1
|
El-Mahrouk SR, El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Dimethylmonothioarsinic acid (DMMTA V) differentially modulates the expression of AHR-regulated cytochrome P450 1A enzymes in vivo and in vitro. Toxicol Lett 2024; 394:32-45. [PMID: 38403205 DOI: 10.1016/j.toxlet.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Dimethylmonothioarsinic acid (DMMTAV), a pentavalent thio-arsenic derivative, has been found in bodily fluids and tissues including urine, liver, kidney homogenates, plasma, and red blood cells. Although DMMTAV is a minor metabolite in humans and animals, its substantial toxicity raises concerns about potential carcinogenic effects. This toxicity could be attributed to arsenicals' ability to regulate cytochrome P450 1 A (CYP1A) enzymes, pivotal in procarcinogen activation or detoxification. The current study investigates DMMTAV's impact on CYP1A1/2 expression, individually and in conjunction with its inducer, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57BL/6 mice were intraperitoneally injected with 6 mg/kg DMMTAV, alone or with 15 μg/kg TCDD, for 6 and 24 h. Similarly, Hepa-1c1c7 cells were exposed to DMMTAV (0.5, 1, and 2 μM) with or without 1 nM TCDD for 6 and 24 h. DMMTAV hindered TCDD-induced elevation of Cyp1a1 mRNA, both in vivo (at 6 h) and in vitro, associated with reduced CYP1A regulatory element activation. Interestingly, in C57BL/6 mice, DMMTAV boosted TCDD-induced CYP1A1/2 protein and activity, unlike Hepa-1c1c7 cells where it suppressed both. DMMTAV co-exposure increased TCDD-induced Cyp1a2 mRNA. While Cyp1a1 mRNA stability remained unchanged, DMMTAV negatively affected protein stability, indicated by shortened half-life. Baseline levels of CYP1A1/2 mRNA, protein, and catalytic activities showed no significant alterations in DMMTAV-treated C57BL/6 mice and Hepa-1c1c7 cells. Taken together, these findings indicate, for the first time, that DMMTAV differentially modulates the TCDD-mediated induction of AHR-regulated enzymes in both liver of C57BL/6 mice and murine Hepa-1c1c7 cells suggesting that thio-arsenic pentavalent metabolites are extremely reactive and could play a role in the toxicity of arsenic.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Modulation of cytochrome P450 1A (CYP1A) enzymes by monomethylmonothioarsonic acid (MMMTA V) in vivo and in vitro. Chem Biol Interact 2023; 376:110447. [PMID: 36893905 DOI: 10.1016/j.cbi.2023.110447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Inorganic arsenic (iAs) is a natural toxicant which, upon entering the biosphere, undergoes extensive biotransformation and becomes a portal for generating various organic intermediates/products. The chemical diversity of iAs-derived organoarsenicals (oAs) is accompanied by varying degree of toxicity that can be held responsible, at least partly, for the overall health outcome of the originally encountered parent inorganic molecule. Such toxicity may originate from arsenicals ability to modulate cytochrome P450 1A (CYP1A) enzymes, whose activity is critical in activating/detoxifying procarcinogens. In this study, we evaluated the effect of monomethylmonothioarsonic acid (MMMTAV) on CYP1A1 and CYP1A2 in absence and presence of their inducer; 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Therefore, C57BL/6 mice were intraperitoneally injected with 12.5 mg/kg MMMTAV, with or without 15 μg/kg TCDD for 6 and 24 h. Moreover, murine Hepa-1c1c7 and human HepG2 cells were treated with MMMTAV (1, 5, and 10 μM), with or without 1 nM TCDD for 6 and 24 h. MMMTAV significantly inhibited TCDD-mediated induction of CYP1A1 mRNA, both in vivo and in vitro. This effect was attributed to decreased transcriptional activation of CYP1A regulatory element. Interestingly, MMMTAV significantly increased TCDD-induced CYP1A1 protein and activity in C57BL/6 mice and Hepa-1c1c7 cells, while both were significantly inhibited by MMMTAV treatment in HepG2 cells. CYP1A2 mRNA, protein and activity induced by TCDD were significantly increased by MMMTAV co-exposure. MMMTAV had no effect on CYP1A1 mRNA stability or protein stability and did not alter their half-lives. At basal level, only CYP1A1 mRNA was significantly decreased in MMMTAV-treated Hepa-1c1c7 cells. Our findings show that MMMTAV exposure potentiates procarcinogen-induced catalytic activity of both CYP1A1 and CYP1A2 in vivo. This effect entails excessive activation of such procarcinogens upon co-exposure, with potentially negative health-related outcomes.
Collapse
|
3
|
Virk RK, Garla R, Kaushal N, Bansal MP, Garg ML, Mohanty BP. The relevance of arsenic speciation analysis in health & medicine. CHEMOSPHERE 2023; 316:137735. [PMID: 36603678 DOI: 10.1016/j.chemosphere.2023.137735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Long term exposure to arsenic through consumption of contaminated groundwater has been a global issue since the last five decades; while from an alternate standpoint, arsenic compounds have emerged as unparallel chemotherapeutic drugs. This review highlights the contribution from arsenic speciation studies that have played a pivotal role in the progression of our understanding of the biological behaviour of arsenic in humans. We also discuss the limitations of the speciation studies and their association with the interpretation of arsenic metabolism. Chromatographic separation followed by spectroscopic detection as well as the utilization of biotinylated pull-down assays, protein microarray and radiolabelled arsenic have been instrumental in identifying hundreds of metabolic arsenic conjugates, while, computational modelling has predicted thousands of them. However, these species exhibit a variegated pattern, which supports more than one hypothesis for the metabolic pathway of arsenic. Thus, the arsenic species are yet to be integrated into a coherent mechanistic pathway depicting its chemicobiological fate. Novel biorelevant arsenic species have been identified due to significant evolution in experimental methodologies. However, these methods are specific for the identification of only a group of arsenicals sharing similar physiochemical properties; and may not be applicable to other constituents of the vast spectrum of arsenic species. Consequently, the identity of arsenic binding partners in vivo and the sequence of events in arsenic metabolism are still elusive. This resonates the need for additional focus on the extraction and characterization of both low and high molecular weight arsenicals in a combinative manner.
Collapse
Affiliation(s)
- Rajbinder K Virk
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Roobee Garla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Mohinder P Bansal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Mohan L Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Biraja P Mohanty
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Abstract
Arsenic is a naturally occurring hazardous element that is environmentally ubiquitous in various chemical forms. Upon exposure, the human body initiates an elimination pathway of progressive methylation into relatively less bioreactive and more easily excretable pentavalent methylated forms. Given its association with decreasing the internal burden of arsenic with ensuing attenuation of its related toxicities, biomethylation has been applauded for decades as a pure route of arsenic detoxification. However, the emergence of detectable trivalent species with profound toxicity has opened a long-standing debate regarding whether arsenic methylation is a detoxifying or bioactivating mechanism. In this review, we approach the topic of arsenic metabolism from both perspectives to create a complete picture of its potential role in the mitigation or aggravation of various arsenic-related pathologies.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
5
|
Planer-Friedrich B, Kerl CF, Colina Blanco AE, Clemens S. Dimethylated Thioarsenates: A Potentially Dangerous Blind Spot in Current Worldwide Regulatory Limits for Arsenic in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9610-9618. [PMID: 35901520 DOI: 10.1021/acs.jafc.2c02425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic (As) occurrence in rice is a serious human health threat. Worldwide, regulations typically limit only carcinogenic inorganic As, but not possibly carcinogenic dimethylated oxyarsenate (DMA). However, there is emerging evidence that "DMA", determined by routine acid-based extraction and analysis, hides a substantial share of dimethylated thioarsenates that have similar or higher cytotoxicities than arsenite. Risk assessments characterizing the in vivo toxicity of rice-derived dimethylated thioarsenates are urgently needed. In the meantime, either more sophisticated methods based on enzymatic extraction and separation of dimethylated oxy- and thioarsenates have to become mandatory or total As should be regulated.
Collapse
Affiliation(s)
- Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
6
|
Liamtsau V, Fan C, Liu G, McGoron AJ, Cai Y. Speciation of thioarsenicals through application of coffee ring effect on gold nanofilm and surface-enhanced Raman spectroscopy. Anal Chim Acta 2020; 1106:88-95. [PMID: 32145859 DOI: 10.1016/j.aca.2020.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 10/25/2022]
Abstract
Thioarsenicals, such as dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid (DMDTAV), have been increasingly discovered as important arsenic metabolites, yet analysis of these unstable arsenic species remains a challenging task. A method based on surface-enhanced Raman spectroscopy (SERS) detection in combination with the coffee ringeffect for separation is expected to be particularly useful for analysis of thioarsenicals, thanks to minimal sample pretreatment and unique fingerprint Raman identification. Such a method would offer an alternative approach that overcomes limitations of conventional arsenic speciation techniques based on high performance liquid chromatography separation and mass spectrometry detection. A novel analytical method based on combination of the coffee ringeffect and SERS was developed for the speciation of thiolated arsenicals. A gold nanofilm (AuNF) was employed not only as a SERS substrate, but also as a platform for the separation of thioarsenicals. Once a drop of the thioarsenicals solution was placed onto the AuNF and evaporation of the solvent and the ring stamp formation onto AuNF began, the SERS signal intensity substantially increased from center to edge regions of the evaporated droplet due to the presence of the coffee ring effect. Through calculating the pKa's of DMMTAV and DMDTAV and accordingly manipulating the chemical environment, separation of these thioarsenicals was realized as they travelled different distances during the development of the coffee ring. The migration distances of individual species were influenced by a radial outward flow of a solute, the thioarsenicals-AuNF interactions and a thermally induced Marangoni flow. The separation of DMMTAV (center) and DMDTAV (edge) on the coffee ring, in combination with fingerprint SERS spectra, enables the identification of these thioarsenicals by this AuNF-based coffee ring effect-SERS method.
Collapse
Affiliation(s)
- Valery Liamtsau
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th ST, Miami, FL, 33199, USA
| | - Changjun Fan
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th ST, Miami, FL, 33199, USA
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th ST, Miami, FL, 33199, USA
| | - Anthony J McGoron
- Biomedical Engineering Department, Florida International University, 10555 West Flagler Street, EC 2442, Miami, FL, 33174, USA
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th ST, Miami, FL, 33199, USA; Southwest Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL, 33199, USA.
| |
Collapse
|
7
|
Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment. Talanta 2018; 184:446-451. [DOI: 10.1016/j.talanta.2018.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 01/10/2023]
|
8
|
Herath I, Vithanage M, Seneweera S, Bundschuh J. Thiolated arsenic in natural systems: What is current, what is new and what needs to be known. ENVIRONMENT INTERNATIONAL 2018; 115:370-386. [PMID: 29705693 DOI: 10.1016/j.envint.2018.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Thiolated arsenic compounds are the sulfur analogous substructures of oxo-arsenicals as the arsinoyl (As = O) is substituted by an arsinothioyl (As = S) group. Relatively brief history of thioarsenic research, mostly in the current decade has endeavored to understand their consequences in the natural environment. However, thioarsenic related aspects have by far not attached much research concern on global scale compared to other arsenic species. This review attempts to provide a critical overview for the first time on formation mechanisms of thioarsenicals, their chemistry, speciation and analytical methodologies in order to provide a rational assessment of what is new, what is current, what needs to be known or what should be done in future research. Thioarsenic compounds play a vital role in determining the biogeochemistry of arsenic in sulfidic environments under reducing conditions. Thioarsenic species are widely immobilized by naturally occurring processes such as the adsorption on iron (oxyhydr)oxides and precipitation on iron sulfide minerals. Accurate measurement of thioarsenic species is a challenging task due to their instability upon pH, temperature, redox potential, and concentrations of oxygen, sulfur and iron. Assessment of direct and indirect effects of toxic thioarsenic species on global population those who frequently get exposed to high levels of arsenic is an urgent necessity. Dimethylmonothioarsinic acid (DMMTAV) is the most cytotoxic arsenic metabolite having similar toxicological effects as dimethylarsinous acid (DMAIII) in human and animal tissues. The formation and chemical analysis of thioarsenicals in soil and sediments are highly unknown. Therefore, future research needs to be more inclined towards in determining the molecular structure of unknown thioarsenic complexes in various environmental suites. Contemporary approaches hyphenated to existing technologies would pave the way to overcome critical challenges of thioarsenic speciation such as standards synthesis, structural determination, quantification and sample preservation in future research.
Collapse
Affiliation(s)
- Indika Herath
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, 4350 Toowoomba, Queensland, Australia
| | - Meththika Vithanage
- International Centre for Applied Climate Science, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Saman Seneweera
- Plant Stress Biology Research Group, Centre for Crop Health, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, 4350 Toowoomba, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, 4350 Toowoomba, Queensland, Australia.
| |
Collapse
|
9
|
Lee H, Kim YT, Jeong S, Yoon HO. Preparation of DMMTAV and DMDTAV Using DMAV for Environmental Applications: Synthesis, Purification, and Confirmation. J Vis Exp 2018. [PMID: 29578528 DOI: 10.3791/56603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dimethylated thioarsenicals such as dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid (DMDTAV), which are produced by the metabolic pathway of dimethylarsinic acid (DMAV) thiolation, have been recently found in the environment as well as human organs. DMMTAV and DMDTAV can be quantified to determine the ecological effects of dimethylated thioarsenicals and their stability in environmental media. The synthesis method for these compounds is unstandardized, making replicating previous studies challenging. Furthermore, there is a lack of information about storage techniques, including storage of compounds without species transformation. Moreover, because only limited information about synthesis methods is available, there may be experimental difficulties in synthesizing standard chemicals and performing quantitative analysis. The protocol presented herein provides a practically modified synthesis method for the dimethylated thioarsenicals, DMMTAV and DMDTAV, and will help in the quantification of species separation analysis using high performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The experimental steps of this procedure were modified by focusing on the preparation of chemical reagents, filtration methods, and storage.
Collapse
Affiliation(s)
- Hosub Lee
- Korea Basic Science Institute, Seoul Center
| | - Youn-Tae Kim
- Natural Science Research Institute, Yonsei University
| | | | - Hye-On Yoon
- Korea Basic Science Institute, Seoul Center;
| |
Collapse
|
10
|
Jeong S, Lee H, Kim YT, Yoon HO. Development of a simultaneous analytical method to determine arsenic speciation using HPLC-ICP-MS: Arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and dimethylmonothioarsinic acid. Microchem J 2017. [DOI: 10.1016/j.microc.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Leese E, Clench M, Morton J, Gardiner PHE, Carolan VA. The Investigation of Unexpected Arsenic Compounds Observed in Routine Biological Monitoring Urinary Speciation Analysis. TOXICS 2017; 5:E12. [PMID: 29051444 PMCID: PMC5606668 DOI: 10.3390/toxics5020012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023]
Abstract
This study investigates the identity of two unexpected arsenic species found separately in a number of urine samples sent to the Health and Safety Executive's Health and Safety Laboratory for arsenic speciation (arsenobetaine, AB; arsenite, As3+; arsenate, As5+; monomethylarsonic acid, MMA5+; and dimethylarsinic acid, DMA5+). Micro liquid chromatography coupled to inductively coupled plasma mass spectrometry (µLC-ICP-MS) and electrospray time of flight tandem mass spectrometry (ESI-QqTOF-MS/MS) were used to identify the two arsenic peaks by comparison to several characterized arsenicals: arsenocholine, AC; trimethyl arsine oxide, TMAO; dimethylarsenoacetate, DMAA; dimethylarsenoethanol, DMAE; thio-dimethylarsinate, thio-DMA; thio-dimethylarsenoacetate, thio-DMAA and thio-dimethylarsenoethanol, thio-DMAE. The results from both the ICP-MS and ESI-QqTOF-MS/MS investigations indicate that the unexpected arsenic species termed peak 1 was thio-DMA. While the unexpected arsenic species termed peak 2 has yet to be identified, this investigation shows that it was not AC, TMAO, DMAA, DMAE, thio-DMA, thio-DMAA or thio-DMAE. This study demonstrates the incidence of unexpected arsenic species in both routine and non-routine urine samples from both workers and hospital patients.
Collapse
Affiliation(s)
- Elizabeth Leese
- Health and Safety Executive, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | - Malcolm Clench
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | - Jackie Morton
- Health and Safety Executive, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
| | - Philip H E Gardiner
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | - Vikki A Carolan
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| |
Collapse
|
12
|
Sun Y, Liu G, Cai Y. Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications. J Environ Sci (China) 2016; 49:59-73. [PMID: 28007180 DOI: 10.1016/j.jes.2016.08.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) is a notoriously toxic pollutant of health concern worldwide with potential risk of cancer induction, but meanwhile it is used as medicines for the treatment of different conditions including hematological cancers. Arsenic can undergo extensive metabolism in biological systems, and both toxicological and therapeutic effects of arsenic compounds are closely related to their metabolism. Recent studies have identified methylated thioarsenicals as a new class of arsenic metabolites in biological systems after exposure of inorganic and organic arsenicals, including arsenite, dimethylarsinic acid (DMAV), dimethylarsinous glutathione (DMAIIIGS), and arsenosugars. The increasing detection of thiolated arsenicals, including monomethylmonothioarsonic acid (MMMTAV), dimethylmonothioarsinic acid (DMMTAV) and its glutathione conjugate (DMMTAVGS), and dimethyldithioarsinic acid (DMDTAV) suggests that thioarsenicals may be important metabolites and play important roles in arsenic toxicity and therapeutic effects. Here we summarized the reported occurrence of thioarsenicals in biological systems, the possible formation pathways of thioarsenicals, and their toxicity, and discussed the biological implications of thioarsenicals on arsenic metabolism, toxicity, and therapeutic effects.
Collapse
Affiliation(s)
- Yuzhen Sun
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Cai
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Department of Chemistry and Biochemistry&Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
13
|
Chávez-Capilla T, Maher W, Kelly T, Foster S. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients. J Environ Sci (China) 2016; 49:222-232. [PMID: 29216971 DOI: 10.1016/j.jes.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species.
Collapse
Affiliation(s)
- Teresa Chávez-Capilla
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| | - William Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Tamsin Kelly
- National Centre for Forensic Studies, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT 2601, Australia
| | - Simon Foster
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Ebert F, Thomann M, Witt B, Müller SM, Meyer S, Weber T, Christmann M, Schwerdtle T. Evaluating long-term cellular effects of the arsenic species thio-DMA(V): qPCR-based gene expression as screening tool. J Trace Elem Med Biol 2016; 37:78-84. [PMID: 27320638 DOI: 10.1016/j.jtemb.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/01/2016] [Indexed: 01/04/2023]
Abstract
Thio-dimethylarsinic acid (thio-DMA(V)) is a human urinary metabolite of the class 1 human carcinogen inorganic arsenic as well as of arsenosugars. Thio-DMA(V) exerts strong cellular toxicity, whereas its toxic modes of action are not fully understood. For the first time, this study characterises the impact of a long-term (21days) in vitro incubation of thio-DMA(V) on the expression of selected genes related to cell death, stress response, epigenetics and DNA repair. The observed upregulation of DNMT1 might be a cellular compensation to counterregulate the in a very recent study observed massive global DNA hypomethylation after chronic thio-DMA(V) incubation. Moreover, our data suggest that chronic exposure towards subcytotoxic, pico- to nanomolar concentrations of thio-DMA(V) causes a stress response in human urothelial cells. The upregulation of genes encoding for proteins of DNA repair (Apex1, Lig1, XRCC1, DDB2, XPG, ATR) as well as damage response (GADD45A, GADD45G, Trp53) indicate a potential genotoxic risk emanating from thio-DMA(V) after long-term incubation.
Collapse
Affiliation(s)
- Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Marlies Thomann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Sandra M Müller
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Sören Meyer
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Till Weber
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Markus Christmann
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
15
|
Chen B, Lu X, Arnold LL, Cohen SM, Le XC. Identification of Methylated Dithioarsenicals in the Urine of Rats Fed with Sodium Arsenite. Chem Res Toxicol 2016; 29:1480-7. [DOI: 10.1021/acs.chemrestox.6b00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Baowei Chen
- MOE Key Laboratory
of Aquatic Product Safety, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
- Analytical and Environmental Toxicology Division, Department
of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- South China Sea Resource Exploitation and Protection Collaborative
Innovation Center, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Xiufen Lu
- Analytical and Environmental Toxicology Division, Department
of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Lora L. Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, United States
| | - Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, United States
| | - X. Chris Le
- Analytical and Environmental Toxicology Division, Department
of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
16
|
Kurosawa H, Shimoda Y, Miura M, Kato K, Yamanaka K, Hata A, Yamano Y, Endo Y, Endo G. A novel metabolic activation associated with glutathione in dimethylmonothioarsinic acid (DMMTA(V))-induced toxicity obtained from in vitro reaction of DMMTA(V) with glutathione. J Trace Elem Med Biol 2016; 33:87-94. [PMID: 26653748 DOI: 10.1016/j.jtemb.2015.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/02/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
The purpose of the present study was to elucidate the metabolic processing of dimethylmonothioarsinic acid (DMMTA(V)), which is a metabolite of inorganic arsenic and has received a great deal of attention recently due to its high toxicity. The metabolites produced from an in vitro reaction with GSH were analyzed by high performance liquid chromatography-time of flight mass spectrometer (HPLC-TOFMS), HPLC with a photodiode array detector (PDA), and also gas chromatography-mass spectrometry (GC-MS) and GC with a flame photometric detector (FPD). The reaction of dimethylarsinic acid (DMA(V)) with GSH did not generate DMA(V)-SG but did generate dimethylarsinous acid (DMA(III)) or DMA(III)-SG. On the contrary, we confirmed that the reaction of DMMTA(V) with GSH directly produced the stable complex of DMMTA(V)-SG without reduction through a trivalent dimethylated arsenic such as DMA(III) and DMA(III)-SG. Furthermore, the present study suggests the production of hydrogen sulfide (H2S) and dimethylmercaptoarsine (DMA(III)-SH), a trivalent dimethylated arsenic, as well as DMA(III) and DMA(III)-SG in the decomposition process of DMMTA(V)-SG. These results indicate that the toxicity of DMMTA(V) depends not only on the formation of DMA(III) but also on at least those of H2S and DMA(III)-SH.
Collapse
Affiliation(s)
- Hidetoshi Kurosawa
- Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, Chiba 274-8555, Japan; Criminal Investigation Laboratory, Metropolitan Police Department, Tokyo 100-8929, Japan
| | - Yasuyo Shimoda
- Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, Chiba 274-8555, Japan
| | - Motofumi Miura
- Laboratory of Molecular Chemistry, Nihon University School of Pharmacy, Chiba 274-8555, Japan
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, Chiba 274-8555, Japan
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, Chiba 274-8555, Japan.
| | - Akihisa Hata
- Department of Medical Risk Management, Graduate School of Risk and Crisis Management, Chiba Institute of Science, Chiba 288-0025, Japan
| | - Yuko Yamano
- Department of Hygiene and Preventive Medicine, School of Medicine, Showa University, 142-8555, Japan
| | - Yoko Endo
- Research Center for Occupational Poisoning, Kansai Rosai Hospital, Hyogo 660-8511, Japan
| | - Ginji Endo
- Department of Preventive Medicine and Environmental Health, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
17
|
Abstract
Arsenic has received considerable attention in the world, since it can lead to a multitude of toxic effects and has been recognized as a human carcinogen causing cancers. Here, we focus on the current state of knowledge regarding the proposed mechanisms of arsenic biotransformation, with a little about cellular uptake, toxicity and clinical utilization of arsenicals. Since pentavalent methylated metabolites were found in animal urine after exposure to iAs(III), methylation was considered to be a detoxification process, but the discovery of methylated trivalent intermediates and thioarsenicals in urine has diverted the view and gained much interest regarding arsenic biotransformation. To further investigate the partially understood phenomena relating to arsenic toxicity and the uses of arsenic as a drug, it is important to elucidate the exact pathways involved in metabolism of this metalloid, as the toxicity and the clinical uses of arsenic can be best recognized in context of its biotransformation. Thereby, in this perspective, we have focused on arsenic metabolic pathways including three proposed mechanisms: a classic pathway by Challenger in 1945, followed by a new metabolic pathway proposed by Hayakawa in 2005 involving arsenic-glutathione complexes, while the third is a new reductive methylation pathway that is proposed by our group involving As-protein complexes. According to previous and present in vivo and in vitro experiments, we conclude that the methylation reaction takes place with simultaneous reductive rather than stepwise oxidative methylation. In addition, production of pentavalent methylated arsenic metabolites are suggested to be as the end product of metabolism, rather than intermediates.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310561, China
| | | |
Collapse
|
18
|
Chen B, Cao F, Yuan C, Lu X, Shen S, Zhou J, Le XC. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. Anal Bioanal Chem 2013; 405:1903-11. [PMID: 23318765 PMCID: PMC3565090 DOI: 10.1007/s00216-012-6700-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 11/26/2022]
Abstract
Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL patients over three consecutive days. The patients received 10 mg arsenic trioxide each day via intravenous infusion. The saliva samples were analyzed using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Monomethylarsonous acid and monomethylmonothioarsonic acid were identified along with arsenite, dimethylarsinic acid, monomethylarsonic acid, and arsenate. Arsenite was the predominant arsenic species, accounting for 71.8 % of total arsenic in the saliva. Following the arsenic infusion each day, the percentage of methylated arsenicals significantly decreased, possibly suggesting that the arsenic methylation process was saturated by the high doses immediately after the arsenic infusion. The temporal profiles of arsenic species in saliva following each arsenic infusion over 3 days have provided information on arsenic exposure, metabolism, and excretion. These results suggest that saliva can be used as an appropriate clinical biomarker for monitoring arsenic species in APL patients. Arsenic species and temporal profiles over three days from nine patients ![]()
Collapse
Affiliation(s)
- Baowei Chen
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Fenglin Cao
- Department of Hematology, Harbin Medical University, Harbin, China
| | - Chungang Yuan
- School of Environmental Sciences and Engineering, North China Electric Power University, Baoding, 071003 Hebei China
| | - Xiufen Lu
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Shengwen Shen
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Jin Zhou
- Department of Hematology, Harbin Medical University, Harbin, China
| | - X. Chris Le
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3 Canada
| |
Collapse
|
19
|
Mandal BK, Vankayala R, Uday Kumar L. Speciation of chromium in soil and sludge in the surrounding tannery region, ranipet, Tamil Nadu. ISRN TOXICOLOGY 2011; 2011:697980. [PMID: 23724287 PMCID: PMC3658852 DOI: 10.5402/2011/697980] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/26/2011] [Indexed: 11/24/2022]
Abstract
The distribution and mobility of chromium in the soils and sludge surrounding a tannery waste dumping area was investigated to evaluate its vertical and lateral movement of operational speciation which was determined in six steps to fractionate the material in the soil and sludge into (i) water soluble, (ii) exchangeable, (iii) carbonate bound, (iv) reducible, (v) oxidizable, and (vi) residual phases. The present study shows that about 63.7% of total chromium is mobilisable, and 36.3% of total chromium is nonbioavailable in soil, whereas about 30.2% of total chromium is mobilisable, and 69.8% of total chromium is non-bioavailable in sludge. In contaminated sites the concentration of chromium was found to be higher in the reducible phase in soils (31.3%) and oxidisable phases in sludge (56.3%) which act as the scavenger of chromium in polluted soils. These results also indicate that iron and manganese rich soil can hold chromium that will be bioavailable to plants and biota. Thus, results of this study can indicate the status of bioavailable of chromium in this area, using sequential extraction technique. So a suitable and proper management of handling tannery sludge in the said area will be urgently needed to the surrounding environment as well as ecosystems.
Collapse
Affiliation(s)
- Badal Kumar Mandal
- Trace Elements Speciation Research Laboratory, Environments and Analytical Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, India
| | | | | |
Collapse
|
20
|
Hsu KC, Sun CC, Huang YL. Arsenic speciation in biomedical sciences: recent advances and applications. Kaohsiung J Med Sci 2011; 27:382-9. [PMID: 21914525 DOI: 10.1016/j.kjms.2011.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022] Open
Abstract
Speciation analysis of trace elements is an important issue in biomedical and toxicological sciences because different elemental species have different effects on health and the environment. For humans, arsenic (As) is a toxic element; the toxicity of As compounds is highly dependent on its chemical form. Although inorganic As compounds are human carcinogens, organic arsenicals are relatively less toxic. This article deals with recent advances and applications of methods for As speciation in biomedical sciences, with emphasis on the specimens commonly encountered in biomedical laboratories.
Collapse
Affiliation(s)
- Keng-Chang Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
21
|
Ammann AA. Arsenic Speciation Analysis by Ion Chromatography - A Critical Review of Principles and Applications. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ajac.2011.21004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Naranmandura H, Bu N, Suzuki KT, Lou Y, Ogra Y. Distribution and speciation of arsenic after intravenous administration of monomethylmonothioarsonic acid in rats. CHEMOSPHERE 2010; 81:206-213. [PMID: 20594576 DOI: 10.1016/j.chemosphere.2010.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/30/2010] [Accepted: 06/09/2010] [Indexed: 05/29/2023]
Abstract
Quite a few new thioarsenicals have recently been found in urine of arsenic-exposed humans and animals, and some of them have been shown to be highly toxic to cells. However, little is known about their toxic effects and metabolism in the body. In order to elucidate the toxic mechanism of thioarsenicals, we further focused on the distribution and metabolism of monomethylmonothioarsonic acid (MMMTA(V)) in rats. MMMTA(V) was synthesized chemically and injected intravenously into rats at the dose of 0.5mg As/kg, followed by speciation analysis of selected organs and body fluids at 10 min and 12h after the injection. MMMTA(V) was excreted into urine in its intact form, and approximately 35% of the dose was recovered in urine at 12h after the injection, suggesting that MMMTA(V) was taken up more effectively by organs/tissues than non-thiolated, monomethylarsonous acid (MMA(V)) previously studied. On the other hand, the liver and kidneys contained arsenic that was in a protein-binding form with free forms of DMA(V) or DMDTA(V) at 10 min, and disappeared at 12h after the injection. Moreover, these bound arsenic species in kidneys were converted back to MMA(V) after oxidation with H(2)O(2), suggesting that the arsenic bound to proteins had been reduced within the body and was in a trivalent oxidation state. In red blood cells (RBCs), most of the arsenic was in the form of DMA(III) bound to hemoglobin (Hb), and approximately 40% of the dose was recovered in RBCs at 12h after injection. These results indicate that arsenic accumulated preferentially in RBCs after being transformed to DMA(III). In addition, we have also discussed the effect of MMMTA(V) on viability of human bladder cancer T24 cells in comparison with MMA(V). Consequently, MMMTA(V) was assumed to be a more toxic arsenic metabolite than non-thiolated MMA(V).
Collapse
Affiliation(s)
- Hua Naranmandura
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|
23
|
Rogers DA, Ray SJ, Hieftje GM. An electrospray/inductively coupled plasma dual-source time-of-flight mass spectrometer for rapid metallomic and speciation analysis : Part 1. Molecular channel characterization. Metallomics 2010; 2:271-9. [DOI: 10.1039/b915782d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Rogers DA, Ray SJ, Hieftje GM. An electrospray/inductively coupled plasma dual-source time-of-flight mass spectrometer for rapid metallomic and speciation analysis : Part 2. Atomic channel and dual-channel characterization. Metallomics 2010; 2:280-8. [DOI: 10.1039/b915783b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|