obesity has escalated into a formidable health challenge intricately linked with the risk of developing cardiac diastolic disfunction and heart failure with preserved ejection fraction (HFpEF). Abnormal fat distribution is potentially strongly associated with an increased risk of cardiac diastolic dysfunction, and we aimed to scrutinize and elucidate the correlation between them. METHODS Following the Cochrane Handbook and PRISMA 2020 guidelines, we systematically reviewed the literature from PubMed, Embase, and Web of Science. We focused on studies reporting the mean and standard deviation (SD) of abnormal fat in HFpEF or cardiac diastolic dysfunction patients and the Pearson/Spearman correlation coefficients for the relationship between abnormal fat distribution and the risk of developing cardiac diastolic dysfunction. Data were standardized to the standard mean difference (SMD) and Fisher's z value for meta-analysis. RESULTS After progressive filtering and selection, 63 studies (43,113 participants) were included in the quantitative analyses. Abnormal fat distribution was significantly greater in participants with cardiac diastolic dysfunction than in controls [SMD 0.88 (0.69, 1.08)], especially in epicardial adipose tissue [SMD 0.99 (0.73, 1.25)]. Abnormal fat distribution was significantly correlated with the risk of developing cardiac diastolic dysfunction [E/E': 0.23 (0.18, 0.27), global longitudinal strain: r=-0.11 (-0.24, 0.02)]. Meta-regression revealed sample size as a potential heterogeneous source, and subgroup analyses revealed a stronger association between abnormal fat distribution and the risk of developing cardiac diastolic dysfunction in the overweight and obese population. CONCLUSION Abnormal fat distribution was significantly associated with the risk of developing cardiac diastolic dysfunction. TRIAL REGISTRATION CRD42024543774.
Collapse
Affiliation(s)
- Zhenyue Fu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yajiao Wang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Wang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
50
|
Lee V, Han Y, Toh DF, Bryant JA, Boubertakh R, Le TT, Chin CWL. Differential association of abdominal, liver, and epicardial adiposity with anthropometry, diabetes, and cardiac remodeling in Asians. Front Endocrinol (Lausanne) 2024; 15:1439691. [PMID: 39257902 PMCID: PMC11385302 DOI: 10.3389/fendo.2024.1439691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Background Heterogenous deposition and homeostasis roles of physiologic and ectopic adipose tissues underscore the impact of fat compartmentalization on cardiometabolic risk. We aimed to characterize the distribution of abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), epicardial adipose tissue (EAT), and liver fat on magnetic resonance imaging (MRI), and evaluate their associations with anthropometric indices and adverse cardiac remodeling. Methods In this cross-sectional observational study, 149 Asian adults (57.0 ± 12.8 years; 65% males) with at least one cardiometabolic risk factor underwent multiparametric fat and cardiovascular MRI. Anthropometric indices included body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and bioimpedance body fat mass (BFM). Associations between fat depots and anthropometric measures as well as cardiac remodeling features were examined as a single cohort and stratified by type 2 diabetes mellitus (T2DM) status. Results VAT and SAT had opposing associations with liver fat and EAT. Therefore the VAT/SAT ratio was explored as an integrated marker of visceral adiposity. VAT/SAT was positively associated with EAT (β=0.35, P<0.001) and liver fat (β=0.32, P=0.003) independent of confounders. Of the anthropometric measurements assessed, only WHR was independently associated with VAT/SAT (β=0.17, P=0.021). Individuals with T2DM had higher VAT and lower SAT compared to those without T2DM, translating to a significantly higher VAT/SAT ratio. EAT volume was independently associated with adverse features of cardiac remodeling: increased left ventricular (LV) mass (β=0.24, P=0.005), larger myocyte volume (β=0.26, P=0.001), increased myocardial fibrosis (β=0.19, P=0.023), higher concentricity (β=0.18, P=0.035), and elevated wall stress (β=-0.18, P=0.023). Conclusion Multiparametric MRI revealed abdominal VAT and SAT have differential associations with anthropometric indices and ectopic fats in a single cohort of Asians at risk of cardiometabolic disease. People with T2DM have expanded VAT and diminished SAT, endorsing the VAT/SAT ratio beyond usual anthropometric measurements as a marker for multiorgan visceral fat composition. Among the fat depots examined, EAT is uniquely associated with adverse cardiac remodeling, suggesting its distinctive cardiometabolic properties and implications.
Collapse
Affiliation(s)
- Vivian Lee
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
| | - Yiying Han
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Desiree-Faye Toh
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
| | - Jennifer A. Bryant
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Redha Boubertakh
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular Academic Clinical Program (ACP), Duke-National University of Singapore (Duke-NUS) Medical School, Singapore, Singapore
| | - Thu-Thao Le
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular Academic Clinical Program (ACP), Duke-National University of Singapore (Duke-NUS) Medical School, Singapore, Singapore
| | - Calvin W. L. Chin
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore, Singapore
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular Academic Clinical Program (ACP), Duke-National University of Singapore (Duke-NUS) Medical School, Singapore, Singapore
| |
Collapse
|