1
|
Development of a Liquid Chromatography/Mass Spectrometry-Based Inhibition Assay for the Screening of Steroid 5-α Reductase in Human and Fish Cell Lines. Molecules 2021; 26:molecules26040893. [PMID: 33567691 PMCID: PMC7915527 DOI: 10.3390/molecules26040893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Steroid 5-α reductase (5AR) is responsible for the reduction of steroids to 5-α reduced metabolites, such as the reduction of testosterone to 5-α dihydrotestosterone (DHT). A new adverse outcome pathway (AOP) for 5AR inhibition to reduce female reproduction in fish (AOP 289) is under development to clarify the antiestrogenic effects of 5AR inhibitors in female fish. A sensitive method for the DHT analysis using chemical derivatization and liquid chromatography–tandem mass spectrometry was developed. A cell-based 5AR inhibition assay that utilizes human cell lines, a transient overexpression system, and fish cell lines was developed. The measured IC50 values of two well-known 5AR inhibitors, finasteride and dutasteride, were comparable in the different systems. However, the IC50 of dutasteride in the fish cell lines was lower than that in the human cell lines. Finasteride showed a higher IC50 against the RTG-2 cell line. These results demonstrated that 5ARs inhibition could differ in terms of structural characteristics among species. The assay has high sensitivity and reproducibility and is suitable for the application in 5AR inhibition screening for various endocrine disruption chemicals (EDCs). Future studies will continue to evaluate the quantitative inhibition of 5AR by EDCs to compare the endocrine-disrupting pathway in different species.
Collapse
|
2
|
Analysis of testosterone-hydroxylated metabolites in human urine by ultra high performance liquid chromatography-Mass Spectrometry. Anal Biochem 2020; 597:113670. [PMID: 32119849 DOI: 10.1016/j.ab.2020.113670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/07/2020] [Accepted: 02/27/2020] [Indexed: 01/08/2023]
Abstract
Testosterone regulates the male reproductive system and acts directly or indirectly on nearly all systems during fetal, pubertal and adult life. Testosterone homeostasis depends on its synthesis and degradation. The major biotransformation reactions are hydroxylation by different cytochrome P450 (CYP) isoforms. There are no described methods to determine the profile of testosterone-hydroxylated metabolites in human urine. The aim of this study was to develop an analytical method to determine testosterone-hydroxylated metabolites in human urine using UPLC-MS. Seven testosterone-hydroxylated metabolites, androstenedione, and testosterone, were identified by comparison of their tret and positive electrospray ionization (ESI+) data, with those of analytical standards. The method developed is sensitive, specific, repeatable, and precise. Limits of detection and quantitation for all compounds ranged from 1.360 to 13.054 ng/ml and 4.234-39.679 ng/ml, respectively. The percentages of recovery were between 81.2 and 128.8%. The applicability of the analytical method was confirmed by analysis of urine samples obtained from two groups of healthy men (25-30 and 50-75 years old). All analytes were identified with slightly different metabolites profiles in both groups. In conclusion, the UPLC-MS method developed here was validated for the analysis of testosterone-hydroxylated metabolites in human urine.
Collapse
|
3
|
Gorityala S, Yang S, Montano MM, Xu Y. Simultaneous determination of dihydrotestosterone and its metabolites in mouse sera by LC-MS/MS with chemical derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1090:22-35. [PMID: 29778874 DOI: 10.1016/j.jchromb.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
Abstract
Androgens play a vital role in prostate cancer development, and their elimination and blockade are essential in the disease management. DHT is the key ligand for androgen receptor (AR) in the prostate. It is locally synthesized from testosterone. In the prostate, DHT is predominantly metabolized to α-diol and β-diol. Recent studies indicate that impaired DHT catabolism is associated with prostate cancer, signifying the necessity of a sensitive quantitative method for the determination of DHT and its metabolites. In this work, an LC-MS/MS method for the simultaneous quantification of DHT and its metabolites was developed and validated. Steroid-free sera were prepared and used for the preparation of sera calibrators and quality controls (QCs). DHT and its metabolites along with their respective stable heavy isotope labeled analytes representing internal standards were first extracted with methyl tertiary-butyl ether (MTBE) and derivatized with picolinic acid (PA). The derivatized analytes were then extracted again with MTBE, dried under nitrogen and reconstituted in the mobile phase (80% methanol and 0.2% formic acid in water). Baseline chromatographic separation of the derivatized analytes was achieved isocratically on XTerra C18 column (2.1 × 100 mm) using the mobile phase at a flow rate of 0.25 mL/min. Quantitation was performed using multiple-reaction-monitoring mode with positive electrospray ionization. The method has calibration ranges from 0.0500 ng/mL to 50.0 ng/mL for DHT and its two metabolites with acceptable assay precision, accuracy, recovery, and matrix factor. It was applied to the determination of DHT and its metabolites in an animal study.
Collapse
Affiliation(s)
- Shashank Gorityala
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Shuming Yang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Monica M Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Wang H, Zhang W, Wang X. Elucidation of a CGP7930 in vitro metabolite by liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:491-496. [PMID: 26777679 DOI: 10.1002/rcm.7465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE γ-Aminobutyric acid-B (GABAB ) receptors are widely expressed in the nervous system and have been implicated as targets for various neurological and psychiatric disorders. CGP7930 is a positive allosteric modulator of GABAB receptors. It has been demonstrated to reduce drug self-administration and has gained increased research as a potential psychotropic treatment. METHODS An in vitro metabolic system with liver microsomes of SD rats has been conducted and evaluated by probe drugs. The predominant in vitro metabolite of CGP7930 was identified and elucidated using liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry (LC/ESI-QTOF-MS/MS). Its structure was determined by comparing the characteristic ions of CGP7930 and those of the metabolite, based on the accurate mass measurement by MS and the fragmentation pattern obtained by MS/MS. RESULTS We found that the main metabolic pathway of CGP7930 was via a monohydroxylation reaction and the hydroxylation site located at the terminal butyl-carbon. The collision-induced dissociation (CID) fragmentation of the hydroxylated metabolite underwent McLafferty rearrangement and α-cleavage. CONCLUSIONS This work provides an understanding of the in vitro metabolism of CGP7930, which is helpful for the further study of the development of potential drug candidates targeting GABAB receptors, for the treatment of depression. The work also demonstrates that the LC/ESI-QTOF-MS/MS method has the advantage of possibly determining the structures of drug metabolites without the use of standards.
Collapse
Affiliation(s)
- Haidong Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, P.R. China
| | - Wenxiang Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, P.R. China
| | - Xian Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, P.R. China
| |
Collapse
|
5
|
Pronamide: Human relevance of liver-mediated rat leydig cell tumors. Regul Toxicol Pharmacol 2015; 72:394-404. [DOI: 10.1016/j.yrtph.2015.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/25/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
|
6
|
Oca FGGMD, López-González MDL, Escobar-Wilches DC, Chavira-Ramírez R, Sierra-Santoyo A. Vinclozolin modulates hepatic cytochrome P450 isoforms during pregnancy. Reprod Toxicol 2015; 53:119-26. [DOI: 10.1016/j.reprotox.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
|
7
|
Marty MS, O'Connor JC. Key learnings from the Endocrine Disruptor Screening Program (EDSP) Tier 1 rodent uterotrophic and Hershberger assays. ACTA ACUST UNITED AC 2014; 101:63-79. [PMID: 24515841 PMCID: PMC4309517 DOI: 10.1002/bdrb.21098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022]
Abstract
In 2009, companies began screening compounds using the US Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP). EDSP has two tiers: Tier 1 includes 11 assays to identify compounds with potential endocrine activity. This article describes two laboratories' experiences conducting Tier 1 uterotrophic and Hershberger assays. The uterotrophic assay detects estrogen receptor agonists through increases in uterine weight. The advantages of the uterotrophic rat models (immature vs. adult ovariectomized) and exposure routes are discussed. Across 29 studies, relative differences in uterine weights in the vehicle control group and 17α-ethynylestradiol–positive control group were reasonably reproducible. The Hershberger assay detects androgen receptor (AR) agonists, antagonists, and 5α-reductase inhibitors through changes in accessory sex tissue (AST) weights. Across 23 studies, AST weights were relatively reproducible for the vehicle groups (baseline), testosterone propionate (TP) groups (androgenic response), and flutamide + TP groups (antiandrogenic response). In one laboratory, one and four compounds were positive in the androgenic and antiandrogenic portions of the assay, respectively. Each compound was also positive for AR binding. In the other laboratory, three compounds showed potential antiandrogenic activity, but each compound was negative for AR binding and did not fit the profile for 5α-reductase inhibition. These compounds induced hepatic enzymes that enhanced testosterone metabolism/clearance, resulting in lower testosterone and decreased capacity to maintain AST weights. The Hershberger androgenic and antiandrogenic performance criteria were generally attainable. Overall, the uterotrophic and Hershberger assays were easily adopted and function as described for EDSP screening, although the mode of action for positive results may not be easily determined.
Collapse
Affiliation(s)
- M Sue Marty
- Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | | |
Collapse
|
8
|
Denoroy L, Zimmer L, Renaud B, Parrot S. Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:37-53. [DOI: 10.1016/j.jchromb.2012.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/25/2022]
|
9
|
Moskaleva NE, Zgoda VG. [Current methods of cytochrome p450 analysis]. BIOMEDITSINSKAIA KHIMIIA 2012; 58:617-634. [PMID: 23350195 DOI: 10.18097/pbmc20125806617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Current review describes recent approaches of cytochrome P450 concentration and activity evaluation. Special attention paid to modem methods of proteomic analysis such as electrophoresis and chromato-mass-spectrometry. Methods of targeted proteomic applicable for quantitative and qualitative study of P450s in biological samples as well as methods for the enzyme activity measurements are reviewed. Finally, data on correlation between certain P450 isoform content and its specific enzymatic activities were described and discussed in the review.
Collapse
|
10
|
Wu X, Wang J, Tan L, Bui J, Gjerstad E, McMillan K, Zhang W. In vitro ADME profiling using high-throughput rapidfire mass spectrometry: cytochrome p450 inhibition and metabolic stability assays. ACTA ACUST UNITED AC 2012; 17:761-72. [PMID: 22460176 DOI: 10.1177/1087057112441013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early assessment of absorption, distribution, metabolism, and excretion (ADME) properties of drug candidates has become an essential component of modern drug discovery. ADME characterization is important in identifying compounds early that are likely to fail in later clinical development because of suboptimal pharmacokinetic properties or undesirable drug-drug interactions. Proper utilization of ADME results, meanwhile, can prioritize candidates that are more likely to have good pharmacokinetic properties and also minimize potential drug-drug interactions. By integrating a RapidFire system with an API4000 mass spectrometer (RF-MS), we have established a high-throughput capability to profile compounds (>100 compounds/wk) in a panel of ADME assays in parallel with biochemical and cellular characterizations. Cytochrome P450 inhibition and time-dependent inhibition assays and microsomal stability assays were developed and fully optimized on the system. Compared with the classic liquid chromatography-mass spectrometry method, the RF-MS system generates consistent data with approximately 20-fold increase in throughput. The lack of chromatographic separation of compounds, substrates, and metabolites can complicate data interpretation, but this occurs in a small number of cases that are readily identifiable. Overall, this system has enabled a real-time and quantitative measurement of a large number of ADME samples, providing a rapid evaluation of clinically important drug-drug interaction potential and drug metabolic stability.
Collapse
Affiliation(s)
- Xiang Wu
- New Lead Discovery, Exelixis, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Moskaleva NE, Zgoda VG, Archakov AI. [Mass-spectrometric measurements of P450 isoform specific content and corresponding enzyme activities]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:149-64. [PMID: 21721249 DOI: 10.1134/s1068162011010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mouse cytochrome P450 subfamily 1A, 3A, 1E, 2C, 2D isoenzyme activities and corresponding contents were measured by means of triple quadrupole mass spectrometer in Multiple Reaction Monitoring mode (MRM). The technique was developed and tested on microsomes from control mouse and after induction with phenobarbital or methylcholanthrene. MRM allowed us to measure the content of individual P450 isoforms without using isotopic-labeled peptides or derivatization reagent. The results of modifying the content of certain P450 isoforms correlated with the change of enzymatic activity, defined by marker substrates.
Collapse
|
12
|
Role of residue 87 in substrate selectivity and regioselectivity of drug-metabolizing cytochrome P450 CYP102A1 M11. J Biol Inorg Chem 2011; 16:899-912. [PMID: 21567268 PMCID: PMC3139092 DOI: 10.1007/s00775-011-0789-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/26/2011] [Indexed: 12/03/2022]
Abstract
CYP102A1, originating from Bacillus megaterium, is a highly active enzyme which has attracted much attention because of its potential applicability as a biocatalyst for oxidative reactions. Previously we developed drug-metabolizing mutant CYP102A1 M11 by a combination of site-directed and random mutagenesis. CYP102A1 M11 contains eight mutations, when compared with wild-type CYP102A1, and is able to produce human-relevant metabolites of several pharmaceuticals. In this study, active-site residue 87 of drug-metabolizing mutant CYP102A1 M11 was mutated to all possible natural amino acids to investigate its role in substrate selectivity and regioselectivity. With alkoxyresorufins as substrates, large differences in substrate selectivities and coupling efficiencies were found, dependent on the nature of residue 87. For all combinations of alkoxyresorufins and mutants, extremely fast rates of NADPH oxidation were observed (up to 6,000 min−1). However, the coupling efficiencies were extremely low: even for the substrates showing the highest rates of O-dealkylation, coupling efficiencies were lower than 1%. With testosterone as the substrate, all mutants were able to produce three hydroxytestosterone metabolites, although with different activities and with remarkably different product ratios. The results show that the nature of the amino acid at position 87 has a strong effect on activity and regioselectivity in the drug-metabolizing mutant CYP102A1 M11. Because of the wide substrate selectivity of CYP102A1 M11 when compared with wild-type CYP102A1, this panel of mutants will be useful both as biocatalysts for metabolite production and as model proteins for mechanistic studies on the function of P450s in general.
Collapse
|
13
|
Zhou D, Linnenbach AJ, Liu R, Luzietti RA, Harris JJ, Booth-Genthe CL, Grimm SW. Expression and characterization of dog cytochrome P450 2A13 and 2A25 in baculovirus-infected insect cells. Drug Metab Dispos 2010; 38:1015-8. [PMID: 20382755 DOI: 10.1124/dmd.110.033068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Dog CYP2A13 and CYP2A25 were coexpressed with dog NADPH-cytochrome P450 reductase (OR) in baculovirus-infected Sf9 insect cells. CYP2A13 effectively catalyzed 7-ethoxycoumarin (7EC) deethylation and coumarin hydroxylation with apparent K(m) values of 4.8 and 2.1 microM, respectively, similar to those observed using dog liver microsomes (7.5 and 0.75 microM, respectively). CYP2A25 exhibited much lower affinity toward 7EC, with an apparent K(m) value of 150 microM, which indicates that CYP2A13 plays a more significant role in the metabolism of these CYP2A substrates. Similar to the dog CYP1A2 enzyme, CYP2A13 efficiently catalyzed phenacetin deethylation with a K(m) value of 3.9 microM, which suggests that phenacetin is not a selective probe for dog CYP1A2 activity. Both dog CYP2A13 and CYP2A25 exhibited little or no catalytic activity toward other common cytochrome P450 probe substrates, including bupropion, amodiaquine, diclofenac, S-mephenytoin, bufuralol, dextromethorphan, midazolam, and testosterone. These results provided additional information about the selectivity of these commonly used probe substrates.
Collapse
Affiliation(s)
- Diansong Zhou
- Clinical Pharmacology & DMPK, AstraZeneca Pharmaceuticals, Wilmington, Delaware 19803, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Nováková L, Vlčková H. A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation. Anal Chim Acta 2009; 656:8-35. [DOI: 10.1016/j.aca.2009.10.004] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
|
15
|
Sohl CD, Cheng Q, Guengerich FP. Chromatographic assays of drug oxidation by human cytochrome P450 3A4. Nat Protoc 2009; 4:1252-7. [PMID: 19661995 PMCID: PMC3883453 DOI: 10.1038/nprot.2009.122] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome P450 enzymes (P450s) are heme-thiolate mono-oxygenases involved in the oxidation of many endogenous and exogenous substrates. Herein, we describe two protocols for measuring the activity of a key enzyme of drug metabolism, P450 3A4. In this protocol, the substrate is incubated with human liver microsomes, the reaction is quenched, and the substrates and products are extracted and subjected to liquid chromatography (LC) separation and detection. Oxidation of the calcium-channel blocker nifedipine is measured using UV-Vis spectroscopy in-line with high performance liquid chromatography (HPLC). 6beta-Hydroxytestosterone formation from testosterone is measured by HPLC coupled to mass spectrometry (MS). Both of these procedures are rapid, requiring 2 h or less, and can be used to confirm and measure P450 3A4 activity and can also be used as a guide for developing other assays for measuring P450 catalysis. The separation strategy described here is more rapid than many available methods, except when ultra-performance liquid chromatography (UPLC) is used.
Collapse
Affiliation(s)
- Christal D Sohl
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | |
Collapse
|
16
|
Abstract
This review focuses on the chromatography research that has been carried out within industry or in close cooperation with industry and that has been reported in the scientific literature between 2006 and mid-2008. Companies in the health care sector, such as pharmaceutical and biotechnology companies, are the largest contributors. Industrial research seems to take place in an open environment in cooperation with academia, peer companies, and institutions. Industry appears ready to embrace new technologies as they emerge, but they focus strongly on making chromatography work robustly, reliably, rapidly, and automatically. "Hyphenated" systems that incorporate on-line sample-preparation techniques and mass-spectrometric detection are the rule rather than the exception. Various multidimensional separation methods are finding numerous applications. Strategies aimed at speeding up the development of new chromatographic methods remain the focus of attention. Also, there is a clear trend toward exploring chromatographic methods for parallel processing along with other strategies for high-throughput analysis.
Collapse
Affiliation(s)
- Peter Schoenmakers
- Polymer Analysis Group, Faculty of Science, University of Amsterdam, 1018 WV Amsterdam, The Netherlands.
| |
Collapse
|