1
|
Ajayi DT, Teepoo S. A nanosilica-coated thread-based analytical device for nitrate and nitrite detection in food samples. Talanta 2024; 279:126582. [PMID: 39053357 DOI: 10.1016/j.talanta.2024.126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
A new microfluidic thread-based analytical device (μTAD) for nitrate and nitrite determination in food samples was developed. The cotton thread substrate was coated with nanosilica to increase its hydrophilicity and stability, and polylactic acid was applied to one end of the nanosilica-coated thread to constrain the fluid flow along the thread in one direction. Quantification of nitrate and nitrite was based on the modified Griess reaction, using sulfanilamide and N-(1-naphthyl) ethylenediamine as chromogenic reagents, and utilizing a distance-based detection technique. Linear responses were observed in a range of 4-25 mg L-1 (R2 = 0.9991) for nitrite and a range of 8-50 mg L-1 (R2 = 0.9989) for nitrate. The limits of detection for nitrite and nitrate were 1.5 and 3.1 mg L-1, respectively. The detection time was 5 min for nitrite analysis, and 7 min for nitrate analysis. The new method demonstrated good precision, accuracy, selectivity, and stability. The performance of the proposed μTAD for nitrite and nitrate determination in real food samples was comparable to that of the conventional UV-Vis spectrophotometric method. The proposed μTAD could serve as a simple, low-cost, and portable method for nitrite and nitrate detection in food samples.
Collapse
Affiliation(s)
- David Taiwo Ajayi
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, 12110, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, 12110, Thailand.
| |
Collapse
|
2
|
Distefano A, Orlando L, Partsinevelos K, Longhitano L, Emma R, Caruso M, Vicario N, Denaro S, Sun A, Giordano A, Tomasello B, Alanazi AM, Li Volti G, Amorini AM. Comparative evaluation of cigarette smoke and a heated tobacco product on microglial toxicity, oxidative stress and inflammatory response. J Transl Med 2024; 22:876. [PMID: 39350202 PMCID: PMC11440907 DOI: 10.1186/s12967-024-05688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Tobacco smoking is the leading cause of preventable death and disease worldwide, with over 8 million annual deaths attributed to cigarette smoking. This study investigates the impact of cigarette smoke and heated tobacco products (HTPs) on microglial function, focusing on toxicological profiles, inflammatory responses, and oxidative stress using ISO standard and clinically relevant conditions of exposure. METHODS We assessed cell viability, reactive oxygen species (ROS) production, lipid peroxidation, mitochondrial function, unfolded protein response, and inflammation in human microglial cells (HMC3) exposed to cigarette smoke, HTP aerosol or nicotine. RESULTS Our findings show that cigarette smoke significantly reduces microglial viability, increases ROS formation, induces lipid peroxidation, and reduces intracellular glutathione levels. Cigarette smoke also alters the expression of genes involved in mitochondrial dynamics and biogenesis, leading to mitochondrial dysfunction. Additionally, cigarette smoke impairs the unfolded protein response, activates the NF-κB pathway, and induces a pro-inflammatory state characterized by increased TNF and IL-18 expression. Furthermore, cigarette smoke causes DNA damage and decreases the expression of the aging marker Klotho β. In contrast, HTP, exhibited a lesser degree of microglial toxicity, with reduced ROS production, lipid peroxidation, and mitochondrial dysfunction compared to conventional cigarettes. CONCLUSION These results highlight the differential toxicological profile of cigarette smoke and HTP on microglial cells, suggesting a potential harm reduction strategy for neurodegenerative disease for smokers unwilling or unable to quit.
Collapse
Affiliation(s)
- Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Konstantinos Partsinevelos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Rosalia Emma
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 89, Catania, 95123, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| | - Ang Sun
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Barbara Tomasello
- Department of Drug and Health Science, Section of Biochemistry, University of Catania, Catania, 95125, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy.
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 97, Catania, 95123, Italy.
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, Catania, 95123, Italy
| |
Collapse
|
3
|
Manica D, da Silva GB, de Lima J, Cassol J, Dallagnol P, Narzetti RA, Moreno M, Bagatini MD. Caffeine reduces viability, induces apoptosis, inhibits migration and modulates the CD39/CD73 axis in metastatic cutaneous melanoma cells. Purinergic Signal 2024; 20:385-397. [PMID: 37768408 PMCID: PMC11303616 DOI: 10.1007/s11302-023-09967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
We aimed to evaluate the effect of caffeine on viability, apoptosis, migration, redox profile and modulatory effect of the purinergic system of cutaneous melanoma cells. The melanoma cells SK-MEL-28 and non-tumoural CCD-1059sk cells were treated for 24 h with different concentrations of caffeine. Cell viability was evaluated by a biochemical assay and fluorescence microscopy, and flow cytometry assessed apoptosis induction. A wound-healing assay assessed cell migration. The redox profile was evaluated by the levels of markers of reactive oxygen species (ROS), nitric oxide (NOx), total thiols (PSH) and non-protein thiols (NPSH). RT-qPCR and flow cytometry assessed the expression of CD39 and CD73. ATPase/ADPase and AMPase enzyme activities were evaluated by hydrolysis of ATP, ADP and AMP nucleotides. A bioluminescent assay assessed extracellular ATP levels. Caffeine significantly reduced melanoma cell viability and migration and did not affect non-tumoural cells. Caffeine increased ROS levels and improved PSH levels in melanoma cells. Furthermore, caffeine reduced CD39 and CD73 expression, decreased ATP, ADP and AMP nucleotide hydrolysis and increased extracellular ATP levels. We have shown that caffeine reduces metastatic cutaneous melanoma cell viability and migration, induces ROS generation and improves PSH levels. In an unprecedented manner, we also showed that caffeine reduces the expression of CD39 and CD73 and, consequently, ATPase/ADPase/AMPase hydrolytic activity of ectonucleotidases, thus displacing the CD39/CD73 axis and increasing extracellular ATP levels. Therefore, caffeine may be an interesting compound for clinical trials with the CD39/CD73 axis as a therapeutic target.
Collapse
Affiliation(s)
- Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Jussara de Lima
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Joana Cassol
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Paula Dallagnol
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Rafael Antônio Narzetti
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Marcelo Moreno
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
4
|
Albano GD, La Spina C, Buscemi R, Palmeri M, Malandrino G, Licciardello F, Midiri M, Argo A, Zerbo S. RETRACTED: Systematic Review of Fatal Sodium Nitrite Ingestion Cases: Toxicological and Forensic Implications. TOXICS 2024; 12:124. [PMID: 38393219 PMCID: PMC10892969 DOI: 10.3390/toxics12020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Documented cases of sodium nitrite toxicity are almost exclusively caused by accidental ingestion; however, self-poisoning with sodium nitrite represents an increasing trend in nitrate-related deaths. This systematic review summarizes the most crucial evidence regarding the fatal toxicity of sodium nitrite. It identifies gaps and differences in the diagnostic forensic approaches and the detection methods of sodium nitrite intoxication. A total of eleven research articles were selected for qualitative and quantitative data. Most of the studies (6/11) were case reports. Fifty-three cases of fatal intoxication with sodium nitrite were chosen for the review. More research is required to develop cost-effective techniques and uniform cutoffs for blood nitrite and nitrate levels in the event of deadly sodium nitrite poisoning. There is still a lack of critical information on other matrices and the impact of time since death on toxicological results in such situations. The available evidence provides useful recommendations for forensic pathologists and health practitioners engaged in instances of sodium nitrite poisoning or death. The data should also set off alarm bells in the public health system, in prosecutor's offices, and for policymakers so that they may undertake preventative measures to stop and restrict the unregulated market for these substances.
Collapse
Affiliation(s)
- Giuseppe Davide Albano
- Section of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy; (C.L.S.); (R.B.); (M.P.); (G.M.); (F.L.); (A.A.); (S.Z.)
| | | | | | | | | | | | - Mauro Midiri
- Section of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy; (C.L.S.); (R.B.); (M.P.); (G.M.); (F.L.); (A.A.); (S.Z.)
| | | | | |
Collapse
|
5
|
Salomone F, Pipitone RM, Longo M, Malvestiti F, Amorini AM, Distefano A, Casirati E, Ciociola E, Iraci N, Leggio L, Zito R, Vicario N, Saoca C, Pennisi G, Cabibi D, Lazzarino G, Fracanzani AL, Dongiovanni P, Valenti L, Petta S, Volti GL, Grimaudo S. SIRT5 rs12216101 T>G variant is associated with liver damage and mitochondrial dysfunction in patients with non-alcoholic fatty liver disease. J Hepatol 2024; 80:10-19. [PMID: 37890719 DOI: 10.1016/j.jhep.2023.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND & AIMS Sirtuin 5, encoded by the SIRT5 gene, is a NAD+-dependent deacylase that modulates mitochondrial metabolic processes through post-translational modifications. In this study, we aimed to examine the impact of the SIRT5 rs12216101 T>G non-coding single nucleotide polymorphism on disease severity in patients with non-alcoholic fatty liver disease (NAFLD). METHODS The rs12216101 variant was genotyped in 2,606 consecutive European patients with biopsy-proven NAFLD. Transcriptomic analysis, expression of mitochondrial complexes and oxidative stress levels were measured in liver samples from a subset of bariatric patients. Effects of SIRT5 pharmacological inhibition were evaluated in HepG2 cells exposed to excess free fatty acids. Mitochondrial energetics in vitro were investigated by high-performance liquid chromatography. RESULTS In the whole cohort, the frequency distribution of SIRT5 rs12216101 TT, TG and GG genotypes was 47.0%, 42.3% and 10.7%, respectively. At multivariate logistic regression analysis adjusted for sex, age >50 years, diabetes, and PNPLA3 rs738409 status, the SIRT5 rs12216101 T>G variant was associated with the presence of non-alcoholic steatohepatitis (odds ratio 1.20, 95% CI 1.03-1.40) and F2-F4 fibrosis (odds ratio 1.18; 95% CI 1.00-1.37). Transcriptomic analysis showed that the SIRT5 rs12216101 T>G variant was associated with upregulation of transcripts involved in mitochondrial metabolic pathways, including the oxidative phosphorylation system. In patients carrying the G allele, western blot analysis confirmed an upregulation of oxidative phosphorylation complexes III, IV, V and consistently higher levels of reactive oxygen species, reactive nitrogen species and malondialdehyde, and lower ATP levels. Administration of a pharmacological SIRT5 inhibitor preserved mitochondrial energetic homeostasis in HepG2 cells, as evidenced by restored ATP/ADP, NAD+/NADH, NADP+/NADPH ratios and glutathione levels. CONCLUSIONS The SIRT5 rs12216101 T>G variant, heightening SIRT5 activity, is associated with liver damage, mitochondrial dysfunction, and oxidative stress in patients with NAFLD. IMPACT AND IMPLICATIONS In this study we discovered that the SIRT5 rs12216101 T>G variant is associated with higher disease severity in patients with non-alcoholic fatty liver disease (NAFLD). This risk variant leads to a SIRT5 gain-of-function, enhancing mitochondrial oxidative phosphorylation and thus leading to oxidative stress. SIRT5 may represent a novel disease modulator in NAFLD.
Collapse
Affiliation(s)
- Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, Catania, Italy.
| | | | - Miriam Longo
- Medicine & Metabolic Diseases, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Alfio Distefano
- Deparment of Clinical and Molecular Medicine, University of Gothenburg, Sweden
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ester Ciociola
- Deparment of Clinical and Molecular Medicine, University of Gothenburg, Sweden
| | - Nunzio Iraci
- Department BIOMETEC, University of Catania, Catania, Italy
| | | | - Rossella Zito
- Department PROMISE, University of Palermo, Palermo, Italy
| | - Nunzio Vicario
- Department BIOMETEC, University of Catania, Catania, Italy
| | - Concetta Saoca
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Grazia Pennisi
- Department PROMISE, University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Department PROMISE, University of Palermo, Palermo, Italy
| | | | - Anna Ludovica Fracanzani
- Medicine & Metabolic Diseases, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paola Dongiovanni
- Medicine & Metabolic Diseases, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
6
|
Manica D, Silva GBD, Silva APD, Marafon F, Maciel SFVDO, Bagatini MD, Moreno M. Curcumin promotes apoptosis of human melanoma cells by caspase 3. Cell Biochem Funct 2023; 41:1295-1304. [PMID: 37792322 DOI: 10.1002/cbf.3863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
Cutaneous melanoma (CM) is a malignant neoplasm with a high metastatic rate that shows poor response to systemic treatments in patients with advanced stages. Recently, studies have highlighted the antineoplastic potential of natural compounds, such as polyphenols, in the adjuvant therapy context to treat CM. The objective of the present study was to evaluate the effect of different concentrations of curcumin (0.1-100 µM) on the metastatic CM cell line SK-MEL-28. The cells were treated for 6 and 24 h with different concentrations of curcumin. Cell viability was assessed by 3-(4,5-dimethyl-2thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and fluorescence microscopy. The apoptotic-inducing potential was detected by annexin V flow cytometry. The wound healing assay was used to verify cell migration after the curcumin exposition. The redox profile was evaluated by levels of the pro-oxidant markers reactive oxygen species (ROS) and Nitric oxide (NOx) and antioxidants of total thiols (PSH) and nonprotein thiols. The gene expression and enzymatic activity of caspase 3 were evaluated by reverse transcription-quantitative polymerase chain reaction and a sensitive fluorescence assay, respectively. Curcumin significantly decreased the cell viability of SK-MEL-28 cells at both exposure times. It also induced apoptosis at the highest concentration tested (p < .0001). SK-MEL-28 cell migration was inhibited by curcumin after treatment with 10 µM (p < .0001) and 100 µM (p < .0001) for 6 and 24 h (p = .0006 and p < .0001, respectively). Furthermore, curcumin significantly increased levels of ROS and NOx. Finally, curcumin was capable of increasing the gene expression at 10 µM (p = .0344) and 100 µM (p = .0067) and enzymatic activity at 10 µM (p = .0086) and 100 µM (p < .0001) of caspase 3 after 24 h. For the first time, we elucidated in our study that curcumin increases ROS levels, promoting oxidative stress that activates the caspase pathway and culminates in SK-MEL-28 metastatic CM cell death.
Collapse
Affiliation(s)
- Daiane Manica
- Postgraduate Programme in Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Programme in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, Santa Catarina, Brazil
| | - Alana Patrícia da Silva
- Postgraduate Programme in Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Filomena Marafon
- Postgraduate Programme in Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Margarete Dulce Bagatini
- Postgraduate Programme in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Marcelo Moreno
- Postgraduate Programme in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| |
Collapse
|
7
|
Severo JS, da Silva Barros VJ, Moraes Mendes PH, Dos Santos BLB, da Silva ACA, de Oliveira KBV, de Moura MSB, de Almeida Fonseca Viola PC, do Nascimento Nogueira N, Luz Parente JM, Lima MM, Dos Santos AA, Silva MTB. Phase angle values and ultra-processed food consumption are associated with changes in oxidative stress in inflammatory bowel disease patients. Clin Nutr ESPEN 2023; 57:10-20. [PMID: 37739643 DOI: 10.1016/j.clnesp.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 06/07/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS Changes in dietary habits including increased intake of refined sugars and fats and decreased intake of fiber have been suggested as potential risk factors for the development of inflammatory bowel diseases (IBD). Bioelectrical impedance analysis-derived phase angle (PhA) has been gaining attention in the clinical evaluation of nutritional status. In this study, we for the first time investigated the relationship of PhA and ultra-processed food intake with oxidative stress, body composition and biochemical parameters in adult patients with IBD. METHODS Body composition and PhA were evaluated through electrical bioimpedance. Nitrite (Nox), myeloperoxidase (MPO), glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined in both groups. Food consumption was obtained by a food frequency questionnaire (FFQ). RESULTS In comparison with the control group, the IBD group had increased (p < 0.05) concentrations of Nox (19.95 ± 1.4 vs. 35.43 ± 7.7 μM), MDA (0.70 ± 0.31 vs. 4.56 ± 0.62 nmol/L), and GSH (9.35 ± 0.38 vs. 10.74 ± 0.51 mg NPSH/μL plasma). PhA was positively correlated with GSH (R2:0.22; p:0.02) and SOD (R2:0.25; p:0.01). IBD patients ingested higher amounts of ultra-processed foods (IBD:17.04 ± 2.76 vs. Control:24.88 ± 2.30%). However, IBD patients had better consumption of unprocessed or minimally processed foods (IBD:79.06 ± 3.07 vs. Control:67.83 ± 2.32%). We found a positive correlation between ultra-processed food consumption and MDA (R2 0.43; p:0.01). CONCLUSIONS PhA may be a practical and effective measure in clinical follow-up of IBD patients, being associated with bilirubin levels and antioxidant enzymes. Also, we recommend evaluating consumption of ultra-processed foods, since this was related with increasing oxidative stress markers in clinical follow-up of IBD patients.
Collapse
Affiliation(s)
- Juliana Soares Severo
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Pedro Henrique Moraes Mendes
- Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil
| | - Brenda Lois Barros Dos Santos
- Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil
| | - Alda Cássia Alves da Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil
| | - Kelly Beatriz Vieira de Oliveira
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | | | | | - Murilo Moura Lima
- University Hospital, Federal University of Piauí, Teresina, PI, Brazil
| | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Moisés Tolentino Bento Silva
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil; Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Exercise and Gastrointestinal Tract, Department of Physical Education, Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Physiology, Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences, Institute of Biomedical Sciences Abel Salazar - ICBAS, Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Tusiewicz K, Kuropka P, Workiewicz E, Wachełko O, Szpot P, Zawadzki M. Nitrites: An Old Poison or a Current Hazard? Epidemiology of Intoxications Covering the Last 100 Years and Evaluation of Analytical Methods. TOXICS 2023; 11:832. [PMID: 37888684 PMCID: PMC10611400 DOI: 10.3390/toxics11100832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
In recent times, there has been a concerning and noteworthy rise in the global use of sodium nitrite for suicidal purposes. This is facilitated either through the employment of specialized "suicide kits" or by acquiring sodium nitrite through alternative means. Additionally, another occurrence contributing to nitrite poisoning is the recreational utilization of nitrites in the form of volatile aliphatic esters of nitrous acid, commonly referred to as "poppers". Based on current available papers and reports on the subject of nitrates, nitrites, and poppers intoxications, an epidemiological analysis and evaluation of analytical methods were performed. A total of 128 papers, documenting a collective count of 492 intoxication cases, were identified. Additionally, in order to complete the epidemiological profile of nitrite poisoning, the authors briefly examined six cases of nitrite intoxication that were under investigation in our laboratory. Furthermore, a review of nitrite poisoning cases over the past 100 years shows that the old poison is still in use and poses a substantial risk to society.
Collapse
Affiliation(s)
- Kaja Tusiewicz
- Department of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza-Radeckiego Street, 50345 Wroclaw, Poland; (K.T.); (P.S.)
| | - Patryk Kuropka
- Institute of Toxicology Research, 45 Kasztanowa Street, 55093 Borowa, Poland; (P.K.); (E.W.)
| | - Elżbieta Workiewicz
- Institute of Toxicology Research, 45 Kasztanowa Street, 55093 Borowa, Poland; (P.K.); (E.W.)
| | - Olga Wachełko
- Institute of Toxicology Research, 45 Kasztanowa Street, 55093 Borowa, Poland; (P.K.); (E.W.)
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza-Radeckiego Street, 50345 Wroclaw, Poland; (K.T.); (P.S.)
| | - Marcin Zawadzki
- Faculty of Medicine, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego Street, 50370 Wroclaw, Poland
| |
Collapse
|
9
|
Chen Q, Chen J, Li J, Cheng Y, Zhang R, Liu Z. Recent advances of oxidative stress in thromboangiitis obliterans: biomolecular mechanisms, biomarkers, sources and clinical applications. Thromb Res 2023; 230:64-73. [PMID: 37639784 DOI: 10.1016/j.thromres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Oxidative stress (OS) has been identified as a key factor in the development of Thromboangiitis Obliterans (TAO). The detection of OS levels in clinical and scientific research practice is mainly based on the measurement of oxidative stress such as reactive oxygen species (ROS), reactive nitrogen species (RNS) and lipid peroxides. These markers are typically assessed through a combination of physical and chemical methods. Smoking is known to the state of OS in TAO, and OS levels are significantly increased in smokers due to inadequate antioxidant protection, which leads to the expression of apoptotic proteins and subsequent cell injury, thrombosis and limb ischemia. There, understanding the role of OS in the pathogenesis of TAO may provide insights into the etiology of TAO and a basis for its prevention and treatment.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jiahua Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Longhitano L, Distefano A, Amorini AM, Orlando L, Giallongo S, Tibullo D, Lazzarino G, Nicolosi A, Alanazi AM, Saoca C, Macaione V, Aguennouz M, Salomone F, Tropea E, Barbagallo IA, Volti GL, Lazzarino G. (+)-Lipoic Acid Reduces Lipotoxicity and Regulates Mitochondrial Homeostasis and Energy Balance in an In Vitro Model of Liver Steatosis. Int J Mol Sci 2023; 24:14491. [PMID: 37833939 PMCID: PMC10572323 DOI: 10.3390/ijms241914491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids within hepatocytes, which compromises liver functionality following mitochondrial dysfunction and increased production of reactive oxygen species (ROS). Lipoic acid is one of the prosthetic groups of the pyruvate dehydrogenase complex also known for its ability to confer protection from oxidative damage because of its antioxidant properties. In this study, we aimed to investigate the effects of lipoic acid on lipotoxicity and mitochondrial dynamics in an in vitro model of liver steatosis. HepG2 cells were treated with palmitic acid and oleic acid (1:2) to induce steatosis, without and with 1 and 5 µM lipoic acid. Following treatments, cell proliferation and lipid droplets accumulation were evaluated. Mitochondrial functions were assessed through the evaluation of membrane potential, MitoTracker Red staining, expression of genes of the mitochondrial quality control, and analysis of energy metabolism by HPLC and Seahorse. We showed that lipoic acid treatment restored membrane potential to values comparable to control cells, as well as protected cells from mitochondrial fragmentation following PA:OA treatment. Furthermore, our data showed that lipoic acid was able to determine an increase in the expression of mitochondrial fusion genes and a decrease in mitochondrial fission genes, as well as to restore the bioenergetics of cells after treatment with palmitic acid and oleic acid. In conclusion, our data suggest that lipoic acid reduces lipotoxicity and improves mitochondrial functions in an in vitro model of steatosis, thus providing a potentially valuable pharmacological tool for NAFLD treatment.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Anna Nicolosi
- Hospital Pharmacy Unit, Ospedale Cannizzaro, 95125 Catania, Italy;
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Concetta Saoca
- Department Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.S.); (V.M.); (M.A.)
| | - Vincenzo Macaione
- Department Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.S.); (V.M.); (M.A.)
| | - M’hammed Aguennouz
- Department Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.S.); (V.M.); (M.A.)
| | - Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, 95024 Catania, Italy;
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Ignazio Alberto Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (A.D.); (A.M.A.); (L.O.); (S.G.); (D.T.); (G.L.); (E.T.); (I.A.B.)
| | - Giacomo Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| |
Collapse
|
11
|
da Silva GB, Manica D, da Silva AP, Marafon F, Moreno M, Bagatini MD. Rosmarinic acid decreases viability, inhibits migration and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cells. Chem Biol Interact 2023; 375:110427. [PMID: 36863647 DOI: 10.1016/j.cbi.2023.110427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Cutaneous melanoma is the most aggressive type of skin cancer; it is difficult to treat, and has been highlighted in recent years due to increasing numbers of cases worldwide. The use of antitumoral therapeutics for this neoplasm has been associated with severe side effects, low quality of life, and resistance. We aimed in this study to explore the effect of the phenolic compound rosmarinic acid (RA) on human metastatic melanoma cells. SK-MEL-28 melanoma cells were treated for 24 h with different concentrations of RA. In parallel, peripheral blood mononuclear cells (PBMCs) also were treated with RA under the same experimental conditions to verify the cytotoxic effect on non-tumoral cells. Then, we assessed cell viability and migration, levels of intracellular and extracellular reactive oxygen species (ROS), as well as nitric oxide (NOx), non-protein thiols (NPSH), and total thiol (PSH). Gene expression of the caspase 8, caspase 3 and NLRP3 inflammasome was evaluated by RT-qPCR. The enzymatic activity of the caspase 3 protein was assessed by a sensitive fluorescent assay. Fluorescence microscopy was employed to corroborate the effects of RA on melanoma cell viability, mitochondria transmembrane potential and apoptotic bodies formation. We found that RA potently reduces melanoma cell viability and migration after 24 h of treatment. On the other hand, it has no cytotoxic effect on non-tumoral cells. The fluorescence micrographics indicated that RA reduces transmembrane potential of mitochondria and induces apoptotic bodies formation. Moreover, RA significantly decreases intracellular and extracellular ROS levels, and increases the antioxidant defenders NPSH and PSH. A remarkable feature found in our study was that RA strongly upregulates the gene expression of the caspase 8 and caspase 3, and downregulates NLRP3 inflammasome expression. Similar to gene expression, RA greatly increases the enzymatic activity of caspase 3 protein. Taken together, we have shown for the first time that RA reduces cell viability and migration of human metastatic melanoma cells, in addition to modulates apoptosis-related gene expression. We suggest that RA may have the potential to be used in a therapeutic perspective, particularly for CM cell treatment.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Daiane Manica
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Alana Patrícia da Silva
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Filomena Marafon
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Marcelo Moreno
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
12
|
Privitera A, Cardaci V, Weerasekara D, Saab MW, Diolosà L, Fidilio A, Jolivet RB, Lazzarino G, Amorini AM, Camarda M, Lunte SM, Caraci F, Caruso G. Microfluidic/HPLC combination to study carnosine protective activity on challenged human microglia: Focus on oxidative stress and energy metabolism. Front Pharmacol 2023; 14:1161794. [PMID: 37063279 PMCID: PMC10095171 DOI: 10.3389/fphar.2023.1161794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide possesses well-demonstrated antioxidant, anti-inflammatory, and anti-aggregation properties, and it may be useful for treatment of pathologies characterized by oxidative stress and energy unbalance such as depression and Alzheimer's disease (AD). Microglia, the brain-resident macrophages, are involved in different physiological brain activities such synaptic plasticity and neurogenesis, but their dysregulation has been linked to the pathogenesis of numerous diseases. In AD brain, the activation of microglia towards a pro-oxidant and pro-inflammatory phenotype has found in an early phase of cognitive decline, reason why new pharmacological targets related to microglia activation are of great importance to develop innovative therapeutic strategies. In particular, microglia represent a common model of lipopolysaccharides (LPS)-induced activation to identify novel pharmacological targets for depression and AD and numerous studies have linked the impairment of energy metabolism, including ATP dyshomeostasis, to the onset of depressive episodes. In the present study, we first investigated the toxic potential of LPS + ATP in the absence or presence of carnosine. Our studies were carried out on human microglia (HMC3 cell line) in which LPS + ATP combination has shown the ability to promote cell death, oxidative stress, and inflammation. Additionally, to shed more light on the molecular mechanisms underlying the protective effect of carnosine, its ability to modulate reactive oxygen species production and the variation of parameters representative of cellular energy metabolism was evaluated by microchip electrophoresis coupled to laser-induced fluorescence and high performance liquid chromatography, respectively. In our experimental conditions, carnosine prevented LPS + ATP-induced cell death and oxidative stress, also completely restoring basal energy metabolism in human HMC3 microglia. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of multifactorial disorders characterize by neuroinflammatory phenomena including depression and AD.
Collapse
Affiliation(s)
- Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milano, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Dhanushka Weerasekara
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lidia Diolosà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renaud Blaise Jolivet
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Susan Marie Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Chemistry, University of Kansas, Lawrence, KS, United States
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
13
|
Witthohn M, Schmidt AK, Strieth D, Ulber R, Muffler K. A modified method for a fast and economic determination of nitrate concentrations in microalgal cultures. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Ethylferulate-loaded nanoemulsions as a novel anti-inflammatory approach for topical application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Lucas SB, Duarte LM, Rezende KCA, Coltro WKT. Nitrite Determination in Environmental Water Samples Using Microchip Electrophoresis Coupled with Amperometric Detection. MICROMACHINES 2022; 13:1736. [PMID: 36296090 PMCID: PMC9610075 DOI: 10.3390/mi13101736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Nitrite is considered an important target analyte for environmental monitoring. In water resources, nitrite is the result of the nitrogen cycle and the leaching processes of pesticides based on nitrogenous compounds. A high concentration of nitrite can be associated with intoxication processes and metabolic disorders in humans. The present study describes the development of a portable analytical methodology based on microchip electrophoresis coupled with amperometric detection for the determination of nitrite in environmental water samples. Electrophoretic and detection conditions were optimized, and the best separations were achieved within 60 s by employing a mixture of 30 mmol L-1 lactic acid and 15 mmol L-1 histidine (pH = 3.8) as a running buffer applying 0.7 V to the working electrode (versus Pt) for amperometric measurements. The developed methodology revealed a satisfactory linear behavior in the concentration range between 20 and 80 μmolL-1 (R2 = 0.999) with a limit of detection of 1.3 μmolL-1. The nitrite concentration was determined in five water samples and the achieved values ranged from (28.7 ± 1.6) to (67.1 ± 0.5) µmol L-1. The data showed that using the proposed methodology revealed satisfactory recovery values (83.5-103.8%) and is in good agreement with the reference technique. Due to its low sample consumption, portability potential, high analytical frequency, and instrumental simplicity, the developed methodology may be considered a promising strategy to monitor and quantitatively determine nitrite in environmental samples.
Collapse
Affiliation(s)
| | - Lucas Mattos Duarte
- Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- Instituto de Química, Departamento de Química Analítica, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil
| | | | - Wendell Karlos Tomazelli Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Campinas 13083-861, SP, Brazil
| |
Collapse
|
16
|
Longhitano L, Distefano A, Murabito P, Astuto M, Nicolosi A, Buscema G, Sanfilippo F, Lazzarino G, Amorini AM, Bruni A, Garofalo E, Tibullo D, Volti GL. Propofol and α2-Agonists Attenuate Microglia Activation and Restore Mitochondrial Function in an In Vitro Model of Microglia Hypoxia/Reoxygenation. Antioxidants (Basel) 2022; 11:antiox11091682. [PMID: 36139756 PMCID: PMC9495359 DOI: 10.3390/antiox11091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular ischemia is a common clinical disease encompassing a series of complex pathophysiological processes in which oxidative stress plays a major role. The present study aimed to evaluate the effects of Dexmedetomidine, Clonidine, and Propofol in a model of hypoxia/reoxygenation injury. Microglial cells were exposed to 1%hypoxia for 3 h and reoxygenated for 3 h, and oxidative stress was measured by ROS formation and the expression of inflammatory process genes. Mitochondrial dysfunction was assessed by membrane potential maintenance and the levels of various metabolites involved in energetic metabolism. The results showed that Propofol and α2-agonists attenuate the formation of ROS during hypoxia and after reoxygenation. Furthermore, the α2-agonists treatment restored membrane potential to values comparable to the normoxic control and were both more effective than Propofol. At the same time, Propofol, but not α2-agonists, reduces proliferation (Untreated Hypoxia = 1.16 ± 0.2, Untreated 3 h Reoxygenation = 1.28 ± 0.01 vs. Propofol hypoxia = 1.01 ± 0.01 vs. Propofol 3 h Reoxygenation = 1.12 ± 0.03) and microglial migration. Interestingly, all of the treatments reduced inflammatory gene and protein expressions and restored energy metabolism following hypoxia/reoxygenation (ATP content in hypoxia/reoxygenation 3 h: Untreated = 3.11 ± 0.8 vs. Propofol = 7.03 ± 0.4 vs. Dexmedetomidine = 5.44 ± 0.8 vs. Clonidine = 7.70 ± 0.1), showing that the drugs resulted in a different neuroprotective profile. In conclusion, our results may provide clinically relevant insights for neuroprotective strategies in intensive care units.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Paolo Murabito
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Marinella Astuto
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Anna Nicolosi
- Azienda Ospedaliera “Cannizzaro”, Via Messina 628, 95126 Catania, Italy
| | - Giovanni Buscema
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Filippo Sanfilippo
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Andrea Bruni
- Anesthesia and Intesive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Grecia University, 88100 Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intesive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Grecia University, 88100 Catanzaro, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
17
|
Kawamura A, Uojima H, Chuma M, Shao X, Hidaka H, Nakazawa T, Take A, Sakaguchi Y, Numata K, Kako M, Nozaki A, Azuma S, Horio K, Kusano C, Atsuda K. The change rate in serum nitric oxide may affect lenvatinib therapy in hepatocellular carcinoma. BMC Cancer 2022; 22:912. [PMID: 35999529 PMCID: PMC9396897 DOI: 10.1186/s12885-022-10002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lenvatinib is appropriate for reducing the production of nitric oxide (NO) and facilitating as block angiogenesis. However, to our knowledge, there are no data that support the correlation between NO and clinical response in patients who received lenvatinib therapy for HCC. Therefore, we investigated the correlation between the change rate of NO levels and clinical responses including adverse events (AEs) after lenvatinib therapy for unresectable hepatocellular carcinoma (HCC). Methods This study was conducted using previously collected data from another study. We enrolled 70 patients who received lenvatinib for advanced or unresectable HCC. NO was measured by converting nitrate (NO3−) to nitrite (NO2−) with nitrate reductase, followed by quantitation of NO2− based on Griess reagent. To determine whether lenvatinib influences NO in unresectable HCC, we evaluated the influence of the change rate of NO from baseline after administration of lenvatinib on maximal therapeutic response and SAE. Results After lenvatinib administration, a change rate in the NO from 0.27 to 4.16 was observed. There was no difference between the clinical response to lenvatinib and the change rate of NO (p = 0.632). However, the change rate of NO was significantly lower in patients with AEs than in those without AEs (p = 0.030). When a reduction in NO rate of < 0.8 was defined as a clinically significant reduction of NO (CSRN), the CSRN group had significantly worse progression-free survival (PFS) and overall survival (OS) than the non-CSRN group (p = 0.029 and p = 0.005, respectively). Conclusion Decreased NO levels were associated with the occurrence of AEs and worse prognosis after lenvatinib administration. Change rate in serum NO can be used as predictive markers in patients receiving lenvatinib therapy for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10002-x.
Collapse
Affiliation(s)
- Atsushi Kawamura
- Department of Pharmacy, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan. .,Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.
| | - Makoto Chuma
- Department of Gastroenterology, Yokohama City University Hospital, Yokohama, Kanagawa, Japan.,Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Xue Shao
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Takahide Nakazawa
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan.,Nakazawa Internal Medicine Clinic, Sagamihara, Kanagawa, Japan
| | - Akira Take
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Makoto Kako
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Akito Nozaki
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Shintaro Azuma
- Department of Pharmacy, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Kazue Horio
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Chika Kusano
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Koichiro Atsuda
- Department of Pharmacy, Kitasato University Hospital, Sagamihara, Kanagawa, Japan.,School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo, Japan
| |
Collapse
|
18
|
Anti-Inflammatory and Antioxidant Effects of the Indole-Derived N-Salicyloyltryptamine on Peritonitis and Joint Disability Induced by Carrageenan in Rodents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5524107. [PMID: 35600961 PMCID: PMC9122668 DOI: 10.1155/2022/5524107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Purpose To investigate the anti-inflammatory and antioxidant activities of N-salicyloyltryptamine (NST) in experimental models of carrageenan (Cg)-induced peritonitis in mice, and evaluation of the effects of NST on Cg-induced joint disability in rats. Methods Female Swiss mice were submitted to Cg-induced peritonitis in mice or Cg-induced joint disability in rats after intraperitoneal injection of NST (100 or 200 mg/kg). Total leukocyte count, total protein concentration, myeloperoxidase (MPO) and catalase (CAT) activities, and nitrite (NO2−) and thiobarbituric acid reactive species (TBARS) levels were determined. Results NST significantly decrease the migration of leukocytes to peritoneal exudate. Cg induces inflammatory responses mediated by expression of reactive oxygen species (ROS). The results further showed that NST significantly decreased MPO and CAT activities, as well as reduced NO2− and TBARS levels, compared with the vehicle group. Animals treated with NST significantly reduced paw elevation time (PET) on the first hour after induction of joint injury, and this effect was sustained throughout the analysis. Conclusion NST presented anti-inflammatory and antioxidant effects in experimental models of carrageenan-induced peritonitis and joint disability in mice and rats, respectively, which may be related to the modulation of neutrophils migration as well as the involvement of antioxidant mechanisms.
Collapse
|
19
|
Tsiountsioura M, Cvirn G, Schlagenhauf A, Haidl H, Zischmeier K, Janschitz N, Koestenberger M, Wonisch W, Paar M, Wagner T, Weiss EC, Hallström S. The Antiplatelet Action of S-Nitroso Human Serum Albumin in Whole Blood. Biomedicines 2022; 10:biomedicines10030649. [PMID: 35327451 PMCID: PMC8945101 DOI: 10.3390/biomedicines10030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide donors (NO-donors) have been shown to have therapeutic potential (e.g., ischemia/reperfusion injury). However, due to their release rate/antiplatelet properties, they may cause bleeding in patients. We therefore studied the antiplatelet effects of the two different NO-donors, i.e., S-NO-Human Serum Albumin (S-NO-HSA) and Diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate) in whole blood (WB) samples. WB samples were spiked with S-NO-HSA or DEA-NONOate (100 µmol/L or 200 µmol/L), and the NO release rate (nitrite/nitrate levels via HPLC) and antiplatelet efficacy (impedance aggregometry, platelet function analyzer, Cone-and-platelet analyzer, thrombelastometry) were assessed. S-NO-HSA had a significantly lower NO release compared to equimolar concentrations of DEA-NONOate. Virtually no antiplatelet action of S-NO-HSA was observed in WB samples, whereas DEA-NONOate significantly attenuated platelet function in WB. Impedance aggregometry measurements revealed that Amplitudes (slope: −0.04022 ± 0.01045 ohm/µmol/L, p = 0.008) and Lag times (slope: 0.6389 ± 0.2075 s/µmol/L, p = 0.0051) were dose-dependently decreased and prolonged by DEA-NONOate. Closure times (Cone-and-platelet analyzer) were dose-dependently prolonged (slope: 0.3738 ± 0.1403 s/µmol/L, p = 0.0174 with collagen/ADP coating; slope: −0.5340 ± 0.1473 s/µmol/L, p = 0.0019 with collagen/epinephrine coating) by DEA-NONOate. These results in WB further support the pharmacological potential of S-NO-HSA as an NO-donor due to its ability to presumably prevent bleeding events even at high concentrations up to 200 µmol/L.
Collapse
Affiliation(s)
- Melina Tsiountsioura
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
| | - Gerhard Cvirn
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
- Correspondence: ; Tel.: +43-(0)316-385-72122
| | - Axel Schlagenhauf
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria; (A.S.); (H.H.); (M.K.)
| | - Harald Haidl
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria; (A.S.); (H.H.); (M.K.)
| | - Kathrin Zischmeier
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria; (K.Z.); (N.J.)
| | - Nicole Janschitz
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria; (K.Z.); (N.J.)
| | - Martin Koestenberger
- Division of General Paediatrics, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria; (A.S.); (H.H.); (M.K.)
| | - Willibald Wonisch
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
| | - Margret Paar
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
| | - Thomas Wagner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Eva-Christine Weiss
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (M.T.); (W.W.); (M.P.); (S.H.)
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Kim M, Kim S, Yang W, Sim J. Determination of Nitrite and Nitrate in Postmortem Whole Blood Samples of 10 Sodium Nitrite Poisoning Cases: The Importance of Nitrate in Determining Nitrite Poisoning. Forensic Sci Int 2022; 335:111279. [DOI: 10.1016/j.forsciint.2022.111279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022]
|
21
|
Gaikwad R, Thangaraj PR, Sen AK. Microfluidics-based rapid measurement of nitrite in human blood plasma. Analyst 2022; 147:3370-3382. [DOI: 10.1039/d2an00020b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report direct and rapid measurement of nitrite in human blood plasma using a fluorescence-based microfluidic method.
Collapse
Affiliation(s)
- R. Gaikwad
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - P. R. Thangaraj
- Department of Cardiothoracic Surgery, Apollo Hospital, Chennai, 600006, India
| | - A. K. Sen
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
22
|
Elfiky M, Salahuddin N. Advanced sensing platform for nanomolar detection of food preservative nitrite in sugar byproducts based on 3D mesoporous nanorods of montmorillonite/TiO2–ZnO hybrids. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Wang J, Mei F, Bai L, Zhou S, Liu D, Yao L, Ahluwalia A, Ghiladi RA, Su L, Shu T, Gong M, Wang X, Zhu L, Cai K, Zhang X. Serum nitrite and nitrate: A potential biomarker for post-covid-19 complications? Free Radic Biol Med 2021; 175:216-225. [PMID: 34474106 PMCID: PMC8404395 DOI: 10.1016/j.freeradbiomed.2021.08.237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) plays an important role in cardiovascular and immune systems. Quantification of blood nitrite and nitrate, two relatively stable metabolites of NO (generally as NOx), has been acknowledged, in part, representing NO bioactivity. Dysregulation of NOx had been reported in SARS-CoV-2 infected populations, but whether patients recovered from COVID-19 disease present with restored NOx is unknown. In this study, serum NO2- and NO3- were quantified and analyzed among 109 recovered adults in comparison to a control group of 166 uninfected adults. Nitrite or nitrate levels were not significantly different among mild-, common-, severe- and critical-type patients. However, these recovered patients had dramatically lower NO2- and NO2-/NO3- than the uninfected group (p < 0.0001), with significantly higher NO3- levels (p = 0.0023) than the uninfected group. Nitrate and nitrite/nitrate were positively and negatively correlated with patient age, respectively, with age 65 being a turning point among recovered patients. These results indicate that low NO2-, low NO2-/NO3- and high NO3- may be potential biomarkers of long-term poor or irreversible outcomes after SARS-CoV-2 infection. It suggests that NO metabolites might serve as a predictor to track the health status of recovered COVID-19 patients, highlighting the need to elucidate the role of NO after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jun Wang
- International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Fanghua Mei
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Lu Bai
- International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Suhua Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Di Liu
- International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Lulu Yao
- International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Amrita Ahluwalia
- Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, North Carolina, USA
| | - Lei Su
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Tong Shu
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Miaozi Gong
- Department of Pathology, Hong Kong University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaofang Wang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lijun Zhu
- Institute of Scientific and Technical Information of China, Beijing, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
24
|
Lazzarino G, Mangione R, Belli A, Di Pietro V, Nagy Z, Barnes NM, Bruce L, Ropero BM, Persson LI, Manca B, Saab MW, Amorini AM, Tavazzi B, Lazzarino G, Logan A. ILB ® Attenuates Clinical Symptoms and Serum Biomarkers of Oxidative/Nitrosative Stress and Mitochondrial Dysfunction in Patients with Amyotrophic Lateral Sclerosis. J Pers Med 2021; 11:794. [PMID: 34442438 PMCID: PMC8399678 DOI: 10.3390/jpm11080794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/22/2023] Open
Abstract
Oxidative/nitrosative stress and mitochondrial dysfunction is a hallmark of amyotrophic lateral sclerosis (ALS), an invariably fatal progressive neurodegenerative disease. Here, as an exploratory arm of a phase II clinical trial (EudraCT Number 2017-005065-47), we used high performance liquid chromatography(HPLC) to investigate changes in the metabolic profiles of serum from ALS patients treated weekly for 4 weeks with a repeated sub-cutaneous dose of 1 mg/kg of a proprietary low molecular weight dextran sulphate, called ILB®. A significant normalization of the serum levels of several key metabolites was observed over the treatment period, including N-acetylaspartate (NAA), oxypurines, biomarkers of oxidative/nitrosative stress and antioxidants. An improved serum metabolic profile was accompanied by significant amelioration of the patients' clinical conditions, indicating a response to ILB® treatment that appears to be mediated by improvement of tissue bioenergetics, decrease of oxidative/nitrosative stress and attenuation of (neuro)inflammatory processes.
Collapse
Affiliation(s)
- Giacomo Lazzarino
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Belli
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.B.); (V.D.P.); (Z.N.); (N.M.B.)
| | - Valentina Di Pietro
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.B.); (V.D.P.); (Z.N.); (N.M.B.)
| | - Zsuzsanna Nagy
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.B.); (V.D.P.); (Z.N.); (N.M.B.)
| | - Nicholas M. Barnes
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.B.); (V.D.P.); (Z.N.); (N.M.B.)
| | | | - Bernardo M. Ropero
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden; (B.M.R.); (L.I.P.)
| | - Lennart I. Persson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden; (B.M.R.); (L.I.P.)
| | - Benedetta Manca
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (M.W.S.); (A.M.A.)
| | - Angela M. Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (M.W.S.); (A.M.A.)
| | - Barbara Tavazzi
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (M.W.S.); (A.M.A.)
| | - Ann Logan
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Axolotl Consulting Ltd., Droitwich WR9 0JS, UK
| |
Collapse
|
25
|
Cialoni D, Brizzolari A, Samaja M, Bosco G, Paganini M, Sponsiello N, Lancellotti V, Marroni A. Endothelial Nitric Oxide Production and Antioxidant Response in Breath-Hold Diving: Genetic Predisposition or Environment Related? Front Physiol 2021; 12:692204. [PMID: 34305646 PMCID: PMC8300565 DOI: 10.3389/fphys.2021.692204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Nitric oxide (NO) is an essential signaling molecule modulating the endothelial adaptation during breath-hold diving (BH-diving). This study aimed to investigate changes in NO derivatives (NOx) and total antioxidant capacity (TAC), searching for correlations with different environmental and hyperbaric exposure. Materials and methods Blood samples were obtained from 50 breath-hold divers (BH-divers) before, and 30 and 60 min after the end of training sessions performed both in a swimming pool or the sea. Samples were tested for NOx and TAC differences in different groups related to their hyperbaric exposure, experience, and additional genetic polymorphism. Results We found statistically significant differences in NOx plasma concentration during the follow-up (decrease at T30 and increase at T60) compared with the pre-dive values. At T30, we found a significantly lower decrease of NOx in subjects with a higher diving experience, but no difference was detected between the swimming pool and Sea. No significant difference was found in TAC levels, as well as between NOx and TAC levels and the genetic variants. Conclusion These data showed how NO consumption in BH-diving is significantly lower in the expert group, indicating a possible training-related adaptation process. Data confirm a significant NO use during BH-diving, compatible with the well-known BH-diving related circulatory adaptation suggesting that the reduction in NOx 30 min after diving can be ascribed to the lower NO availability in the first few minutes after the dives. Expert BH-divers suffered higher oxidative stress. A preliminary genetic investigation seems to indicate a less significant influence of genetic predisposition.
Collapse
Affiliation(s)
- Danilo Cialoni
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, Università degli Studi di Padova, Padua, Italy.,DAN Europe Research Division, DAN Europe Foundation, Roseto degli Abruzzi, Italy.,Apnea Academy Research, Padua, Italy
| | - Andrea Brizzolari
- DAN Europe Research Division, DAN Europe Foundation, Roseto degli Abruzzi, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Michele Samaja
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gerardo Bosco
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, Università degli Studi di Padova, Padua, Italy
| | - Matteo Paganini
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, Università degli Studi di Padova, Padua, Italy
| | | | - Valentina Lancellotti
- Cardiothoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessandro Marroni
- DAN Europe Research Division, DAN Europe Foundation, Roseto degli Abruzzi, Italy
| |
Collapse
|
26
|
Staicu FD, Canha-Gouveia A, Soriano-Úbeda C, Martínez-Soto JC, Adoamnei E, Chavarro JE, Matás C. Nitrite and Nitrate Levels in Follicular Fluid From Human Oocyte Donors Are Related to Ovarian Response and Embryo Quality. Front Cell Dev Biol 2021; 9:647002. [PMID: 33937241 PMCID: PMC8079729 DOI: 10.3389/fcell.2021.647002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide, a key regulatory molecule in the follicular fluid, has been suggested as a possible biomarker to predict ovarian response in stimulated cycles and the potential of the retrieved oocytes for developing high-quality embryos. Nevertheless, a consensus on whether or not nitric oxide can help in this context has not been reached. We simultaneously measured the oxidation products of nitric oxide, nitrite, and nitrate, via high-performance liquid chromatography (HPLC)-UV in follicular fluid samples from 72 oocyte donors. We found no associations of follicular fluid nitrite, nitrate, total nitric oxide, or nitrate/nitrite ratio with total or metaphase II (MII) oocyte yield. However, nitrite and nitrate levels were related to the yield of MII oocytes when this outcome was expressed as a proportion of all oocytes retrieved. The adjusted MII proportion in the lowest and highest nitrite levels were 68% (58–77%) and 79% (70–85%), respectively (p, linear trend = 0.02), whereas the adjusted MII proportion in extreme tertiles of nitrate levels were 79% (70–85%) and 68% (57–77%) (p, linear trend = 0.03). In addition, nitrate levels showed a suggestive inverse correlation with embryos with maximum or high potential of implantation (p = 0.07). These results suggest that the follicular fluid concentrations of nitrite and nitrate may be a useful tool in predicting how healthy oocyte donors respond to superovulation and the implantation potential of the embryos produced from their oocytes.
Collapse
Affiliation(s)
- Florentin-Daniel Staicu
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Analuce Canha-Gouveia
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.,Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | | | - Evdochia Adoamnei
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.,Department of Nursing, School of Nursing, University of Murcia, Murcia, Spain
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
27
|
Caruso G, Fresta CG, Costantino A, Lazzarino G, Amorini AM, Lazzarino G, Tavazzi B, Lunte SM, Dhar P, Gulisano M, Caraci F. Lung Surfactant Decreases Biochemical Alterations and Oxidative Stress Induced by a Sub-Toxic Concentration of Carbon Nanoparticles in Alveolar Epithelial and Microglial Cells. Int J Mol Sci 2021; 22:2694. [PMID: 33800016 PMCID: PMC7962095 DOI: 10.3390/ijms22052694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Carbon-based nanomaterials are nowadays attracting lots of attention, in particular in the biomedical field, where they find a wide spectrum of applications, including, just to name a few, the drug delivery to specific tumor cells and the improvement of non-invasive imaging methods. Nanoparticles inhaled during breathing accumulate in the lung alveoli, where they interact and are covered with lung surfactants. We recently demonstrated that an apparently non-toxic concentration of engineered carbon nanodiamonds (ECNs) is able to induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Therefore, the complete understanding of their "real" biosafety, along with their possible combination with other molecules mimicking the in vivo milieu, possibly allowing the modulation of their side effects becomes of utmost importance. Based on the above, the focus of the present work was to investigate whether the cellular alterations induced by an apparently non-toxic concentration of ECNs could be counteracted by their incorporation into a synthetic lung surfactant (DPPC:POPG in 7:3 molar ratio). By using two different cell lines (alveolar (A549) and microglial (BV-2)), we were able to show that the presence of lung surfactant decreased the production of ECNs-induced nitric oxide, total reactive oxygen species, and malondialdehyde, as well as counteracted reduced glutathione depletion (A549 cells only), ameliorated cell energy status (ATP and total pool of nicotinic coenzymes), and improved mitochondrial phosphorylating capacity. Overall, our results on alveolar basal epithelial and microglial cell lines clearly depict the benefits coming from the incorporation of carbon nanoparticles into a lung surfactant (mimicking its in vivo lipid composition), creating the basis for the investigation of this combination in vivo.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Angela M. Amorini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Barbara Tavazzi
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Prajnaparamita Dhar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7576, USA
| | - Massimo Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Oasi Research Institute-IRCCS, 94018 Troina (EN), Italy
| |
Collapse
|
28
|
The shifted balance of arginine metabolites in acute myocardial infarction patients and its clinical relevance. Sci Rep 2021; 11:83. [PMID: 33420142 PMCID: PMC7794337 DOI: 10.1038/s41598-020-80230-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
The arginine metabolism as a target for cardioprotection in patients with ST-segment elevation myocardial infarction (STEMI) remains insufficiently understood. Arginine, ornithine, citrulline, asymmetric dimethylarginine (ADMA) and proline plasma levels were measured using liquid chromatography and tandem mass spectrometry in 70 consecutive STEMI patients upon admission and at 6-month follow-up and were compared with left ventricular function, volumes, and infarct characteristics determined by cardiac magnetic resonance imaging, and with 5-year clinical outcomes. Baseline median concentration of arginine was higher by 49% (P = 0.002) when compared to 6-month measurements and was correlated with an ischemia risk area (R = 0.34, P = 0.004) and infarct size (R = 0.33, P = 0.006). Following ischemia median citrulline/arginine index decreased when compared with 6-month result (P = 0.002), while citrulline/ornithine and arginine/ADMA ratios maintained unchanged indicating a shift of arginine metabolism from nitric oxide synthase (NOS) towards arginase. The 6-month arginine concentration reached the area under the ROC curve of 0.67 (95% confidence interval 0.54–0.81) for prediction of death, myocardial infarction or heart failure hospitalization and its value of < 29 µM was associated with lower event free survival (P = 0.02). In STEMI patients, during ischemia conversion of elevated plasma arginine was shifted from NOS towards arginase. Decreased 6-month arginine concentrations were associated with worse long-term outcomes.
Collapse
|
29
|
Cialoni D, Brizzolari A, Samaja M, Bosco G, Paganini M, Pieri M, Lancellotti V, Marroni A. Nitric Oxide and Oxidative Stress Changes at Depth in Breath-Hold Diving. Front Physiol 2021; 11:609642. [PMID: 33488400 PMCID: PMC7818785 DOI: 10.3389/fphys.2020.609642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Several mechanisms allow humans to resist the extreme conditions encountered during breath-hold diving. Available nitric oxide (NO) is one of the major contributors to such complex adaptations at depth and oxidative stress is one of the major collateral effects of diving. Due to technical difficulties, these biomarkers have not so far been studied in vivo while at depth. The aim of this study is to investigate nitrate and nitrite (NOx) concentration, total antioxidant capacity (TAC) and lipid peroxidation (TBARS) before, during, and after repetitive breath-hold dives in healthy volunteers. Materials and Methods Blood plasma, obtained from 14 expert breath-hold divers, was tested for differences in NOx, TAC, and TBARS between pre-dive, bottom, surface, 30 and 60 min post-dive samples. Results We observed a statistically significant increase of NOx plasma concentration in the “bottom blood draw” as compared to the pre-dive condition while we did not find any difference in the following samples We found a statistically significant decrease in TAC at the bottom but the value returned to normality immediately after reaching the surface. We did not find any statistically significant difference in TBARS. Discussion The increased plasma NOx values found at the bottom were not observed at surface and post dive sampling (T0, T30, T60), showing a very rapid return to the pre-dive values. Also TAC values returned to pre- diving levels immediately after the end of hyperbaric exposure, probably as a consequence of the activation of endogenous antioxidant defenses. TBARS did not show any difference during the protocol.
Collapse
Affiliation(s)
- Danilo Cialoni
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy.,Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy.,Apnea Academy Research, Padova, Italy
| | - Andrea Brizzolari
- Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy.,Department of Health Sciences, Università degli Studi of Milan, Milan, Italy
| | - Michele Samaja
- Department of Health Sciences, Università degli Studi of Milan, Milan, Italy
| | - Gerardo Bosco
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Paganini
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Massimo Pieri
- Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy
| | - Valentina Lancellotti
- Cardiothoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana (AOUP), Pisa, Italy
| | - Alessandro Marroni
- Divers Alert Network (DAN) Europe Research Division, Roseto degli Abruzzi, Italy
| |
Collapse
|
30
|
Giallongo C, Tibullo D, Puglisi F, Barbato A, Vicario N, Cambria D, Parrinello NL, Romano A, Conticello C, Forte S, Parenti R, Amorini AM, Lazzarino G, Li Volti G, Palumbo GA, Di Raimondo F. Inhibition of TLR4 Signaling Affects Mitochondrial Fitness and Overcomes Bortezomib Resistance in Myeloma Plasma Cells. Cancers (Basel) 2020; 12:cancers12081999. [PMID: 32707760 PMCID: PMC7463509 DOI: 10.3390/cancers12081999] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/02/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy requiring inflammatory microenvironment signals for cell survival and proliferation. Despite improvements in pharmacological tools, MM remains incurable mainly because of drug resistance. The present study aimed to investigate the implication of Toll-like receptor 4 (TLR4) as the potential mechanism of bortezomib (BTZ) resistance. We found that TLR4 activation induced mitochondrial biogenesis and increased mitochondrial mass in human MM cell lines. Moreover, TLR4 signaling was activated after BTZ exposure and was increased in BTZ-resistant U266 (U266-R) cells. A combination of BTZ with TAK-242, a selective TLR4 inhibitor, overcame drug resistance through the generation of higher and extended oxidative stress, strong mitochondrial depolarization and severe impairment of mitochondrial fitness which in turn caused cell energy crisis and activated mitophagy and apoptosis. We further confirmed the efficacy of a TAK-242/BTZ combination in plasma cells from refractory myeloma patients. Consistently, inhibition of TLR4 increased BTZ-induced mitochondrial depolarization, restoring pharmacological response. Taken together, these findings indicate that TLR4 signaling acts as a stress-responsive mechanism protecting mitochondria during BTZ exposure, sustaining mitochondrial metabolism and promoting drug resistance. Inhibition of TLR4 could be therefore be a possible target in patients with refractory MM to overcome BTZ resistance.
Collapse
Affiliation(s)
- Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Correspondence: (C.G.); (G.L.V.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (D.T.); (A.M.A.); (G.L.)
| | - Fabrizio Puglisi
- Division of Hematology, Azienda Ospedaliero Universitaria, Policlinico Vittorio Emanuele, 95123 Catania, Italy; (F.P.); (A.B.); (D.C.); (N.L.P.); (A.R.); (C.C.); (F.D.R.)
| | - Alessandro Barbato
- Division of Hematology, Azienda Ospedaliero Universitaria, Policlinico Vittorio Emanuele, 95123 Catania, Italy; (F.P.); (A.B.); (D.C.); (N.L.P.); (A.R.); (C.C.); (F.D.R.)
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Daniela Cambria
- Division of Hematology, Azienda Ospedaliero Universitaria, Policlinico Vittorio Emanuele, 95123 Catania, Italy; (F.P.); (A.B.); (D.C.); (N.L.P.); (A.R.); (C.C.); (F.D.R.)
| | - Nunziatina Laura Parrinello
- Division of Hematology, Azienda Ospedaliero Universitaria, Policlinico Vittorio Emanuele, 95123 Catania, Italy; (F.P.); (A.B.); (D.C.); (N.L.P.); (A.R.); (C.C.); (F.D.R.)
| | - Alessandra Romano
- Division of Hematology, Azienda Ospedaliero Universitaria, Policlinico Vittorio Emanuele, 95123 Catania, Italy; (F.P.); (A.B.); (D.C.); (N.L.P.); (A.R.); (C.C.); (F.D.R.)
| | - Concetta Conticello
- Division of Hematology, Azienda Ospedaliero Universitaria, Policlinico Vittorio Emanuele, 95123 Catania, Italy; (F.P.); (A.B.); (D.C.); (N.L.P.); (A.R.); (C.C.); (F.D.R.)
| | - Stefano Forte
- Fondazione “Istituto Oncologico del Mediterraneo”, 95029 Catania, Italy;
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Angela Maria Amorini
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (D.T.); (A.M.A.); (G.L.)
| | - Giuseppe Lazzarino
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (D.T.); (A.M.A.); (G.L.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (D.T.); (A.M.A.); (G.L.)
- Correspondence: (C.G.); (G.L.V.)
| | - Giuseppe Alberto Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Division of Hematology, Azienda Ospedaliero Universitaria, Policlinico Vittorio Emanuele, 95123 Catania, Italy; (F.P.); (A.B.); (D.C.); (N.L.P.); (A.R.); (C.C.); (F.D.R.)
| | - Francesco Di Raimondo
- Division of Hematology, Azienda Ospedaliero Universitaria, Policlinico Vittorio Emanuele, 95123 Catania, Italy; (F.P.); (A.B.); (D.C.); (N.L.P.); (A.R.); (C.C.); (F.D.R.)
- Division of Hematology, Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| |
Collapse
|
31
|
Loss of macroH2A1 decreases mitochondrial metabolism and reduces the aggressiveness of uveal melanoma cells. Aging (Albany NY) 2020; 12:9745-9760. [PMID: 32401230 PMCID: PMC7288915 DOI: 10.18632/aging.103241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumour in adults. The most accurate prognostic factor of UM is classification by gene expression profiling. Currently, the role of epigenetics is much less defined compared to genetic mechanisms. We recently showed a strong prognostic role of the expression levels of histone variant macroH2A1 in UM patients. Here, we assessed the mechanistic effects of macroH2A1 on UM progression. UM cell lines were stably knocked down (KD) for macroH2A1, and proliferation and colony formation capacity were evaluated. Mitochondrial function was assayed through qPCR and HPLC analyses. Correlation between mitochondrial gene expression and cancer aggressiveness was studied using a bioinformatics approach. MacroH2A1 loss significantly attenuated UM cells proliferation and aggressiveness. Furthermore, genes involved in oxidative phosphorylation displayed a decreased expression in KD cells. Consistently, macroH2A1 loss resulted also in a significant decrease of mitochondrial transcription factor A (TFAM) expression, suggesting impaired mitochondrial replication. Bioinformatics analyses uncovered that the expression of genes involved in mitochondrial metabolism correlates with macroH2A1 and with cancer aggressiveness in UM patients. Altogether, our results suggest that macroH2A1 controls UM cells progression and it may represent a molecular target to develop new pharmacological strategies for UM treatment.
Collapse
|
32
|
Bahadoran Z, Carlström M, Mirmiran P, Ghasemi A. Nitric oxide: To be or not to be an endocrine hormone? Acta Physiol (Oxf) 2020; 229:e13443. [PMID: 31944587 DOI: 10.1111/apha.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
33
|
Mitochondrial Functions, Energy Metabolism and Protein Glycosylation are Interconnected Processes Mediating Resistance to Bortezomib in Multiple Myeloma Cells. Biomolecules 2020; 10:biom10050696. [PMID: 32365811 PMCID: PMC7277183 DOI: 10.3390/biom10050696] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
The proteasome inhibitor bortezomib (BTZ) has emerged as an effective drug for the treatment of multiple myeloma even though many patients relapse from BTZ therapy. The present study investigated the metabolic pathways underlying the acquisition of bortezomib resistance in multiple myeloma. We used two different clones of multiple myeloma cell lines exhibiting different sensitivities to BTZ (U266 and U266-R) and compared them in terms of metabolic profile, mitochondrial fitness and redox balance homeostasis capacity. Our results showed that the BTZ-resistant clone (U266-R) presented increased glycosylated UDP-derivatives when compared to BTZ-sensitive cells (U266), thus also suggesting higher activities of the hexosamine biosynthetic pathway (HBP), regulating not only protein O- and N-glycosylation but also mitochondrial functions. Notably, U266-R displayed increased mitochondrial biogenesis and mitochondrial dynamics associated with stronger antioxidant defenses. Furthermore, U266-R maintained a significantly higher concentration of substrates for protein glycosylation when compared to U266, particularly for UDP-GlcNac, thus further suggesting the importance of glycosylation in the BTZ pharmacological response. Moreover, BTZ-treated U266-R showed significantly higher ATP/ADP ratios and levels of ECP and also exhibited increased mitochondrial fitness and antioxidant response. In conclusions, our findings suggest that the HBP may play a major role in mitochondrial fitness, driving BTZ resistance in multiple myeloma and thus representing a possible target for new drug development for BTZ-resistant patients.
Collapse
|
34
|
Desai PR, Mehta PJ, Chokshi AB. Liquid Chromatographic Method Development for Quantification of Inorganic Nitrite and Nitrate Impurities from Nitroglycerin Drug Substance by Using Ion-Pair Reagents with Liquid-Liquid Extraction Technique. J Chromatogr Sci 2019; 58:22-30. [PMID: 31879777 DOI: 10.1093/chromsci/bmz102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/17/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022]
Abstract
A large number of laboratory studies have reported Nitrite (NO2-) and Nitrate (NO3-) to be among the most common degradation products of the high-explosive Nitroglycerin drug substance. A novel, simple, robust and rapid reversed-phase high-performance liquid chromatography method has been developed for quantification of inorganic Nitrite and Nitrate impurities from Nitroglycerin drug substance. Successful separation was achieved in isocratic elution, using Inertsil C8-3, (250 × 4.6 mm, 5.0 μm) column, with mobile phase consisting of pH 7.0 tetrabutyl ammonium hydrogen sulfate buffer, methanol and acetonitrile (96:02:02, v/v/v). Flow rate was monitored at 2.0 mL min-1 and ultraviolet detection at 220 nm. The present work describes the role of an ion-pair reagent in the separation of polar compounds and liquid-liquid extraction technique for separation of polar and non-polar compounds. Nitroglycerin was subjected to various stress conditions to demonstrate the stability-indicating power of the method. The performance of the method was validated as per present International Council for Harmonisation (ICH) guidelines for specificity, linearity, accuracy, precision, ruggedness and robustness. The developed method can be a valuable alternative to the current ion-exchange chromatographic method mentioned in the literature. To the best of our knowledge, a rapid Liquid Chromatography (LC) method, which separates inorganic Nitrite and Nitrate impurities of Nitroglycerin, disclosed in this investigation was not published elsewhere.
Collapse
Affiliation(s)
- Pritesh R Desai
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Priti J Mehta
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Avani B Chokshi
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa 388421, Gujarat, India
| |
Collapse
|
35
|
Guaragni A, Boiago MM, Bottari NB, Morsch VM, Lopes TF, Schafer da Silva A. Feed supplementation with inulin on broiler performance and meat quality challenged with Clostridium perfringens: Infection and prebiotic impacts. Microb Pathog 2019; 139:103889. [PMID: 31765767 DOI: 10.1016/j.micpath.2019.103889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 11/27/2022]
Abstract
Following the ban on the use of antibiotics as growth enhancers in 2006 by the European Union, alternative products have been sought. Inulin is a prebiotic that is found naturally in many plants. It reaches large intestine of animals unaltered, where it is fermented by beneficial bacteria that comprise the intestinal microbiota. Inulin also inhibits the growth of pathogenic bacteria. Consumption of inulin in chicken diets improves performance at slaughter; nevertheless, little is known about its effects on poultry meat. Therefore, the objective of this study was to evaluate the effects of inulin on feeding of broilers challenged with Clostridium perfringens (4.0 × 108 CFU) and its consequences on the quality of breast meat. Four hundred Cobb male broiler chickens were distributed in a completely randomized design with four treatments and five replications each, as follows: T1: control treatment, basal diet (DB); T2: DB + 21-day challenged with C. perfringens orally; T3: DB + 21-day challenge with C. perfringens orally +25 mg/kg inulin; T4: DB + 21-day challenge by C. perfringens orally +4.4 mg/kg lincomycin. There were no significant differences between treatments in terms of pH, color parameters (L, a*, b*), water retention capacity, or shear force cooking weight loss. However, we found that the meat of poultry challenged by C. perfringens showed lower lipid peroxidation and increased activity of the antioxidant enzymes SOD and CAT, suggesting improvement in antioxidant profile. Nitrate/nitrite levels were lower with T3 and higher with T4 than with T1. We therefore conclude that inulin can replace antibiotics as growth promoters without causing changes in the physicochemical characteristics of meat. C. perfringens challenge caused lower lipid peroxidation and stimulated antioxidant responses in breast meat.
Collapse
Affiliation(s)
- Andréia Guaragni
- Department of Science and Food Technology, University of Santa Catarina State, Pinhalzinho, SC, Brazil
| | - Marcel Manente Boiago
- Department of Animal Science, University of Santa Catarina State, Chapecó, SC, Brazil.
| | - Nathieli B Bottari
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Vera Maria Morsch
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Thalison F Lopes
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aleksandro Schafer da Silva
- Department of Animal Science, University of Santa Catarina State, Chapecó, SC, Brazil; Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
36
|
Etienne I, Magalhães LVB, Cardoso SA, de Freitas RB, de Oliveira GP, Palotás A, Lima LM. Oxidative stress markers in cognitively intact patients with diabetic neuropathy. Brain Res Bull 2019; 150:196-200. [PMID: 31175898 DOI: 10.1016/j.brainresbull.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/26/2023]
Abstract
Various forms of vascular injury are frequently associated with type-2 diabetes mellitus (DM2). Macro-angiopathy has alarming signs and symptoms such as those seen with stroke or heart attack, however the presentation of small vessel disease is generally more subtle and therefore usually unnoticed for a long period of time. While it may affect any organ, complications involving the nervous system such as diabetic poly-neuropathy (DPN) are especially debilitating, and it may also be a risk factor for other brain disorders such as dementia. The underlying mechanisms are likely to be multi-faceted, but piling evidence indicates oxidative stress as one of the crucial factors. Here we evaluate the oxidative profile of patients with DM2. The total anti-oxidant capacity appears to be reduced in DM2 with or without complications. Of the specific bio-markers studied, the levels of tissue-damage indicator malon-dialdehyde (MDA) were significantly lower in the DM2 + DPN population only. These results suggest that diabetic patients present with wavering oxidative status, and the low MDA concentrations in patients with complications such as DPN may represent either an exhausted anti-oxidative defense system or a response to anti-inflammatory medications. The findings may also support the use of anti-oxidants such as vitamins A and E.
Collapse
Affiliation(s)
- Isaac Etienne
- Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), Szeged, Hungary; Kazan Federal University, Kazan, Russia.
| | | |
Collapse
|
37
|
Cialoni D, Brizzolari A, Samaja M, Pieri M, Marroni A. Altered Venous Blood Nitric Oxide Levels at Depth and Related Bubble Formation During Scuba Diving. Front Physiol 2019; 10:57. [PMID: 30846941 PMCID: PMC6393372 DOI: 10.3389/fphys.2019.00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction: Nitric oxide (NO) plays an important role in the physiology and pathophysiology of diving, and the related endothelial dysfunction and oxidative stress roles have been extensively investigated. However, most available data have been obtained before and after the dive, whilst, as far as we know, no data is available about what happens during the water immersion phase of dive. The scope of this study is to investigate the Nitrate and Nitrite (NOX) concentration and the total plasma antioxidant capacity (TAC) before, during and after a single SCUBA dive in healthy scuba diving volunteers, as well as to look for evidence of a possible relationship with venous gas bubble formation. Materials and Methods: Plasma, obtained from blood of 15 expert SCUBA divers, 13 male and 2 female, was investigated for differences in NOX and TAC values in different dive times. Differences in NOX and TAC values in subjects previously known as "bubble resistant" (non-bubblers - NB) and "bubble prone" (Bubblers - B) were investigated. Results: We found a statistically significant increase of NOX plasma concentration in the "bottom blood draw" and in the "safety stop blood draw" as compared to the basal pre diving condition. We did not find any difference in NOX plasma concentration between the basal value and the post diving samples. We did not find any significant statistical difference in TAC in the bottom blood sample, while the safety-stop and the post-dive samples showed higher TAC values compared with the basal value. We did not find any difference in NOX and TAC mean values between non-bubblers and Bubblers. Discussion: Our protocol, by including underwater blood drawing, allowed to monitor plasma NOX changes occurred during diving activity, and not only by comparing pre and post diving values. It is particularly interesting to note that the increased NOX values found at the bottom and at the safety stop were not observed at post dive sampling (T0, T30, T60), showing a very rapid return to the pre-dive values. In this preliminary study we did not find any relationship between bubble formation and changes in NOX parameters and TAC response.
Collapse
Affiliation(s)
- Danilo Cialoni
- DAN Europe Research Division, Roseto degli Abruzzi, Italy.,Apnea Academy Research, Padua, Italy
| | | | - Michele Samaja
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Massimo Pieri
- DAN Europe Research Division, Roseto degli Abruzzi, Italy
| | | |
Collapse
|
38
|
Mirmiran P, Bahadoran Z, Tahmasebinejad Z, Azizi F, Ghasemi A. Circulating nitric oxide metabolites and the risk of cardiometabolic outcomes: a prospective population-based study. Biomarkers 2019; 24:325-333. [PMID: 30624084 DOI: 10.1080/1354750x.2019.1567816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim: This study was conducted to investigate whether serum NO metabolites (NOx) could predict the occurrence of type 2 diabetes (T2DM), hypertension (HTN) and metabolic syndrome (MetS). Methods: We measured serum NOx concentrations in the Tehran Lipid and Glucose Study participants (aged ≥19 years) and followed them for a median of 7.7 years for the incidence of outcomes. To determine the appropriate cut-off points of serum NOx for predicting clinical events, a random sampling method (50:50 ratio) was used for the population and for analysis, receiver operator characteristic curve was used. Multivariable Cox proportional hazard models were used to estimate the hazard ratios (HRs) with 95% confidence intervals (95% CIs) of T2DM, HTN and MetS in response to serum NOx values. Results: The optimal cut-off points of serum NOx levels for predicting T2DM, HTN and MetS were 26.5, 25.5 and 25.5 µmol/L, respectively. Participants with serum NOx levels ≥25.5 µmol/L had increased risk of MetS (HR = 1.31, 95% CI = 1.01-1.72). No evidence was found for any association of serum NOx with incidence of T2DM and HTN (HR = 1.03, 95% CI = 0.83-1.77 and HR = 1.09, 95% CI = 0.88-1.35). Conclusion: In this prospective population-based investigation, a higher circulating NOx was associated with development of MetS.
Collapse
Affiliation(s)
- Parvin Mirmiran
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zahra Bahadoran
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zhaleh Tahmasebinejad
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fereidoun Azizi
- b Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asghar Ghasemi
- c Endocrine Physiology Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
39
|
Pagliano E, Campanella B, D'Ulivo A, Mester Z. Derivatization chemistries for the determination of inorganic anions and structurally related compounds by gas chromatography - A review. Anal Chim Acta 2018; 1025:12-40. [DOI: 10.1016/j.aca.2018.03.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
|
40
|
Zhang XX, Song YZ, Fang F, Wu ZY. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone. Anal Bioanal Chem 2018; 410:2665-2669. [PMID: 29556736 DOI: 10.1007/s00216-018-0965-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Abstract
On-site rapid monitoring of nitrite as an assessment indicator of the environment, food, and physiological systems has drawn extensive attention. Here, electrokinetic stacking (ES) was combined with colorimetric reaction on a paper-based device (PAD) to achieve colorless nitrite detection with smartphone. In this paper, nitrite was stacked on the paper fluidic channel as a narrow band by electrokinetic stacking. Then, Griess reagent was introduced to visualize the stacking band. Under optimal conditions, the sensitivity of nitrite was 160-fold increased within 5 min. A linear response in the range of 0.075 to 1.0 μg mL-1 (R2 = 0.99) and a limit of detection (LOD) of 73 ng mL-1 (0.86 μM) were obtained. The LOD was 10 times lower than the reported PAD, and close to that achieved by a desktop spectrophotometer. The applicability was demonstrated by nitrite detection from saliva and water with good selectivity, adding 100 times more concentrated co-ions. High recovery (91.0~108.7%) and reasonable intra-day and inter-day reproducibility (RSD < 9%) were obtained. This work shows that the sensitivity of colorless analyte detection-based colorimetric reaction can be effectively enhanced by integration of ES on a PAD. Graphical abstract Schematic of the experimental setups (left) and the corresponding images (right) of the actual portable device.
Collapse
Affiliation(s)
- Xiu-Xiu Zhang
- Research Center for Analytical Sciences, Chemistry Department College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yi-Zhen Song
- Research Center for Analytical Sciences, Chemistry Department College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Fang Fang
- Research Center for Analytical Sciences, Chemistry Department College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Zhi-Yong Wu
- Research Center for Analytical Sciences, Chemistry Department College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
41
|
Fresta CG, Chakraborty A, Wijesinghe MB, Amorini AM, Lazzarino G, Lazzarino G, Tavazzi B, Lunte SM, Caraci F, Dhar P, Caruso G. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Cell Death Dis 2018; 9:245. [PMID: 29445138 PMCID: PMC5833425 DOI: 10.1038/s41419-018-0280-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Abstract
Engineered nanoparticles are finding a wide spectrum of biomedical applications, including drug delivery and capacity to trigger cytotoxic phenomena, potentially useful against tumor cells. The full understanding of their biosafety and interactions with cell processes is mandatory. Using microglial (BV-2) and alveolar basal epithelial (A549) cells, in this study we determined the effects of engineered carbon nanodiamonds (ECNs) on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) production, as well as on energy metabolism. Particularly, we initially measured decrease in cell viability as a function of increasing ECNs doses, finding similar cytotoxic ECN effects in the two cell lines. Subsequently, using apparently non-cytotoxic ECN concentrations (2 µg/mL causing decrease in cell number < 5%) we determined NO and ROS production, and measured the concentrations of compounds related to energy metabolism, mitochondrial functions, oxido-reductive reactions, and antioxidant defences. We found that in both cell lines non-cytotoxic ECN concentrations increased NO and ROS production with sustained oxidative/nitrosative stress, and caused energy metabolism imbalance (decrease in high energy phosphates and nicotinic coenzymes) and mitochondrial malfunctioning (decrease in ATP/ADP ratio).These results underline the importance to deeply investigate the molecular and biochemical changes occurring upon the interaction of ECNs (and nanoparticles in general) with living cells, even at apparently non-toxic concentration. Since the use of ECNs in biomedical field is attracting increasing attention the complete evaluation of their biosafety, toxicity and/or possible side effects both in vitro and in vivo is mandatory before these highly promising tools might find the correct application.
Collapse
Affiliation(s)
- Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 66045, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, 66045, Lawrence, KS, USA
| | - Aishik Chakraborty
- Department of Chemical and Petroleum Engineering, University of Kansas, 66045, Lawrence, KS, USA
| | - Manjula B Wijesinghe
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 66045, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, 66045, Lawrence, KS, USA
| | - Angela M Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 94018, Catania, Italy.
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 66045, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, 66045, Lawrence, KS, USA.,Department of Chemistry, University of Kansas, 66045, Lawrence, KS, USA
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, 94018, Troina, Italy.,Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | - Prajnaparamita Dhar
- Department of Pharmaceutical Chemistry, University of Kansas, 66045, Lawrence, KS, USA. .,Department of Chemical and Petroleum Engineering, University of Kansas, 66045, Lawrence, KS, USA.
| | | |
Collapse
|
42
|
Lo HS, Lo KW, Yeung CF, Wong CY. Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex. Anal Chim Acta 2017; 990:135-140. [DOI: 10.1016/j.aca.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/15/2017] [Accepted: 07/09/2017] [Indexed: 12/25/2022]
|
43
|
Ghasemi A, Jeddi S. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide 2017; 70:9-24. [PMID: 28804022 DOI: 10.1016/j.niox.2017.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of obesity is increasing worldwide and type 2 diabetes to date is the most devastating complication of obesity. Decreased nitric oxide bioavailability is a feature of obesity and diabetes that links these two pathologies. Nitric oxide is synthesized both by nitric oxide synthase enzymes from l-arginine and nitric oxide synthase-independent from nitrate/nitrite. Nitric oxide production from nitrate/nitrite could potentially be used for nutrition-based therapy in obesity and diabetes. Nitric oxide deficiency also contributes to pathogeneses of cardiovascular disease and hypertension, which are associated with obesity and diabetes. This review summarizes pathways for nitric oxide production and focuses on the anti-diabetic and anti-obesity effects of the nitrate-nitrite-nitric oxide pathway. In addition to increasing nitric oxide production, nitrate and nitrite reduce oxidative stress, increase adipose tissue browning, have favorable effects on nitric oxide synthase expression, and increase insulin secretion, all effects that are potentially promising for management of obesity and diabetes. Based on current data, it could be suggested that amplifying the nitrate-nitrite-nitric oxide pathway is a diet-based strategy for increasing nitric oxide bioavailability and the management of these two interlinked conditions. Adding nitrate/nitrite to drugs that are currently used for managing diabetes (e.g. metformin) and possibly anti-obesity drugs may also enhance their efficacy.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Cruz LGDB, Bocchi EA, Grassi G, Guimaraes GV. Neurohumoral and Endothelial Responses to Heated Water-Based Exercise in Resistant Hypertensive Patients. Circ J 2017; 81:339-345. [PMID: 28049937 DOI: 10.1253/circj.cj-16-0870] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The neurohumoral and endothelial responses to the blood pressure (BP) lowering effects of heated water-based exercise (HEx) in resistant hypertension (HT) patients remain undefined. METHODS AND RESULTS We investigated these in 44 true resistant HT patients (age 53.3±0.9 years, mean±SEM). They were randomized and allocated to 2 groups, 28 to a HEx training protocol, which consisted of callisthenic exercises and walking in a heated pool for 1 h, three times weekly for 12 weeks and 16 patients to a control group maintaining their habitual activities. Measurements made before and after 12 weeks of HEx included clinic and 24-h BP, plasma levels of nitric oxide, endothelin-1, aldosterone, renin, norepinephrine and epinephrine, as well as peak V̇O2, and endothelial function (reactive hyperemia). After 12 weeks of HEx patients showed a significant decrease in clinic and 24-h systolic and diastolic BPs. Concomitantly, nitric oxide increased significantly (from 25±8 to 75±24 μmol/L, P<0.01), while endothelin-1 (from 41±5 to 26±3 pg/mL), renin (from 35±4 to 3.4±1 ng/mL/h), and norepinephrine (from 720±54 to 306±35 pg/mL) decreased significantly (P<0.01). Plasma aldosterone also tended to decrease, although not significantly (from 101±9 to 76±4 pg/mL, P=NS). Peak V̇O2increased significantly after HEx (P<0.01), while endothelial function was unchanged. No significant change was detected in the control group. CONCLUSIONS The BP-lowering effects of HEx in resistant HT patients were accompanied by a significant reduction in the marked neurohumoral activation characterizing this clinical condition.
Collapse
Affiliation(s)
- Lais Galvani de Barros Cruz
- Laboratory of Physical Activity and Health Heart Institute, Clinical Hospital, Department of Medicine, Sao Paulo University
| | | | | | | |
Collapse
|
45
|
Cvirn G, Kneihsl M, Rossmann C, Paar M, Gattringer T, Schlagenhauf A, Leschnik B, Koestenberger M, Tafeit E, Reibnegger G, Trozic I, Rössler A, Fazekas F, Goswami N. Orthostatic Challenge Shifts the Hemostatic System of Patients Recovered from Stroke toward Hypercoagulability. Front Physiol 2017; 8:12. [PMID: 28223937 PMCID: PMC5293816 DOI: 10.3389/fphys.2017.00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/06/2017] [Indexed: 01/01/2023] Open
Abstract
Aims: The objective of our study was to assess the effects of orthostatic challenge on the coagulation system in patients with a history of thromboembolic events and to assess how they compared with age-matched healthy controls. Methods: Twenty-two patients with histories of ischemic stroke and 22 healthy age-matched controls performed a sit-to-stand test. Blood was collected prior to- and at the end of- standing in the upright position for 6 min. Hemostatic profiling was performed by determining thrombelastometry and calibrated automated thrombogram values, indices of thrombin generation, standard coagulation times, markers of endothelial activation, plasma levels of coagulation factors and copeptin, and hematocrit. Results: Orthostatic challenge caused a significant endothelial and coagulation activation in patients (Group 1) and healthy controls (Group 2): Plasma levels of prothrombin fragment F1+2 were increased by approximately 35% and thrombin/antithrombin-complex (TAT) increased 5-fold. Several coagulation variables were significantly altered in Group 1 but not in Group 2: Coagulation times (CTs) were significantly shortened and alpha angles, peak rate of thrombin generation (VELINDEX), tissue factor (TF) and copeptin plasma levels were significantly increased (comparison between standing and baseline). Moreover, the shortening of CTs and the rise of copeptin plasma levels were significantly higher in Group 1 vs. Group 2 (comparison between groups). Conclusion: The coagulation system of patients with a history of ischemic stroke can be more easily shifted toward a hypercoagulable state than that of healthy controls. Attentive and long-term anticoagulant treatment is essential to keep patients from recurrence of vascular events.
Collapse
Affiliation(s)
- Gerhard Cvirn
- Institute of Physiological Chemistry, Medical University of Graz Graz, Austria
| | - Markus Kneihsl
- Department of Neurology, Medical University of Graz Graz, Austria
| | - Christine Rossmann
- Institute of Physiological Chemistry, Medical University of Graz Graz, Austria
| | - Margret Paar
- Institute of Physiological Chemistry, Medical University of Graz Graz, Austria
| | | | | | - Bettina Leschnik
- Department of Pediatrics, Medical University of Graz Graz, Austria
| | | | - Erwin Tafeit
- Institute of Physiological Chemistry, Medical University of Graz Graz, Austria
| | - Gilbert Reibnegger
- Institute of Physiological Chemistry, Medical University of Graz Graz, Austria
| | - Irhad Trozic
- Gravitational Physiology, Aging and Medicine Research Unit, Institute of Physiology, Medical University of Graz Graz, Austria
| | - Andreas Rössler
- Gravitational Physiology, Aging and Medicine Research Unit, Institute of Physiology, Medical University of Graz Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz Graz, Austria
| | - Nandu Goswami
- Gravitational Physiology, Aging and Medicine Research Unit, Institute of Physiology, Medical University of Graz Graz, Austria
| |
Collapse
|
46
|
Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, He L, Lu ZL. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017; 165:709-720. [PMID: 28153321 DOI: 10.1016/j.talanta.2016.12.044] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
Various techniques for the determination of nitrite and/or nitrate developed during the past 15 years were reviewed in this article. 169 references were covered. The detection principles and analytical parameters such as matrix, detection limits and detection range of each method were tabulated. The advantages and disadvantages of various methods were evaluated. In comparison to other methods, spectrofluorimetric methods have become more attractive due to its facility availability, high sensitivity and selectivity, low limits of detection and low-cost.
Collapse
Affiliation(s)
- Qiu-Hua Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Li-Ju Yu
- Xi'an Jiaotong University, Xi'an 710018, China; National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yang Liu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lan Lin
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ri-Gang Lu
- Guangxi Institute for Food and Drug Control, Guilin 530021, China
| | - Jian-Ping Zhu
- Guangxi Institute for Food and Drug Control, Guilin 530021, China
| | - Lan He
- College of Chemistry, Beijing Normal University, Beijing 100875, China; National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Zhong-Lin Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
47
|
Serum levels of nitric oxide and cytokines in smokers at the beginning and after 4months of treatment for smoking cessation. Int J Cardiol 2016; 230:327-331. [PMID: 28040275 DOI: 10.1016/j.ijcard.2016.12.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Nitric oxide (NO) modulates inflammatory reactions, having beneficial or toxic effects depending on the concentration. Its elevation can cause proinflammatory effects amplifying the inflammatory process with the participation of cytokines. Smoking has a negative impact on health and is considered one of the risk factors that influence disease development facilitating inflammatory processes. AIM To compare the serum concentration of NO and cytokines in smokers at baseline and after 4months of abstinence treatment. METHODS Blood samples which were collected to obtain the serum, at baseline and after 4months, were stored at -80°C until analysis. NO was measured by the total dose of nitrite determined by the Greiss method. CBA was the used technique to determine the concentration of cytokines in supernatants serum. The initial and final results of NO, TNF-α, IL-1, IL-6, IL-8, IL-10 and IL-12 that remained after 4months treatment were compared. Wilcoxon test was used to compare the data and Spearman test for correlations between NO and other variables. A significance level of p<0.05 was adopted. RESULTS The analysis of NO observed a significant reduction (p=0.001) of the initial median value of 18.80 (3.55-80.01) μmol/L to 8.10 (2.85-14.97) μmol/L after 4months of treatment. There were no significant differences in cytokines from baseline to the end of treatment. CONCLUSION The results may not mean harm to the body, but an adaptive process, decreasing the metabolism of abstinents due to the reduction of the use of nicotine.
Collapse
|
48
|
Antibodies to paraoxonase 1 are associated with oxidant status and endothelial activation in rheumatoid arthritis. Clin Sci (Lond) 2016; 130:1889-99. [DOI: 10.1042/cs20160374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/12/2016] [Indexed: 02/04/2023]
Abstract
Anti-paraoxonase 1 (PON1) antibodies could be a potential missing link between oxidative status, inflammation and cardiovascular disease (CVD) in rheumatoid arthritis (RA) patients. Therefore, they could represent an emerging clinical biomarker of CV risk in this condition.
Collapse
|
49
|
Agudelo-Ochoa GM, Pulgarín-Zapata IC, Velásquez-Rodriguez CM, Duque-Ramírez M, Naranjo-Cano M, Quintero-Ortiz MM, Lara-Guzmán OJ, Muñoz-Durango K. Coffee Consumption Increases the Antioxidant Capacity of Plasma and Has No Effect on the Lipid Profile or Vascular Function in Healthy Adults in a Randomized Controlled Trial. J Nutr 2016; 146:524-31. [PMID: 26843588 DOI: 10.3945/jn.115.224774] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/28/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Coffee, a source of antioxidants, has controversial effects on cardiovascular health. OBJECTIVE We evaluated the bioavailability of chlorogenic acids (CGAs) in 2 coffees and the effects of their consumption on the plasma antioxidant capacity (AC), the serum lipid profile, and the vascular function in healthy adults. METHODS Thirty-eight men and 37 women with a mean ± SD age of 38.5 ± 9 y and body mass index of 24.1 ± 2.6 kg/m(2) were randomly assigned to 3 groups: a control group that did not consume coffee or a placebo and 2 groups that consumed 400 mL coffee/d for 8 wk containing a medium (MCCGA; 420 mg) or high (HCCGA; 780 mg) CGA content. Both were low in diterpenes (0.83 mg/d) and caffeine (193 mg/d). Plasma caffeic and ferulic acid concentrations were measured by GC, and the plasma AC was evaluated with use of the ferric-reducing antioxidant power method. The serum lipid profile, nitric oxide (NO) plasma metabolites, vascular endothelial function (flow-mediated dilation; FMD), and blood pressure (BP) were evaluated. RESULTS After coffee consumption (1 h and 8 wk), caffeic and ferulic acid concentrations increased in the coffee-drinking groups, although the values of the 2 groups were significantly different (P < 0.001); caffeic and ferulic acid concentrations were undetectable in the control group. At 1 h after consumption, the plasma AC in the control group was significantly lower than the baseline value (-2%) and significantly increased in the MCCGA (6%) and HCCGA (5%) groups (P < 0.05). After 8 wk, no significant differences in the lipid, FMD, BP, or NO plasma metabolite values were observed between the groups. CONCLUSIONS Both coffees, which contained CGAs and were low in diterpenes and caffeine, provided bioavailable CGAs and had a positive acute effect on the plasma AC in healthy adults and no effect on blood lipids or vascular function. The group that did not drink coffee showed no improvement in serum lipid profile, FMD, BP, or NO plasma metabolites. This trial was registered at registroclinico.sld.cu as RPCEC00000168.
Collapse
Affiliation(s)
- Gloria M Agudelo-Ochoa
- Vidarium, Nutrition, Health and Wellness Research Center, Nutresa Business Group, Medellín, Colombia; School of Nutrition and Dietetics,
| | - Isabel C Pulgarín-Zapata
- Vidarium, Nutrition, Health and Wellness Research Center, Nutresa Business Group, Medellín, Colombia
| | | | | | | | | | - Oscar J Lara-Guzmán
- Vidarium, Nutrition, Health and Wellness Research Center, Nutresa Business Group, Medellín, Colombia; Bioactive Substance Research Group, University of Antioquia, Medellín, Colombia
| | - Katalina Muñoz-Durango
- Vidarium, Nutrition, Health and Wellness Research Center, Nutresa Business Group, Medellín, Colombia
| |
Collapse
|
50
|
Ismail A, Araújo MO, Chagas CLS, Griveau S, D'Orlyé F, Varenne A, Bedioui F, Coltro WKT. Colorimetric analysis of the decomposition of S-nitrosothiols on paper-based microfluidic devices. Analyst 2016; 141:6314-6320. [DOI: 10.1039/c6an01439a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A disposable paper microfluidic device was developed to analyse different S-nitrosothiols simultaneously decomposed by Hg2+ as well as UV, Vis and IR lamps.
Collapse
Affiliation(s)
- Abdulghani Ismail
- Instituto de Química
- Universidade Federal de Goiás
- Goiânia
- Brazil
- Chimie ParisTech
| | | | | | - Sophie Griveau
- Chimie ParisTech
- PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé
- 75005 Paris
- France
- INSERM
| | - Fanny D'Orlyé
- Chimie ParisTech
- PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé
- 75005 Paris
- France
- INSERM
| | - Anne Varenne
- Chimie ParisTech
- PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé
- 75005 Paris
- France
- INSERM
| | - Fethi Bedioui
- Chimie ParisTech
- PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé
- 75005 Paris
- France
- INSERM
| | - Wendell K. T. Coltro
- Instituto de Química
- Universidade Federal de Goiás
- Goiânia
- Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica
| |
Collapse
|