1
|
Sakarin S, Rungsipipat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Surachetpong SD. Proteomic analysis of the serum in dogs with pulmonary hypertension secondary to myxomatous mitral valve disease: the preliminary study. Front Vet Sci 2024; 11:1327453. [PMID: 38596466 PMCID: PMC11002142 DOI: 10.3389/fvets.2024.1327453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/01/2024] [Indexed: 04/11/2024] Open
Abstract
Background Pulmonary hypertension (PH) is a common complication in dogs with myxomatous mitral valve disease (MMVD), characterized by elevated blood pressure in pulmonary artery. Echocardiography is a reliable technique for PH diagnosis in veterinary medicine. However, it is limited to use as an early detection method. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has found extensive application in the discovery of serum protein biomarkers for various diseases. The objective of this study was to identify serum proteins in healthy control dogs and MMVD dogs both with and without PH using LC-MS/MS. Materials and methods In this research, a total of 81 small-breed dogs participated, and they were categorized into three groups: the control (n = 28), MMVD (n = 24) and MMVD+PH (n = 29) groups. Serum samples were collected and analyzed by LC-MS/MS. Results Differentially expressed proteins were identified, and the upregulated and downregulated proteins in MMVD+PH group including Myomesin 1 (MYOM1) and Histone deacetylase 7 (HDAC7), Pleckstrin homology domain containing M3 (PLEKHM3), Diacylglycerol lipase alpha (DAGLA) and Tubulin tyrosine ligase like 6 (TTLL6) were selected as proteins of interest in MMVD dogs with PH. Conclusion Different types of proteins have been identified in healthy dogs and MMVD dogs with and without PH. Additional studies are needed to investigate the potential of these proteins as biomarkers for PH in dogs with MMVD.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Faculty of Veterinary Science, Department of Veterinary Medicine, Center of Excellence for Companion Animal Cancer, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Faculty of Veterinary Science, Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sirilak Disatian Surachetpong
- Faculty of Veterinary Science, Department of Veterinary Medicine, Center of Excellence for Companion Animal Cancer, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Boschetti E, Righetti PG. Low-Abundance Protein Enrichment for Medical Applications: The Involvement of Combinatorial Peptide Library Technique. Int J Mol Sci 2023; 24:10329. [PMID: 37373476 DOI: 10.3390/ijms241210329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of low- and very low-abundance proteins in medical applications is considered a key success factor in various important domains. To reach this category of proteins, it is essential to adopt procedures consisting of the selective enrichment of species that are present at extremely low concentrations. In the past few years pathways towards this objective have been proposed. In this review, a general landscape of the enrichment technology situation is made first with the presentation and the use of combinatorial peptide libraries. Then, a description of this peculiar technology for the identification of early-stage biomarkers for well-known pathologies with concrete examples is given. In another field of medical applications, the determination of host cell protein traces potentially present in recombinant therapeutic proteins, such as antibodies, is discussed along with their potentially deleterious effects on the health of patients on the one hand, and on the stability of these biodrugs on the other hand. Various additional applications of medical interest are disclosed for biological fluids investigations where the target proteins are present at very low concentrations (e.g., protein allergens).
Collapse
|
3
|
Li J, Qi G, Liu Y. Proteomics analysis of serum from thymoma patients. Sci Rep 2023; 13:5117. [PMID: 36991043 PMCID: PMC10060243 DOI: 10.1038/s41598-023-32339-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Thymoma is the most common malignant tumor in thymic epithelial tumors (TETS). This study aimed to identify the changes in serum proteomics in patients with thymoma. Proteins were extracted from twenty patients with thymoma serum and nine healthy controls and prepared for mass spectrometry (MS) analysis. Data independent acquisition (DIA) quantitative proteomics technique was used to examine the serum proteome. Differential proteins of abundance changes in the serum were identified. Bioinformatics was used to examine the differential proteins. Functional tagging and enrichment analysis were conducted using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The string database was used to assess the interaction of different proteins. In all, 486 proteins were found in all samples. There were differences in 58 serum proteins between patients and healthy blood donors, 35 up-regulated and 23 down-regulated. These proteins are primarily exocrine and serum membrane proteins involved in controlling immunological responses and antigen binding, according to GO functional annotation. KEGG functional annotation showed that these proteins play a significant role in the complement and coagulation cascade and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal pathway. Notably, the KEGG pathway (complement and coagulation cascade) is enriched, and three key activators were up-regulated: von willebrand factor (VWF), coagulation factor v (F5) and vitamin k-dependent protein c (PC). Protein-protein interaction (PPI) analysis showed that six proteins ((VWF, F5, thrombin reactive protein 1 (THBS1), mannose-binding lectin-associated serine protease 2 (MASP2), apolipoprotein B (APOB), and apolipoprotein (a) (LPA)) were up-regulated and two proteins (Metalloproteinase inhibitor 1(TIMP1), ferritin light chain (FTL)) were down-regulated. The results of this study showed that several proteins involved in complement and coagulation cascades were up-regulated in the serum of patients.
Collapse
Affiliation(s)
- Jiaduo Li
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guoyan Qi
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yaling Liu
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Rotello RJ, Veenstra TD. Mass Spectrometry Techniques: Principles and Practices for Quantitative Proteomics. Curr Protein Pept Sci 2020; 22:121-133. [PMID: 32957902 DOI: 10.2174/1389203721666200921153513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 01/05/2023]
Abstract
In the current omics-age of research, major developments have been made in technologies that attempt to survey the entire repertoire of genes, transcripts, proteins, and metabolites present within a cell. While genomics has led to a dramatic increase in our understanding of such things as disease morphology and how organisms respond to medications, it is critical to obtain information at the proteome level since proteins carry out most of the functions within the cell. The primary tool for obtaining proteome-wide information on proteins within the cell is mass spectrometry (MS). While it has historically been associated with the protein identification, developments over the past couple of decades have made MS a robust technology for protein quantitation as well. Identifying quantitative changes in proteomes is complicated by its dynamic nature and the inability of any technique to guarantee complete coverage of every protein within a proteome sample. Fortunately, the combined development of sample preparation and MS methods have made it capable of quantitatively comparing many thousands of proteins obtained from cells and organisms.
Collapse
Affiliation(s)
- Rocco J Rotello
- School of Pharmacy, Cedarville University, Cedarville, OH 45314, United States
| | - Timothy D Veenstra
- School of Pharmacy, Cedarville University, Cedarville, OH 45314, United States
| |
Collapse
|
5
|
Babele P, Kumar RB, Rajoria S, Rashid F, Malakar D, Bhagyawant SS, Kamboj DV, Alam SI. Putative serum protein biomarkers for epsilon toxin exposure in mouse model using LC-MS/MS analysis. Anaerobe 2020; 63:102209. [PMID: 32387808 DOI: 10.1016/j.anaerobe.2020.102209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens Type B or type D strains, is a potential biological and toxin warfare (BTW) agent, largely for its very high toxicity. The toxin is implicated in several animal diseases. Using LC-MS/MS analysis, we report here elucidation of putative serum maker proteins for ETX exposure with an objective of the early diagnosis of intoxication. Of 166 consensus proteins (488 peptides), showing ETX-induced alterations, 119 proteins exhibited increase and 47 proteins showed decreased abundance in serum, as revealed by SWATH (DIA) acquisition on LC-MS/MS and label free quantitative analysis of control and test samples. Complement and coagulation cascade, nitrogen metabolism, negative regulation of peptidase activity, and response to ROS were among the biological processes and pathways perturbed by the ETX exposure. Interaction network indicated enzyme inhibitor activity, detoxification of ROS, and steroid binding functions were the major interaction networks for the proteins with increased abundance, while, hemostasis and structural molecule activity were the prominent networks for the down-regulated proteins. Validation studies were carried out by immunoprecipitation, ELISA, and Western blot analysis of selected proteins to demonstrate diagnostic potential of the putative marker proteins of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Faraz Rashid
- Sciex, 121 DHR, Udyog Vihar, Gurugram, Haryana, India
| | - Dipankar Malakar
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
6
|
Sabença C, de Sousa T, Oliveira S, Viala D, Théron L, Chambon C, Hébraud M, Beyrouthy R, Bonnet R, Caniça M, Poeta P, Igrejas G. Next-Generation Sequencing and MALDI Mass Spectrometry in the Study of Multiresistant Processed Meat Vancomycin-Resistant Enterococci (VRE). BIOLOGY 2020; 9:biology9050089. [PMID: 32349310 PMCID: PMC7284646 DOI: 10.3390/biology9050089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
Vancomycin-resistant enterococci (VRE), due to their intrinsic resistance to various commonly used antibiotics and their malleable genome, make the treatment of infections caused by these bacteria less effective. The aims of this work were to characterize isolates of Enterococcus spp. that originated from processed meat, through phenotypic and genotypic techniques, as well as to detect putative antibiotic resistance biomarkers. The 19 VRE identified had high resistance to teicoplanin (89%), tetracycline (94%), and erythromycin (84%) and a low resistance to kanamycin (11%), gentamicin (11%), and streptomycin (5%). Based on a Next-Generation Sequencing NGS technique, most isolates were vanA-positive. The most prevalent resistance genes detected were erm(B) and aac(6')-Ii, conferring resistance to the classes of macrolides and aminoglycosides, respectively. MALDI-TOF mass spectrometry (MS) analysis detected an exclusive peak of the Enterococcus genus at m/z (mass-to-charge-ratio) 4428 ± 3, and a peak at m/z 6048 ± 1 allowed us to distinguish Enterococcus faecium from the other species. Several statistically significant protein masses associated with resistance were detected, such as peaks at m/z 6358.27 and m/z 13237.3 in ciprofloxacin resistance isolates. These results reinforce the relevance of the combined and complementary NGS and MALDI-TOF MS techniques for bacterial characterization.
Collapse
Affiliation(s)
- Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.); (T.d.S.); (S.O.)
- Department of Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
| | - Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.); (T.d.S.); (S.O.)
- Department of Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
| | - Soraia Oliveira
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.); (T.d.S.); (S.O.)
- Department of Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
| | - Didier Viala
- INRAE, Plateforme d’Exploration du Métabolisme, composante protéomique (PFEMcp), 63122 Saint-Genès Champanelle, France; (D.V.); (C.C.); (M.H.)
| | - Laetitia Théron
- INRAE, UR0370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès Champanelle, France;
| | - Christophe Chambon
- INRAE, Plateforme d’Exploration du Métabolisme, composante protéomique (PFEMcp), 63122 Saint-Genès Champanelle, France; (D.V.); (C.C.); (M.H.)
- INRAE, UR0370 Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès Champanelle, France;
| | - Michel Hébraud
- INRAE, Plateforme d’Exploration du Métabolisme, composante protéomique (PFEMcp), 63122 Saint-Genès Champanelle, France; (D.V.); (C.C.); (M.H.)
- INRAE, UMR0454 Microbiologie Environnement Digestif Santé (MEDiS), Université Clermont Auvergne, 63122 Saint-Genès Champanelle, France
| | - Racha Beyrouthy
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, 63003 Clermont-Ferrand, France; (R.B.); (R.B.)
- UMR1071 INSERM, USC1382 INRAE Microbiologie Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Richard Bonnet
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, 63003 Clermont-Ferrand, France; (R.B.); (R.B.)
- UMR1071 INSERM, USC1382 INRAE Microbiologie Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal;
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Patrícia Poeta
- Department of Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (C.S.); (T.d.S.); (S.O.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2829-516 Lisbon, Caparica, Portugal
- Correspondence: ; Tel.: +351-259-350-930
| |
Collapse
|
7
|
de Sousa T, Viala D, Théron L, Chambon C, Hébraud M, Poeta P, Igrejas G. Putative Protein Biomarkers of Escherichia coli Antibiotic Multiresistance Identified by MALDI Mass Spectrometry. BIOLOGY 2020; 9:biology9030056. [PMID: 32204308 PMCID: PMC7150737 DOI: 10.3390/biology9030056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
The commensal bacteria Escherichia coli causes several intestinal and extra-intestinal diseases, since it has virulence factors that interfere in important cellular processes. These bacteria also have a great capacity to spread the resistance genes, sometimes to phylogenetically distant bacteria, which poses an additional threat to public health worldwide. Here, we aimed to use the analytical potential of MALDI-TOF mass spectrometry (MS) to characterize E. coli isolates and identify proteins associated closely with antibiotic resistance. Thirty strains of extended-spectrum beta-lactamase producing E. coli were sampled from various animals. The phenotypes of antibiotic resistance were determined according to Clinical and Laboratory Standards Institute (CLSI) methods, and they showed that all bacterial isolates were multi-resistant to trimethoprim-sulfamethoxazole, tetracycline, and ampicillin. To identify peptides characteristic of resistance to particular antibiotics, each strain was grown in the presence or absence of the different antibiotics, and then proteins were extracted from the cells. The protein fingerprints of the samples were determined by MALDI-TOF MS in linear mode over a mass range of 2 to 20 kDa. The spectra obtained were compared by using the ClinProTools bioinformatics software, using three machine learning classification algorithms. A putative species biomarker was also detected at a peak m/z of 4528.00.
Collapse
Affiliation(s)
- Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Green Chemistry (LAQV), Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, 2829-516 Caparica, Portugal
| | - Didier Viala
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Metabolomic and Proteomic Exploration Facility (PFEMcp), 63122 Saint-Genès-Champanelle, France; (D.V.); (C.C.); (M.H.)
| | - Laetitia Théron
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UR Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès-Champanelle, France;
| | - Christophe Chambon
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Metabolomic and Proteomic Exploration Facility (PFEMcp), 63122 Saint-Genès-Champanelle, France; (D.V.); (C.C.); (M.H.)
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UR Qualité des Produits Animaux (QuaPA), 63122 Saint-Genès-Champanelle, France;
| | - Michel Hébraud
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Metabolomic and Proteomic Exploration Facility (PFEMcp), 63122 Saint-Genès-Champanelle, France; (D.V.); (C.C.); (M.H.)
- Université Clermont Auvergne, INRAE, UMR Microbiologie Environnement Digestif Santé (MEDiS), 63122 Saint-Genès-Champanelle, France
| | - Patricia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Green Chemistry (LAQV), Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, 2829-516 Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Green Chemistry (LAQV), Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, 2829-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
8
|
Refinements of LC-MS/MS Spectral Counting Statistics Improve Quantification of Low Abundance Proteins. Sci Rep 2019; 9:13653. [PMID: 31541118 PMCID: PMC6754416 DOI: 10.1038/s41598-019-49665-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry-based spectral count has been a common choice of label-free proteome quantification due to the simplicity for the sample preparation and data generation. The discriminatory nature of spectral count in the MS data-dependent acquisition, however, inherently introduces the spectral count variation for low-abundance proteins in multiplicative LC-MS/MS analysis, which hampers sensitive proteome quantification. As many low-abundance proteins play important roles in cellular processes, deducing low-abundance proteins in a quantitatively reliable manner greatly expands the depth of biological insights. Here, we implemented the Moment Adjusted Imputation error model in the spectral count refinement as a post PLGEM-STN for improving sensitivity for quantitation of low-abundance proteins by reducing spectral count variability. The statistical framework, automated spectral count refinement by integrating the two statistical tools, was tested with LC-MS/MS datasets of MDA-MB468 breast cancer cells grown under normal and glucose deprivation conditions. We identified about 30% more quantifiable proteins that were found to be low-abundance proteins, which were initially filtered out by the PLGEM-STN analysis. This newly developed statistical framework provides a reliable abundance measurement of low-abundance proteins in the spectral count-based label-free proteome quantification and enabled us to detect low-abundance proteins that could be functionally important in cellular processes.
Collapse
|
9
|
Babele P, Verma S, Kumar RB, Bhagyawant SS, Kamboj DV, Alam SI. Elucidation of protein biomarkers in plasma and urine for epsilon toxin exposure in mouse model. Anaerobe 2019; 59:76-91. [PMID: 31145997 DOI: 10.1016/j.anaerobe.2019.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Epsilon toxin (ETX) is the major virulence determinant of C. perfringens type B or type D strains, causing diseases in animals, besides being a listed biological and toxin warfare (BTW) agent. Keeping in mind the high lethality and the rapid onset of clinical manifestations, early diagnosis of epsilon toxin exposure is of paramount importance for implementation of appropriate medical countermeasures. Using a 2DE-MS approach, the present study is the first comprehensive proteomic elucidation of ETX-induced protein markers in the mouse model, providing putative targets for early diagnosis of ETX exposure. A total of 52 unique proteins showing ETX-induced modulations were identified in plasma and urine samples. Fibrinogen, apolipoprotein, serum amyloid protein, plasminogen, serum albumin, glutathione peroxidase, transferrin, major urinary protein 2, haptoglobin, transthyretin, and vitamin D-binding protein were among the proteins observed in more than one dataset with altered abundance after the ETX-intoxication. The predicted localization, function, and interaction of the ETX-modulated proteins in the plasma and urine indicated involvement of multiple pathways; extracellular proteins, followed by macromolecular complexes associated with blood coagulation and plasminogen activating cascade, being the most prominent among others. The putative markers elucidated here warrants further validation and can be of immense value for the early diagnosis of ETX exposure.
Collapse
Affiliation(s)
- Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Smarti Verma
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | | | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
10
|
Ura B, Di Lorenzo G, Romano F, Monasta L, Mirenda G, Scrimin F, Ricci G. Interstitial Fluid in Gynecologic Tumors and Its Possible Application in the Clinical Practice. Int J Mol Sci 2018; 19:ijms19124018. [PMID: 30545144 PMCID: PMC6321738 DOI: 10.3390/ijms19124018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Gynecologic cancers are an important cause of worldwide mortality. The interstitium consists of solid and fluid phases, situated between the blood vessels and cells. The interstitial fluid (IF), or fluid phase, is an extracellular fluid bathing and surrounding the tissue cells. The TIF (tumor interstitial fluid) is a dynamic fluid rich in lipids, proteins and enzyme-derived substances. The molecules found in the IF may be associated with pathological changes in tissues leading to cancer growth and metastatization. Proteomic techniques have allowed an extensive study of the composition of the TIF as a source of biomarkers for gynecologic cancers. In our review, we analyze the composition of the TIF, its formation process, the sampling methods, the consequences of its accumulation and the proteomic analyses performed, that make TIF valuable for monitoring different types of cancers.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Federico Romano
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Lorenzo Monasta
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giuseppe Mirenda
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Federica Scrimin
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giuseppe Ricci
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34137 Trieste, Italy.
| |
Collapse
|
11
|
Contribution of the plasma and lymph Degradome and Peptidome to the MHC Ligandome. Immunogenetics 2018; 71:203-216. [PMID: 30343358 DOI: 10.1007/s00251-018-1093-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Every biological fluid, blood, interstitial fluid and lymph, urine, saliva, lacrimal fluid, nipple aspirate, and spinal fluid, contains a peptidome-degradome derived from the cellular secretome along with byproducts of the metabolic/catabolic activities of each parenchymal organ. Clement et al. (J Proteomics 78:172-187, 2013), Clement et al. (J Biol Chem 291:5576-5595, 2016), Clement et al. (PLoS One 5:e9863, 2010), Clement et al. (Trends Immunol 32:6-11, 2011), Clement et al. (Front Immunol 4:424, 2013), Geho et al. (Curr Opin Chem Biol 10, 50-55, 2006), Interewicz et al. (Lymphology 37:65‑72, 2004), Leak et al. (Proteomics 4:753‑765, 2004), Popova et al. (PLoS One 9:e110873, 2014), Zhou et al. (Electrophoresis 25:1289‑1298, 2004), D'Alessandro et al. (Shock 42:509‑517, 2014), Dzieciatkowska et al. (Shock 42:485‑498, 2014), Dzieciatkowska et al. (Shock 35:331‑338, 2011), Jordan et al. (J Surg Res 143:130‑135, 2007), Peltz et al. (Surgery 146:347‑357, 2009), Zurawel et al. (Clin Proteomics 8:1, 2011), Ling et al. (Clin Proteomics 6:175‑193, 2010), Sturm et al. (Nat Commun 4:1616, 2013). Over the last decade, qualitative and quantitative analysis of the biological fluids peptidome and degradome have provided a dynamic measurement of tissue homeostasis as well as the tissue response to pathological damage. Proteomic profiling has mapped several of the proteases and resulting degradation by-products derived from cell cycle progression, organ/tissue remodeling and cellular growth, physiological apoptosis, hemostasis, and angiogenesis. Currently, a growing interest lies in the degradome observed during pathological conditions such as cancer, autoimmune diseases, and immune responses to pathogens as a way to exploit biological fluids as liquid biopsies for biomarker discovery Dzieciatkowska et al. (Shock 42:485-498, 2014), Dzieciatkowska et al. (Shock 35:331-338, 2011), Ling et al. (Clin Proteomics 6:175-193, 2010), Ugalde et al. (Methods Mol Biol 622:3-29, 2010), Quesada et al. (Nucleic Acids Res 37:D239‑243, 2009), Cal et al. (Front Biosci 12, 4661-4669, 2007), Shen et al. (PLoS One 5:e13133, 2010a), Antwi et al. (Mol Immunol 46:2931-2937, 2009a), Antwi et al. (J Proteome Res 8:4722‑4731, 2009b), Bedin et al. (J Cell Physiol 231, 915‑925, 2016), Bery et al. (Clin Proteomics 11:13, 2014), Bhalla et al. (Sci Rep 7:1511, 2017), Fan et al. (Diagn Pathol 7:45, 2012a), Fang et al. (Shock 34:291‑298, 2010), Fiedler et al. (Clin Cancer Res 15:3812‑3819, 2009), Fredolini et al. (AAPS J 12:504‑518, 2010), Greening et al. (Enzymes 42:27‑64, 2017), He et al. (PLoS One 8:e63724, 2013), Huang et al. (Int J Gynecol Cancer 28:355‑362, 2018), Hashiguchi et al. (Med Hypotheses 73:760‑763, 2009), Liotta and Petricoin (J Clin Invest 116:26‑30, 2006), Petricoin et al. (Nat Rev Cancer 6:961‑967, 2006), Shen et al. (J Proteome Res 9:2339‑2346, 2010a), Shen et al. (J Proteome Res 5:3154‑3160, 2006), Smith (Clin Proteomics 11:23, 2014), Wang et al. (Oncotarget 8:59376‑59386, 2017), Yang et al. (Clin Exp Med 12:79‑87, 2012a), Yang et al. (J Clin Lab Anal 26:148‑154, 2012b), Yang et al. (Anat Rec (Hoboken) 293:2027‑2033, 2010), Zapico-Muniz et al. (Pancreas 39:1293‑1298, 2010), Villanueva et al. (Mol Cell Proteomics 5:1840‑1852, 2006), Robbins et al. (J Clin Oncol 23:4835‑4837, 2005), Klupczynska et al. (Int J Mol Sci 17:410, 2016). In this review, we focus on the current knowledge of the degradome/peptidome observed in two main biological fluids (plasma and lymph) during physiological and pathological conditions and its importance for immune surveillance.
Collapse
|
12
|
Abstract
This review will highlight our current understanding of the formation, circulation, and immunological role of lymphatic fluid. The formation of the extracellular fluid depends on the net balance between the hydrostatic and osmotic pressure gradients effective in the capillary beds. Lymph originates from the extracellular fluid and its composition combines the ultrafiltrated plasma proteins with the proteome generated by the metabolic activities of each parenchymal tissue. Several analyses have indicated how the lymph composition reflects the organs' physiological and pathological states. The collected lymphatic fluid moves from the capillaries into progressively larger collectors toward the draining lymph node aided by the lymphangion contractility and unidirectional valves, which prevent backflow. The proteomic composition of the lymphatic fluid is reflected in the MHC II peptidome presented by nodal antigen-presenting cells. Taken together, the past few years have generated new interest in the formation, transport, and immunological role of the lymphatic fluid.
Collapse
|
13
|
Abstract
Omics technologies have been developed in recent decades and applied to different subjects, although the greatest advancements have been achieved in human biology and disease. Genome sequencing and the exploration of its coding and noncoding regions are rapidly yielding meaningful answers to diverse questions, relating genome information to protein activity to environmental changes. In the past, marine mammal genetic and transcriptional studies have been restricted due to the lack of reference genomes. But the advance of high-throughput sequencing is revolutionizing the life sciences technologies. As long-lived organisms, at the top of the food chain, marine mammals play an important role in marine ecosystems and while their protected status is in favor of conservation of the species, it also complicates the researcher's approach to traditional measurements of health. Omics data generated by high-throughput technologies will represent an important key for improving the scientific basis for understanding both marine mammal and environment health.
Collapse
|
14
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
15
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017; 7:17478. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
16
|
Boschetti E, D'Amato A, Candiano G, Righetti PG. Protein biomarkers for early detection of diseases: The decisive contribution of combinatorial peptide ligand libraries. J Proteomics 2017; 188:1-14. [PMID: 28882677 DOI: 10.1016/j.jprot.2017.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/31/2022]
Abstract
The present review deals with biomarker discovery, especially in regard to sample treatment via combinatorial peptide ligand libraries, perhaps the only technique at present allowing deep exploration of biological fluids and tissue extracts in search for low- to very-low-abundance proteins, which could possibly mark the onset of most pathologies. Early-stage biomarkers, in fact, might be the only way to detect the beginning of most diseases thus permitting proper intervention and care. The following cancers are reviewed, with lists of potential biomarkers suggested in various reports: hepatocellular carcinoma, ovarian cancer, breast cancer and pancreatic cancer, together with some other interesting applications. Although panels of proteins have been presented, with robust evidence, as potential early-stage biomarkers in these different pathologies, their approval by FDA as novel biomarkers in routine clinical chemistry settings would require plenty of additional work and efforts from the pharma industry. The science environment in universities could simply not afford such heavy monetary investments. SIGNIFICANCE After more than 16years of search for novel biomarkers, to be used in a clinical chemistry set-up, via proteomic analysis (mostly in biological fluids) it was felt a critical review was due. In the present report, though, only papers reporting biomarker discovery via combinatorial peptide ligand libraries are listed and assessed, since this methodology seems to be the most advanced one for digging in depth into low-to very-low-abundance proteins, which might represent important biomarkers for the onset of pathologies. In particular, a large survey has been made for the following diseases, since they appear to have a large incidence on human population and/or represent fatal diseases: ovarian cancer, breast cancer, pancreatic cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Alfonsina D'Amato
- Quadram Institute of Bioscience, Norwich Research Park, NR4 7UA Norwich, UK
| | - Giovanni Candiano
- Nephrology, Dialysis, Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa, Italy
| | - Pier Giorgio Righetti
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Via Mancinelli 7, Milano 20131, Italy.
| |
Collapse
|
17
|
Identification and quantification of myosin heavy chain isoforms in bovine and porcine longissimus muscles by LC-MS/MS analysis. Meat Sci 2017; 125:143-151. [DOI: 10.1016/j.meatsci.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/02/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023]
|
18
|
Wallace MAG, Kormos TM, Pleil JD. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:380-409. [PMID: 27759495 PMCID: PMC6147038 DOI: 10.1080/10937404.2016.1215772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- a Exposure Methods and Measurement Division, National Exposure Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| | | | - Joachim D Pleil
- a Exposure Methods and Measurement Division, National Exposure Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| |
Collapse
|
19
|
Complementary PTM Profiling of Drug Response in Human Gastric Carcinoma by Immunoaffinity and IMAC Methods with Total Proteome Analysis. Proteomes 2015; 3:160-183. [PMID: 28248267 PMCID: PMC5217380 DOI: 10.3390/proteomes3030160] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023] Open
Abstract
Gaining insight into normal cellular signaling and disease biology is a critical goal of proteomic analyses. The ability to perform these studies successfully to extract the maximum value and discovery of biologically relevant candidate biomarkers is therefore of primary importance. Many successful studies in the past have focused on total proteome analysis (changes at the protein level) combined with phosphorylation analysis by metal affinity enrichment (changes at the PTM level). Here, we use the gastric carcinoma cell line MKN-45 treated with the c-Met inhibitor SU11274 and PKC inhibitor staurosporine to investigate the most efficient and most comprehensive strategies for both total protein and PTM analysis. Under the conditions used, total protein analysis yielded few changes in response to either compound, while analysis of phosphorylation identified thousands of sites that changed differentially between the two treatments. Both metal affinity and antibody-based enrichments were used to assess phosphopeptide changes, and the data generated by the two methods was largely complementary (non-overlapping). Label-free quantitation of peptide peak abundances was used to accurately determine fold-changes between control and treated samples. Protein interaction network analysis allowed the data to be placed in a biologically relevant context, and follow-up validation of selected findings confirmed the accuracy of the proteomic data. Together, this study provides a framework for start-to-finish proteomic analysis of any experimental system under investigation to maximize the value of the proteomic study and yield the best chance for uncovering actionable target candidates.
Collapse
|
20
|
Wagner M, Wiig H. Tumor Interstitial Fluid Formation, Characterization, and Clinical Implications. Front Oncol 2015; 5:115. [PMID: 26075182 PMCID: PMC4443729 DOI: 10.3389/fonc.2015.00115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
The interstitium, situated between the blood and lymph vessels and the cells, consists of a solid or matrix phase and a fluid phase representing the tissue microenvironment. In the present review, we focus on the interstitial fluid phase of solid tumors, the tumor interstitial fluid (TIF), i.e., the fluid bathing the tumor and stroma cells, also including immune cells. This is a component of the internal milieu of a solid tumor that has attracted regained attention. Access to this space may provide important insight into tumor development and therapy response. TIF is formed by transcapillary filtration, and since this fluid is not readily available we discuss available techniques for TIF isolation, results from subsequent characterization and implications of recent findings with respect to fluid filtration and uptake of macromolecular therapeutic agents. There appear to be local gradients in signaling substances from neoplastic tissue to plasma that may provide new understanding of tumor biology. The development of sensitive proteomic technologies has made TIF a valuable source for tumor specific proteins and biomarker candidates. Potential biomarkers will appear locally in high concentrations in tumors and may eventually be found diluted in the plasma. Access to TIF that reliably reflects the local tumor microenvironment enables identification of substances that can be used in early detection and monitoring of disease.
Collapse
Affiliation(s)
- Marek Wagner
- Department of Biomedicine, University of Bergen , Bergen , Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen , Bergen , Norway
| |
Collapse
|
21
|
Abstract
In recent years, chemical biology and chemical genomics have been increasingly applied to the field of microbiology to uncover new potential therapeutics as well as to probe virulence mechanisms in pathogens. The approach offers some clear advantages, as identified compounds (i) can serve as a proof of principle for the applicability of drugs to specific targets; (ii) can serve as conditional effectors to explore the function of their targets in vitro and in vivo; (iii) can be used to modulate gene expression in otherwise genetically intractable organisms; and (iv) can be tailored to a narrow or broad range of bacteria. This review highlights recent examples from the literature to illustrate how the use of small molecules has advanced discovery of novel potential treatments and has been applied to explore biological mechanisms underlying pathogenicity. We also use these examples to discuss practical considerations that are key to establishing a screening or discovery program. Finally, we discuss the advantages and challenges of different approaches and the methods that are emerging to address these challenges.
Collapse
Affiliation(s)
- Rebecca Anthouard
- Laboratory of Genetics & Molecular Biology of Intestinal Pathogens, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Victor J DiRita
- Laboratory of Genetics & Molecular Biology of Intestinal Pathogens, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Sui W, Zhang R, Chen J, He H, Cui Z, Ou M, Guo L, Cong S, Xue W, Dai Y. Comparative proteomic analysis of membranous nephropathy biopsy tissues using quantitative proteomics. Exp Ther Med 2015; 9:805-810. [PMID: 25667632 PMCID: PMC4316945 DOI: 10.3892/etm.2015.2197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults and the second leading cause of end-stage renal disease due to primary glomerulonephritis. The aim of the present study was to identify potential biomarkers of MN and further characterize these proteins by Gene Ontology (GO) analysis. Isobaric tags for relative and absolute quantification were used to compare the protein levels in tissues from MN patients and healthy individuals, and the combined samples were subsequently separated by specialized communications exchange. Mass spectrometry data acquisition was conducted using a 4800 Plus MALDI TOF/TOF tandem mass spectrometry device, and the results were subjected to statistical analysis. A total of 1,903 proteins were identified, with 423 proteins exhibiting a difference of >1.5-fold compared with the control group. Of these, 202 proteins were upregulated, while 221 proteins were downregulated. In conclusion, GO enrichment analysis revealed that the differentially expressed proteins were primarily mapped to the following GO terms: ‘Immune response’, ‘immune effector process’, ‘activation of immune response’ and ‘positive regulation of immune system process’. The affected proteins may be associated with the pathogenesis of MN; thus, may represent candidate MN biomarkers.
Collapse
Affiliation(s)
- Weiguo Sui
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Ruohan Zhang
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Jiejing Chen
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Huiyan He
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Zhenzhen Cui
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China ; College of Life Science, Guangxi Normal University, Guilin, Guangxi 541004, P.R. China
| | - Minglin Ou
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Li Guo
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Shan Cong
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Wen Xue
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- Nephrology Department, Guilin 181 Hospital, Guangxi Key Laboratory of Metabolic Disease Research, Guilin, Guangxi 541002, P.R. China ; Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
23
|
ZHANG W. Progress in Mass Spectrometry Acquisition Approach for Quantitative Proteomics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60788-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Turriziani B, Garcia-Munoz A, Pilkington R, Raso C, Kolch W, von Kriegsheim A. On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. BIOLOGY 2014; 3:320-32. [PMID: 24833512 PMCID: PMC4085610 DOI: 10.3390/biology3020320] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 11/16/2022]
Abstract
With the advent of the "-omics" era, biological research has shifted from functionally analyzing single proteins to understanding how entire protein networks connect and adapt to environmental cues. Frequently, pathological processes are initiated by a malfunctioning protein network rather than a single protein. It is therefore crucial to investigate the regulation of proteins in the context of a pathway first and signaling network second. In this study, we demonstrate that a quantitative interaction proteomic approach, combining immunoprecipitation, in-solution digestion and label-free quantification mass spectrometry, provides data of high accuracy and depth. This protocol is applicable, both to tagged, exogenous and untagged, endogenous proteins. Furthermore, it is fast, reliable and, due to a label-free quantitation approach, allows the comparison of multiple conditions. We further show that we are able to generate data in a medium throughput fashion and that we can quantify dynamic interaction changes in signaling pathways in response to mitogenic stimuli, making our approach a suitable method to generate data for system biology approaches.
Collapse
Affiliation(s)
- Benedetta Turriziani
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amaya Garcia-Munoz
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ruth Pilkington
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cinzia Raso
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Alexander von Kriegsheim
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
25
|
Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling. Br J Cancer 2014; 110:1622-33. [PMID: 24548857 PMCID: PMC3960606 DOI: 10.1038/bjc.2014.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/27/2013] [Accepted: 01/07/2014] [Indexed: 02/06/2023] Open
Abstract
Background: Proteomics-based approaches for biomarker discovery are promising strategies used in cancer research. We present state-of-art label-free quantitative proteomics method to assess proteome of renal cell carcinoma (RCC) compared with noncancer renal tissues. Methods: Fresh frozen tissue samples from eight primary RCC lesions and autologous adjacent normal renal tissues were obtained from surgically resected tumour-bearing kidneys. Proteins were extracted by complete solubilisation of tissues using filter-aided sample preparation (FASP) method. Trypsin digested proteins were analysed using quantitative label-free proteomics approach followed by data interpretation and pathways analysis. Results: A total of 1761 proteins were identified and quantified with high confidence (MASCOT ion score threshold of 35 and P-value <0.05). Of these, 596 proteins were identified as differentially expressed between cancer and noncancer tissues. Two upregulated proteins in tumour samples (adipose differentiation-related protein and Coronin 1A) were further validated by immunohistochemistry. Pathway analysis using IPA, KOBAS 2.0, DAVID functional annotation and FLink tools showed enrichment of many cancer-related biological processes and pathways such as oxidative phosphorylation, glycolysis and amino acid synthetic pathways. Conclusions: Our study identified a number of differentially expressed proteins and pathways using label-free proteomics approach in RCC compared with normal tissue samples. Two proteins validated in this study are the focus of on-going research in a large cohort of patients.
Collapse
|
26
|
Findeisen P, Peccerella T, Neumaier M, Schadendorf D. Proteomics for biomarker discovery in malignant melanoma. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.3.2.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Ray S, Patel SK, Kumar V, Damahe J, Srivastava S. Differential expression of serum/plasma proteins in various infectious diseases: specific or nonspecific signatures. Proteomics Clin Appl 2013; 8:53-72. [PMID: 24293340 PMCID: PMC7168033 DOI: 10.1002/prca.201300074] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 01/26/2023]
Abstract
Apart from direct detection of the infecting organisms or biomarker of the pathogen itself, surrogate host markers are also useful for sensitive and early diagnosis of pathogenic infections. Early detection of pathogenic infections, discrimination among closely related diseases with overlapping clinical manifestations, and monitoring of disease progression can be achieved by analyzing blood biomarkers. Therefore, over the last decade large numbers of proteomics studies have been conducted to identify differentially expressed human serum/plasma proteins in different infectious diseases with the intent of discovering novel potential diagnostic/prognostic biomarkers. However, in-depth review of the literature indicates that many reported biomarkers are altered in the same way in multiple infectious diseases, regardless of the type of infection. This might be a consequence of generic acute phase reactions, while the uniquely modulated candidates in different pathogenic infections could be indicators of some specific responses. In this review article, we will provide a comprehensive analysis of differentially expressed serum/plasma proteins in various infectious diseases and categorize the protein markers associated with generic or specific responses. The challenges associated with the discovery, validation, and translational phases of serum/plasma biomarker establishment are also discussed.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | |
Collapse
|
28
|
Stehle F, Schulz K, Seliger B. Towards defining biomarkers indicating resistances to targeted therapies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:909-16. [PMID: 24269379 DOI: 10.1016/j.bbapap.2013.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/17/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022]
Abstract
An impressive, but often short objective response was obtained in many tumor patients treated with different targeted therapies, but most of the patients develop resistances against these drugs. So far, a number of distinct mechanisms leading to intrinsic as well as acquired resistances have been identified in tumors of distinct origin. These can arise from genetic alterations, like mutations, truncations, and amplifications or due to deregulated expression of various proteins and signal transduction pathways, but also from cellular heterogeneity within tumors after an initial response. Therefore, biomarkers are urgently needed for cancer prognosis and personalized cancer medicine. The application of "ome"-based technologies including cancer (epi)genomics, next generation sequencing, cDNA microarrays and proteomics might led to the predictive or prognostic stratification of patients to categorize resistance mechanisms and to postulate combinations of treatment strategies. This review discusses the implementation of proteome-based analysis to identify markers of pathway (in)activation in tumors and the resistance mechanisms, which represent major clinical problems as a tool to optimize individually tailored therapies based on targeted drugs. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Franziska Stehle
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Magdeburger Str. 2, D-06112 Halle, Saale, Germany
| | - Kristin Schulz
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Magdeburger Str. 2, D-06112 Halle, Saale, Germany
| | - Barbara Seliger
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Magdeburger Str. 2, D-06112 Halle, Saale, Germany.
| |
Collapse
|
29
|
Swan AL, Mobasheri A, Allaway D, Liddell S, Bacardit J. Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:595-610. [PMID: 24116388 DOI: 10.1089/omi.2013.0017] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is an analytical technique for the characterization of biological samples and is increasingly used in omics studies because of its targeted, nontargeted, and high throughput abilities. However, due to the large datasets generated, it requires informatics approaches such as machine learning techniques to analyze and interpret relevant data. Machine learning can be applied to MS-derived proteomics data in two ways. First, directly to mass spectral peaks and second, to proteins identified by sequence database searching, although relative protein quantification is required for the latter. Machine learning has been applied to mass spectrometry data from different biological disciplines, particularly for various cancers. The aims of such investigations have been to identify biomarkers and to aid in diagnosis, prognosis, and treatment of specific diseases. This review describes how machine learning has been applied to proteomics tandem mass spectrometry data. This includes how it can be used to identify proteins suitable for use as biomarkers of disease and for classification of samples into disease or treatment groups, which may be applicable for diagnostics. It also includes the challenges faced by such investigations, such as prediction of proteins present, protein quantification, planning for the use of machine learning, and small sample sizes.
Collapse
Affiliation(s)
- Anna Louise Swan
- 1 School of Biosciences, Faculty of Science, University of Nottingham , Sutton Bonington Campus, Leicestershire, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1029] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Haslene-Hox H, Tenstad O, Wiig H. Interstitial fluid-a reflection of the tumor cell microenvironment and secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2336-46. [PMID: 23376185 DOI: 10.1016/j.bbapap.2013.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/27/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023]
Abstract
The interstitium or interstitial space describes the space outside the blood and lymphatic vessels. It contains two phases; the interstitial fluid (IF) and the extracellular matrix. In this review we focus on the interstitial fluid phase, which is the physical and biochemical microenvironment of the cells, and more specifically that of tumors. IF is created by transcapillary filtration and cleared by lymphatic vessels, and contains substances that are either produced and secreted locally, thus denoted secretome, or brought to the organ by the circulation. The structure of the interstitium is discussed briefly and moreover techniques for IF isolation focusing on those that are relevant for studies of the secretome. Accumulated data show that tumor IF is hypoxic and acidic compared with subcutaneous IF and plasma, and that there are gradients between IF and plasma giving information on where substances are produced and thereby reflecting the local microenvironment. We review recent data on the origin of tissue specific substances, challenges related to isolating a representative secretome and the use of this as a substrate for biomarker identification. Finally we perform a comparative analysis across human tumor types and techniques and show that there is great variation in the results obtained that may at least partially be due to the isolation method used. We conclude that when care is taken in isolation of substrate, analysis of the secretome may give valuable biological insight and result in identification of biomarker candidates. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
|
32
|
Abstract
Differential (18)O/(16)O stable isotopic labeling that relies on post-digestion (18)O exchange is a simple and efficient method for the relative quantitation of proteins in complex mixtures. This method incorporates two (18)O atoms onto the C-termini of proteolytic peptides resulting in a 4 Da mass-tag difference between (18)O- and (16)O-labeled peptides. This allows for wide-range relative quantitation of proteins in complex mixtures using shotgun proteomics. Because of minimal sample consumption and unrestricted peptide tagging, the post-digestion (18)O exchange is suitable for labeling of low-abundance membrane proteins enriched from cancer cell lines or clinical specimens, including tissues and body fluids. This chapter describes a protocol that applies post-digestion (18)O labeling to elucidate putative endogenous tumor hypoxia markers in the plasma membrane fraction enriched from a hypoxia-adapted malignant melanoma cell line. Plasma membrane proteins from hypoxic and normoxic cells were differentially tagged using (18)O/(16)O stable isotopic labeling. The initial tryptic digestion and solubilization of membrane proteins were carried out in a buffer containing 60 % methanol followed by post-digestion (18)O exchange/labeling in buffered 20 % methanol. The differentially labeled peptides were mixed in a 1:1 ratio and fractionated using off-line strong cation exchange (SCX) liquid chromatography followed by on-line reversed-phase nano-flow RPLC-MS identification and quantitation of peptides/proteins in respective SCX fractions. The present protocol illustrates the utility of (18)O/(16)O stable isotope labeling in the context of quantitative shotgun proteomics that provides a basis for the discovery of hypoxia-induced membrane protein markers in malignant melanoma cell lines.
Collapse
|
33
|
Savino R, Paduano S, Preianò M, Terracciano R. The proteomics big challenge for biomarkers and new drug-targets discovery. Int J Mol Sci 2012. [PMID: 23203042 PMCID: PMC3509558 DOI: 10.3390/ijms131113926] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, which might increase chances of success and reduce the occurrence of drug resistance. Chemical proteomics, by analyzing the drug interactome, strongly contributes to accelerate the process of new druggable targets discovery. In the research area of clinical proteomics, proteome and peptidome mass spectrometry-profiling of human bodily fluid (plasma, serum, urine and so on), as well as of tissue and of cells, represents a promising tool for novel biomarker and eventually new druggable targets discovery. In the present review we provide a survey of current strategies of functional, chemical and clinical proteomics. Major issues will be presented for proteomic technologies used for the discovery of biomarkers for early disease diagnosis and identification of new drug targets.
Collapse
Affiliation(s)
- Rocco Savino
- Department of Health Sciences, Laboratory of Mass Spectrometry and Proteomics, University "Magna Græcia", Catanzaro, University Campus, Europa Avenue, 88100 Catanzaro, Italy.
| | | | | | | |
Collapse
|
34
|
Pavlou MP, Diamandis EP, Blasutig IM. The long journey of cancer biomarkers from the bench to the clinic. Clin Chem 2012; 59:147-57. [PMID: 23019307 DOI: 10.1373/clinchem.2012.184614] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Protein cancer biomarkers serve multiple clinical purposes, both early and late, during disease progression. The search for new and better biomarkers has become an integral component of contemporary cancer research. However, the number of new biomarkers cleared by the US Food and Drug Administration has declined substantially over the last 10 years, raising concerns regarding the efficiency of the biomarker-development pipeline. CONTENT We describe different clinical uses of cancer biomarkers and their performance requirements. We also present examples of protein cancer biomarkers currently in clinical use and their limitations. The major barriers that candidate biomarkers need to overcome to reach the clinic are addressed. Finally, the long and arduous journey of a protein cancer biomarker from the bench to the clinic is outlined with an example. SUMMARY The journey of a protein biomarker from the bench to the clinic is long and challenging. Every step needs to be meticulously planned and executed to succeed. The history of clinically useful biomarkers suggests that at least a decade is required for the transition of a marker from the bench to the bedside. Therefore, it may be too early to expect that the new technological advances will catalyze the anticipated biomarker revolution any time soon.
Collapse
Affiliation(s)
- Maria P Pavlou
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
35
|
Wiig H, Swartz MA. Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiol Rev 2012; 92:1005-60. [PMID: 22811424 DOI: 10.1152/physrev.00037.2011] [Citation(s) in RCA: 478] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The interstitium describes the fluid, proteins, solutes, and the extracellular matrix (ECM) that comprise the cellular microenvironment in tissues. Its alterations are fundamental to changes in cell function in inflammation, pathogenesis, and cancer. Interstitial fluid (IF) is created by transcapillary filtration and cleared by lymphatic vessels. Herein we discuss the biophysical, biomechanical, and functional implications of IF in normal and pathological tissue states from both fluid balance and cell function perspectives. We also discuss analysis methods to access IF, which enables quantification of the cellular microenvironment; such methods have demonstrated, for example, that there can be dramatic gradients from tissue to plasma during inflammation and that tumor IF is hypoxic and acidic compared with subcutaneous IF and plasma. Accumulated recent data show that IF and its convection through the interstitium and delivery to the lymph nodes have many and diverse biological effects, including in ECM reorganization, cell migration, and capillary morphogenesis as well as in immunity and peripheral tolerance. This review integrates the biophysical, biomechanical, and biological aspects of interstitial and lymph fluid and its transport in tissue physiology, pathophysiology, and immune regulation.
Collapse
Affiliation(s)
- Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway; and Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A. Swartz
- Department of Biomedicine, University of Bergen, Bergen, Norway; and Laboratory of Lymphatic and Cancer Bioengineering, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Stokes MP, Farnsworth CL, Moritz A, Silva JC, Jia X, Lee KA, Guo A, Polakiewicz RD, Comb MJ. PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS. Mol Cell Proteomics 2012; 11:187-201. [PMID: 22322096 DOI: 10.1074/mcp.m111.015883] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteomic studies of post-translational modifications by metal affinity or antibody-based methods often employ data-dependent analysis, providing rich data sets that consist of randomly sampled identified peptides because of the dynamic response of the mass spectrometer. This can complicate the primary goal of programs for drug development, mutational analysis, and kinase profiling studies, which is to monitor how multiple nodes of known, critical signaling pathways are affected by a variety of treatment conditions. Cell Signaling Technology has developed an immunoaffinity-based LC-MS/MS method called PTMScan Direct for multiplexed analysis of these important signaling proteins. PTMScan Direct enables the identification and quantification of hundreds of peptides derived from specific proteins in signaling pathways or specific protein types. Cell lines, tissues, or xenografts can be used as starting material. PTMScan Direct is compatible with both SILAC and label-free quantification. Current PTMScan Direct reagents target key nodes of many signaling pathways (PTMScan Direct: Multipathway), serine/threonine kinases, tyrosine kinases, and the Akt/PI3K pathway. Validation of each reagent includes score filtering of MS/MS assignments, filtering by identification of peptides derived from expected targets, identification of peptides homologous to expected targets, minimum signal intensity of peptide ions, and dependence upon the presence of the reagent itself compared with a negative control. The Multipathway reagent was used to study sensitivity of human cancer cell lines to receptor tyrosine kinase inhibitors and showed consistent results with previously published studies. The Ser/Thr kinase reagent was used to compare relative levels of kinase-derived phosphopeptides in mouse liver, brain, and embryo, showing tissue-specific activity of many kinases including Akt and PKC family members. PTMScan Direct will be a powerful quantitative method for elucidation of changes in signaling in a wide array of experimental systems, combining the specificity of traditional biochemical methods with the high number of data points and dynamic range of proteomic methods.
Collapse
|
37
|
After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli? J Proteomics 2012; 75:2773-89. [PMID: 22245553 DOI: 10.1016/j.jprot.2011.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/30/2022]
Abstract
Proteomic approaches have been considerably improved during the past decade and have been used to investigate the differences in protein expression profiles of cells grown under a broad spectrum of growth conditions and with different stress factors including antibiotics. In Europe, the most significant disease threat remains the presence of microorganisms that have become resistant to antimicrobials and so it is important that different scientific tools are combined to achieve the largest amount of knowledge in this area of expertise. The emergence and spread of the antibiotic-resistant Gram-negative pathogens, such as Escherichia coli, can lead to serious problem public health in humans. E. coli, a very well described prokaryote, has served as a model organism for several biological and biotechnological studies increasingly so since the completion of the E. coli genome-sequencing project. The purpose of this review is to present an overview of the different proteomic approaches to antimicrobial-resistant E. coli that will be helpful to obtain a better knowledge of the antibiotic-resistant mechanism(s). This can also aid to understand the molecular determinants involved with pathogenesis, which is essential for the development of effective strategies to combat infection and to reveal new therapeutic targets. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
|
38
|
Boschetti E, Chung MCM, Righetti PG. "The quest for biomarkers": are we on the right technical track? Proteomics Clin Appl 2011; 6:22-41. [PMID: 22213582 DOI: 10.1002/prca.201100039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/01/2011] [Accepted: 11/15/2011] [Indexed: 12/19/2022]
Abstract
The discovery phase of biomarkers of diagnostic or therapeutic interest started a decade ago with the very rapid development of proteomic investigations. In spite of the development of innovative technologies and multiple approaches, the "harvest" is still modest. Various reasons justified the encountered difficulties and most of them have been circumvented by specific sample treatments or dedicated analytical approaches. Nevertheless, the situation of very modest biomarker discovery level did not change much. This review intends to specifically analyze the main approaches used for biomarker discovery phase and evaluate related advantages and disadvantages. Thus, preliminary sample treatments such as fractionation, depletion and reduction of dynamic concentration range will critically be discussed and then the main differential expression investigation methods analyzed. Combinations of technologies are also discussed along with possible proposals to federate associations of complementary technologies for better chances of success.
Collapse
Affiliation(s)
- Egisto Boschetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy.
| | | | | |
Collapse
|
39
|
Golugula A, Lee G, Master SR, Feldman MD, Tomaszewski JE, Speicher DW, Madabhushi A. Supervised regularized canonical correlation analysis: integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery. BMC Bioinformatics 2011; 12:483. [PMID: 22182303 PMCID: PMC3267835 DOI: 10.1186/1471-2105-12-483] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/19/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multimodal data, especially imaging and non-imaging data, is being routinely acquired in the context of disease diagnostics; however, computational challenges have limited the ability to quantitatively integrate imaging and non-imaging data channels with different dimensionalities and scales. To the best of our knowledge relatively few attempts have been made to quantitatively fuse such data to construct classifiers and none have attempted to quantitatively combine histology (imaging) and proteomic (non-imaging) measurements for making diagnostic and prognostic predictions. The objective of this work is to create a common subspace to simultaneously accommodate both the imaging and non-imaging data (and hence data corresponding to different scales and dimensionalities), called a metaspace. This metaspace can be used to build a meta-classifier that produces better classification results than a classifier that is based on a single modality alone. Canonical Correlation Analysis (CCA) and Regularized CCA (RCCA) are statistical techniques that extract correlations between two modes of data to construct a homogeneous, uniform representation of heterogeneous data channels. In this paper, we present a novel modification to CCA and RCCA, Supervised Regularized Canonical Correlation Analysis (SRCCA), that (1) enables the quantitative integration of data from multiple modalities using a feature selection scheme, (2) is regularized, and (3) is computationally cheap. We leverage this SRCCA framework towards the fusion of proteomic and histologic image signatures for identifying prostate cancer patients at the risk of 5 year biochemical recurrence following radical prostatectomy. RESULTS A cohort of 19 grade, stage matched prostate cancer patients, all of whom had radical prostatectomy, including 10 of whom had biochemical recurrence within 5 years of surgery and 9 of whom did not, were considered in this study. The aim was to construct a lower fused dimensional metaspace comprising both the histological and proteomic measurements obtained from the site of the dominant nodule on the surgical specimen. In conjunction with SRCCA, a random forest classifier was able to identify prostate cancer patients, who developed biochemical recurrence within 5 years, with a maximum classification accuracy of 93%. CONCLUSIONS The classifier performance in the SRCCA space was found to be statistically significantly higher compared to the fused data representations obtained, not only from CCA and RCCA, but also two other statistical techniques called Principal Component Analysis and Partial Least Squares Regression. These results suggest that SRCCA is a computationally efficient and a highly accurate scheme for representing multimodal (histologic and proteomic) data in a metaspace and that it could be used to construct fused biomarkers for predicting disease recurrence and prognosis.
Collapse
Affiliation(s)
- Abhishek Golugula
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Calvo E, Camafeita E, Fernández-Gutiérrez B, López JA. Applying selected reaction monitoring to targeted proteomics. Expert Rev Proteomics 2011; 8:165-73. [PMID: 21501010 DOI: 10.1586/epr.11.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Selected reaction monitoring (SRM) is a highly selective and sensitive mass spectrometric methodology for precise and accurate quantification of low-abundant proteins in complex mixtures and for characterization of modified peptides, and constitutes the method of choice in targeted proteomics. Owing to its outstanding features, SRM arises as an alternative to antibody-based assays for discovery and validation of clinically relevant biomarkers, a topic that is tackled in this article. Several of the obstacles encountered in SRM experiments, mainly those derived from shared physicochemical properties of peptides (e.g., mass, charge and chromatographic retention time), can compromise selectivity and quantitation. We illustrate how to circumvent these limitations on the basis of using time-scheduled chromatographic approaches and choosing appropriate spectrometric conditions, including the careful selection of the precursor and diagnostic ions.
Collapse
Affiliation(s)
- Enrique Calvo
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Yang N, Feng S, Shedden K, Xie X, Liu Y, Rosser CJ, Lubman DM, Goodison S. Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification. Clin Cancer Res 2011; 17:3349-59. [PMID: 21459797 PMCID: PMC3096687 DOI: 10.1158/1078-0432.ccr-10-3121] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Cancers of the urinary bladder are the fifth most commonly diagnosed malignancy in the United States. Early clinical diagnosis of bladder cancer remains a major challenge, and the development of noninvasive methods for detection and surveillance is desirable for both patients and health care providers. APPROACH To identify urinary proteins with potential clinical utility, we enriched and profiled the glycoprotein component of urine samples by using a dual-lectin affinity chromatography and liquid chromatography/tandem mass spectrometry platform. RESULTS From a primary sample set obtained from 54 cancer patients and 46 controls, a total of 265 distinct glycoproteins were identified with high confidence, and changes in glycoprotein abundance between groups were quantified by a label-free spectral counting method. Validation of candidate biomarker alpha-1-antitrypsin (A1AT) for disease association was done on an independent set of 70 samples (35 cancer cases) by using an ELISA. Increased levels of urinary A1AT glycoprotein were indicative of the presence of bladder cancer (P < 0.0001) and augmented voided urine cytology results. A1AT detection classified bladder cancer patients with a sensitivity of 74% and specificity of 80%. SUMMARY The described strategy can enable higher resolution profiling of the proteome in biological fluids by reducing complexity. Application of glycoprotein enrichment provided novel candidates for further investigation as biomarkers for the noninvasive detection of bladder cancer.
Collapse
Affiliation(s)
- Na Yang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Shun Feng
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI 48109
| | - Xiaolei Xie
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Yashu Liu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Charles J Rosser
- Cancer Research Institute, M.D. Anderson Cancer Center Orlando, Orlando, FL 32827
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Steven Goodison
- Cancer Research Institute, M.D. Anderson Cancer Center Orlando, Orlando, FL 32827
| |
Collapse
|
42
|
Blonder J, Issaq HJ, Veenstra TD. Proteomic biomarker discovery: it's more than just mass spectrometry. Electrophoresis 2011; 32:1541-8. [PMID: 21557261 DOI: 10.1002/elps.201000585] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/09/2022]
Abstract
The previous decade witnessed an enormous number of studies with the singular goal of identifying protein biomarkers for diseases such as cancer. A large majority of these studies have focused on comparative studies of serum or plasma obtained from disease-affected and control patients. In these studies, proteins identified in the samples using MS were compared with the hope that differences between samples would reveal useful biomarkers. Unfortunately, finding clinically relevant biomarkers has often been elusive and frustrating. As with most research efforts, both successes and failures, much has been learned about what strategies work and which do not. Part of the problem can be attributed to underestimating the effort required to discover novel biomarkers and depending too heavily on MS analysis of peripheral blood samples. Fortunately, the future for biomarker discovery still appears bright. MS technology continues to increase in sensitivity, throughput, and accuracy while novel types of samples and clever experimental designs coupled with innovative bioinformatics will make this vision of routine biomarker discovery a reality. To achieve ultimate success is going to require concomitant application of a number of different technologies, all providing the information necessary for discovering and validating clinically useful biomarkers.
Collapse
Affiliation(s)
- Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD, USA
| | | | | |
Collapse
|
43
|
Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 2011; 11:2139-61. [PMID: 21548090 DOI: 10.1002/pmic.201000460] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 01/22/2023]
Abstract
Serum is an ideal biological sample that contains an archive of information due to the presence of a variety of proteins released by diseased tissue, and serum proteomics has gained considerable interest for the disease biomarker discovery. Easy accessibility and rapid protein changes in response to disease pathogenesis makes serum an attractive sample for clinical research. Despite these advantages, the analysis of serum proteome is very challenging due to the wide dynamic range of proteins, difficulty in finding low-abundance target analytes due to the presence of high-abundance serum proteins, high levels of salts and other interfering compounds, variations among individuals and paucity of reproducibility. Sample preparation introduces pre-analytical variations and poses major challenges to analyze the serum proteome. The label-free detection techniques such as surface plasmon resonance, microcantilever, few nanotechniques and different resonators are rapidly emerging for the analysis of serum proteome and they have exhibited potential to overcome few limitations of the conventional techniques. In this article, we will discuss the current status of serum proteome analysis for the biomarker discovery and address key technological advancements, with a focus on challenges and amenable solutions.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | | | |
Collapse
|
44
|
Sinclair J, Timms JF. Quantitative profiling of serum samples using TMT protein labelling, fractionation and LC-MS/MS. Methods 2011; 54:361-9. [PMID: 21397697 DOI: 10.1016/j.ymeth.2011.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/01/2011] [Accepted: 03/07/2011] [Indexed: 11/30/2022] Open
Abstract
Blood-borne biomarkers are urgently required for the early detection, accurate diagnosis and prognosis of disease. Additionally, improved methods of profiling serum and plasma proteins for biomarker discovery efforts are needed. Herein, we report a quantitative method based on amino-group labelling of serum proteins (rather than peptides) with isobaric tandem mass tags (TMT) and incorporating immune-based depletion, gel-based and strong anion exchange separation of proteins prior to differential endoproteinase treatment and liquid chromatography tandem mass spectrometry. We report a generally higher level of quantitative coverage of the serum proteome compared to other peptide-based isobaric tagging approaches and show the potential of the method by applying it to a set of unique samples that pre-date the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- John Sinclair
- Cancer Proteomics Laboratory, EGA Institute for Women's Health, University College London UCL, Cruciform Building, Gower St., London WC1E 6BT, UK
| | | |
Collapse
|
45
|
Zhao Y, Jia W, Sun W, Jin W, Guo L, Wei J, Ying W, Zhang Y, Xie Y, Jiang Y, He F, Qian X. Combination of improved (18)O incorporation and multiple reaction monitoring: a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer. J Proteome Res 2010; 9:3319-27. [PMID: 20420461 DOI: 10.1021/pr9011969] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stable isotope dilution-multiple reaction monitoring-mass spectrometry (SID-MRM-MS), which is an alternative to immunoassay methods such as ELISA and Western blotting, has been used to alleviate the bottlenecks of high-throughput verification of biomarker candidates recently. However, the inconvenience and high isotope consumption required to obtain stably labeled peptide impedes the broad application of this method. In our study, the (18)O-labeling method was introduced to generate stable isotope-labeled peptides instead of the Fmoc chemical synthesis and Qconcat recombinant protein synthesis methods. To make (18)O-labeling suitable for absolute quantification, we have added the following procedures: (1) RapiGest SF and microwave heating were added to increase the labeling efficiency; (2) trypsin was deactivated completely by chemical modification using tris(2-carboxyethyl)phosphine (TCEP) and iodoacetamide (IAA) to prevent back-exchange of (18)O to (16)O, and (3) MRM parameters were optimized to maximize specificity and better distinguish between (18)O-labeled and unlabeled peptides. As a result, the (18)O-labeled peptides can be prepared in less than 1 h with satisfactory efficiency (>97%) and remained stable for 1 week, compared to traditional protocols that require 5 h for labeling with poor stability. Excellent separation of (18)O-labeled and unlabeled peptides was achieved by the MRM-MS spectrum. Finally, through the combined improvement in (18)O-labeling with multiple reaction monitoring, an absolute quantification strategy was developed to quantitatively verify hepatocellular carcinoma-related biomarker candidates, namely, vitronectin and clusterin, in undepleted serum samples. Sample preparation and capillary-HPLC analysis were optimized for high-throughput applications. The reliability of this strategy was further evaluated by method validation, with accuracy (%RE) and precision (%RSD) of less than 20% and good linearity (r(2) > 0.99), and clinical validation, which were consistent with previously reported results. In summary, our strategy can promote broader application of SID-MRM-MS for biomarkers from discovery to verification regarding the significant advantages of the convenient and flexible generation of internal standards, the reduction in the sample labeling steps, and the simple transition.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Changping District, Beijing, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Nicolardi S, Palmblad M, Dalebout H, Bladergroen M, Tollenaar RAEM, Deelder AM, van der Burgt YEM. Quality control based on isotopic distributions for high-throughput MALDI-TOF and MALDI-FTICR serum peptide profiling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1515-1525. [PMID: 20541438 DOI: 10.1016/j.jasms.2010.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/23/2010] [Accepted: 05/06/2010] [Indexed: 05/29/2023]
Abstract
In this study, we have implemented a new quality control (QC) parameter for peptide profiling based on isotopic distributions. This QC parameter is an objective measure and facilitates automatic sorting of large numbers of peptide spectra. Peptides in human serum samples were enriched using reversed-phase C(18)-functionalized magnetic beads using a high-throughput robotic platform. High-resolution MALDI-TOF and ultrahigh resolution MALDI-FTICR mass spectra were obtained and a workflow was developed for automated analysis and evaluation of these profiles. To this end, the isotopic distributions of multiple peptides were quantified from both MALDI-TOF and MALDI-FTICR spectra. Odd peptide isotope distributions in TOF spectra could be rationalized from ultrahigh resolution FTICR spectra that showed overlap of different peptides. The comparison of isotope patterns with estimated polyaveragine distributions was used to calculate a QC value for each single mass spectrum. Sorting these QC values enabled the best MALDI spectrum to be selected from replicate spots. Moreover, using this approach spectra containing high intensities of polymers or other contaminants and lacking peptides of interest can be efficiently removed from a clinical dataset. In general, this method simplifies the exclusion of low quality spectra from further statistical analysis.
Collapse
Affiliation(s)
- Simone Nicolardi
- Department of Parasitology, Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Parker CE, Pearson TW, Anderson NL, Borchers CH. Mass-spectrometry-based clinical proteomics--a review and prospective. Analyst 2010; 135:1830-8. [PMID: 20520858 PMCID: PMC2966304 DOI: 10.1039/c0an00105h] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review reports on the current and emerging technologies for the use of mass-spectrometry-based proteomics in clinical applications.
Collapse
Affiliation(s)
- Carol E. Parker
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada; Fax: +1-250 483-3238; Tel: +1-250 483-3221
| | - Terry W. Pearson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | | - Christoph H. Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada; Fax: +1-250 483-3238; Tel: +1-250 483-3221
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
49
|
Interstitial fluid: the overlooked component of the tumor microenvironment? FIBROGENESIS & TISSUE REPAIR 2010; 3:12. [PMID: 20653943 PMCID: PMC2920231 DOI: 10.1186/1755-1536-3-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/23/2010] [Indexed: 01/01/2023]
Abstract
Background The interstitium, situated between the blood and lymph vessels and the cells, consists of a solid or matrix phase and a fluid phase, together constituting the tissue microenvironment. Here we focus on the interstitial fluid phase of tumors, i.e., the fluid bathing the tumor and stromal cells. Novel knowledge on this compartment may provide important insight into how tumors develop and how they respond to therapy. Results We discuss available techniques for interstitial fluid isolation and implications of recent findings with respect to transcapillary fluid balance and uptake of macromolecular therapeutic agents. By the development of new methods it is emerging that local gradients exist in signaling substances from neoplastic tissue to plasma. Such gradients may provide new insight into the biology of tumors and mechanistic aspects linked to therapy. The emergence of sensitive proteomic technologies has made the interstitial fluid compartment in general and that of tumors in particular a highly valuable source for tissue-specific proteins that may serve as biomarker candidates. Potential biomarkers will appear locally at high concentrations in the tissue of interest and will eventually appear in the plasma, where they are diluted. Conclusions Access to fluid that reliably reflects the local microenvironment enables us to identify substances that can be used in early detection and monitoring of disease.
Collapse
|
50
|
Isserlin R, Merico D, Alikhani-Koupaei R, Gramolini A, Bader GD, Emili A. Pathway analysis of dilated cardiomyopathy using global proteomic profiling and enrichment maps. Proteomics 2010; 10:1316-27. [PMID: 20127684 PMCID: PMC2879143 DOI: 10.1002/pmic.200900412] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Global protein expression profiling can potentially uncover perturbations associated with common forms of heart disease. We have used shotgun MS/MS to monitor the state of biological systems in cardiac tissue correlating with disease onset, cardiac insufficiency and progression to heart failure in a time-course mouse model of dilated cardiomyopathy. However, interpreting the functional significance of the hundreds of differentially expressed proteins has been challenging. Here, we utilize improved enrichment statistical methods and an extensive collection of functionally related gene sets, gaining a more comprehensive understanding of the progressive alterations associated with functional decline in dilated cardiomyopathy. We visualize the enrichment results as an Enrichment Map, where significant gene sets are grouped based on annotation similarity. This approach vastly simplifies the interpretation of the large number of enriched gene sets found. For pathways of specific interest, such as Apoptosis and the MAPK (mitogen-activated protein kinase) cascade, we performed a more detailed analysis of the underlying signaling network, including experimental validation of expression patterns.
Collapse
Affiliation(s)
- Ruth Isserlin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|