1
|
van der Velpen V, Liakoni E, Hirt MB, Vonwyl CM, Christen SE, Duthaler U, Jacob P, Haschke M. A validated single-step saliva and serum sample extraction LC-MS/MS method for the analysis of nicotine, cotinine and 3'-hydroxycotinine for clinical vaping studies. J Pharm Biomed Anal 2025; 258:116703. [PMID: 39919465 DOI: 10.1016/j.jpba.2025.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/09/2025]
Abstract
INTRODUCTION Quantifying low nicotine and metabolite concentrations in biofluids is challenging due environmental nicotine contamination. However, accurate quantification of low concentrations is crucial for studies on electronic nicotine delivery systems (ENDS) using e-liquids with varying nicotine content. METHODS We developed an LC-MS/MS method to quantify nicotine, cotinine, and 3'-hydroxycotinine (3-OH-cotinine) in serum and saliva for pharmacokinetic (PK) analyses and large studies. RESULTS For reliable chromatography and to limit bench work, C18 chromatography was used with single-step extraction using methanol and 0.1 M ZnSO4 (4:1, v/v) in serum and 80 % methanol in saliva. Environmental nicotine contamination was addressed through implementation of a C18 delay column, which separated the environmentally abundant nicotine present in the mobile phases from sample nicotine peaks. Total run-time was 6 min and lower limits of quantification were 0.5, 0.25 and 0.5 ng/ml for nicotine, cotinine and 3-OH-cotinine, respectively, in serum and 3, 1 and 2 ng/ml in saliva. The standard curves in both biofluids ranged up to 1000 ng/ml with R-values > 0.995. The within- and between-run accuracy ranged from 97.1 % to 106.9 % with a precision of ≤ 10.8 %. Cross-validation of serum samples with another laboratory showed good agreement with a bias of 0.56, -3.0 and -6.5 ng/ml for nicotine, cotinine and 3-OH-cotinine, respectively. CONCLUSIONS The integration of a delay column into the LC-MS/MS method mitigated the interference from environmental nicotine and facilitated the quantification of very low nicotine concentrations and two of its major metabolites in saliva and serum. C18 chromatography and single-step sample extraction make the method stable and suitable for large sample loads.
Collapse
Affiliation(s)
- Vera van der Velpen
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Institute of Pharmacology, University of Bern, Switzerland
| | - Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mats B Hirt
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Institute of Pharmacology, University of Bern, Switzerland
| | - Celina M Vonwyl
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Samuel E Christen
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Switzerland
| | - Urs Duthaler
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Peyton Jacob
- Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, University of California, San Francisco, USA
| | - Manuel Haschke
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Institute of Pharmacology, University of Bern, Switzerland.
| |
Collapse
|
2
|
Cecil T, Bautista J, Collinson MM, Rutan SC. Preparation and characterization of stationary phase gradients on C8 liquid chromatography columns. J Chromatogr A 2024; 1727:464974. [PMID: 38761702 DOI: 10.1016/j.chroma.2024.464974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Continuous C8 stationary phase gradients are created on commercial Waters Symmetry Shield RP8 columns by strategically cleaving the C8 moieties in a time-dependent fashion. The method relies on the controlled infusion of a trifluoroacetic acid/water/acetonitrile solution through the column to cleave the organic functionality (e.g., C8) from the siloxane framework. The bond cleavage solution is reactive enough to cleave the functional groups, even with polar groups embedded within the stationary phase to protect the silica. Both the longitudinal and radial heterogeneity were evaluated by extruding the silica powder into polyethylene tubing and evaluating the percent carbon content in the different sections using thermogravimetric analysis (TGA). TGA analysis shows the presence of a stationary phase gradient in the longitudinal direction but not in the radial direction. Two different gradient profiles were formed with good reproducibility by modifying the infusion method: one exhibited an 'S'-shaped gradient while the other exhibited a steep exponential-like gradient. The gradients were characterized chromatographically using test mixtures, and the results showed varied retention characteristics and an enhanced ability to resolve nicotine analytes.
Collapse
Affiliation(s)
- Thomas Cecil
- Department of Chemistry, Virginia Commonwealth University, Box 842006, Richmond, VA 23284-2006, USA
| | - Judith Bautista
- Dow Chemical, 230 Abner Jackson Pkwy, Lake Jackson, TX 77566, USA
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University, Box 842006, Richmond, VA 23284-2006, USA.
| | - Sarah C Rutan
- Department of Chemistry, Virginia Commonwealth University, Box 842006, Richmond, VA 23284-2006, USA
| |
Collapse
|
3
|
Wang DG, Du KH, Shao LJ, Ma SQ, Yang XF, Liu TY, Liu Q, Wang M, Liu HJ, Wu YQ. Determination of cotinine and 3-hydroxynicotinine in human serum by liquid chromatography-tandem mass spectrometry and its application. Medicine (Baltimore) 2024; 103:e38339. [PMID: 38847666 PMCID: PMC11155585 DOI: 10.1097/md.0000000000038339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/02/2024] [Indexed: 06/10/2024] Open
Abstract
In this study, we developed a method for determining cotinine and 3-hydroxycotinine in human serum and established a methodology for an in-depth study of tobacco exposure and health. After the proteins in the human serum samples were precipitated with acetonitrile, they were separated on a ZORBAX SB-Phenyl column with a mobile phase of methanol encompassing 0.3% formic acid-water encompassing 0.15% formic acid. The measurement was performed on an API5500 triple quadrupole mass spectrometer in the multiple reaction monitoring mode. Cotinine, 3-hydroxycotinine, and cotinine-d3 isotope internal standards were held for 2.56 minutes, 1.58 minutes, and 2.56 minutes, respectively. In serum, the linear range was 0.05 to 500 ng·mL-1 for cotinine and 0.50 to 1250 ng·mL-1 for 3-hydroxycotinine. The lower limit of quantification (LLOQ) was 0.05 ng·mL-1 and 0.5 ng·mL-1 for cotinine and 3-hydroxycotinine, respectively. The intra-day and inter-day relative standard deviations were <11%, and the relative errors were within ± 7%. Moreover, the mean extraction recoveries of cotinine and 3-hydroxycotinine were 98.54% and 100.24%, respectively. This method is suitable for the rapid determination of cotinine and 3-hydroxycotinine in human serum because of its rapidity, sensitivity, strong specificity, and high reproducibility. The detection of cotinine levels in human serum allows for the identification of the cutoff value, providing a basis for differentiation between smoking and nonsmoking populations.
Collapse
Affiliation(s)
- Da-Guang Wang
- Aviation General Hospital Clinical Laboratory, Beijing, China
| | - Ke-He Du
- Department of Analytical Services of Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, China
| | - Li-Jun Shao
- Department of Analytical Services of Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, China
| | - Shi-Qiao Ma
- Department of Analytical Services of Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, China
| | - Xiao-Feng Yang
- Beijing Hospital Laboratory, National Center for Gerontology, Beijing, China
| | - Tian-Yi Liu
- Beijing Hospital Laboratory, National Center for Gerontology, Beijing, China
| | - Qian Liu
- Beijing Hospital Laboratory, National Center for Gerontology, Beijing, China
| | - Meng Wang
- Beijing Hospital Laboratory, National Center for Gerontology, Beijing, China
| | - Hong-Jun Liu
- Department of Analytical Services of Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, China
| | - Yi-Qun Wu
- Department of Analytical Services of Iphase Pharma Services (Think Tank Research Center for Health Development Laboratory), Beijing, China
| |
Collapse
|
4
|
Karamian BA, Levy HA, Yalla GR, D'Antonio ND, Heard JC, Lambrechts MJ, Canseco JA, Vaccaro AR, Markova DZ, Kepler CK. Varenicline Mitigates the Increased Risk of Pseudoarthrosis Associated with Nicotine. Spine J 2023:S1529-9430(23)00162-6. [PMID: 37086977 DOI: 10.1016/j.spinee.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND CONTEXT High serum nicotine levels increase the risk of non-union after spinal fusion. Varenicline, a pharmaceutical adjunct for smoking cessation, is a partial agonist designed to displace and outcompete nicotine at its receptor binding site, thereby limiting downstream activation. Given its mechanism, varenicline may have therapeutic benefits in mitigating non-union for active smokers undergoing spinal fusion. PURPOSE To compare fusion rate and fusion mass characteristics between cohorts receiving nicotine, varenicline, or concurrent nicotine and varenicline after lumbar fusion. STUDY DESIGN Rodent non-instrumented spinal fusion model. METHODS Sixty eight-week-old male Sprague-Dawley rats weighing approximately 300 grams underwent L4-5 posterolateral fusion (PLF) surgery. Four experimental groups (control: C, nicotine: N, varenicline: V, and combined: NV [nicotine and varenicline]) were included for analysis. Treatment groups received nicotine, varenicline, or a combination of nicotine and varenicline delivered through subcutaneous osmotic pumps beginning two weeks before surgery until the time of sacrifice at age 14 weeks. Manual palpation testing, microCT imaging, bone histomorphometry, and biomechanical testing were performed on harvested spinal fusion segments. RESULTS Control (p=0.016) and combined (p=0.032) groups, when compared directly to the nicotine group, demonstrated significantly greater manual palpation scores. The fusion rate in the control (93.3%) and combined (93.3%) groups were significantly greater than that of the nicotine group (33.3%) (p=0.007, both). Biomechanical testing demonstrated greater Young's modulus of the fusion segment in the control (17.1 MPa) and combined groups (34.5 MPa) compared to the nicotine group (8.07 MPa) (p<0.001, both). MicroCT analysis demonstrated greater bone volume fraction (C:0.35 vs N:0.26 vs NV:0.33) (p<0.001, all) and bone mineral density (C:335 vs N:262 vs NV:328 mg Ha/cm3) (p<0.001, all) in the control and combined groups compared to the nicotine group. Histomorphometry demonstrated a greater mineral apposition rate in the combined group compared to the nicotine group (0.34 vs 0.24 μm/day, p=0.025). CONCLUSION In a rodent spinal fusion model, varenicline mitigates the adverse effects of high nicotine serum levels on the rate and quality of spinal fusion. CLINICAL SIGNIFICANCE These findings have the potential to significantly impact clinical practice guidelines and the use of pharmacotherapy for active nicotine users undergoing fusion surgery.
Collapse
Affiliation(s)
- Brian A Karamian
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA; Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA.
| | - Hannah A Levy
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Goutham R Yalla
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nicholas D D'Antonio
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jeremy C Heard
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mark J Lambrechts
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dessislava Z Markova
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Rothman Orthopaedic Institute, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
de Faria HD, Silveira AT, Carvalhodo Prado B, Nacif JLM, Rosa MA, da Rocha dos Santos J, Santos PCJL, Figueiredo EC, Martins I. ONLINE BIOLOGICAL SAMPLE PREPARATION WITH RESTRICTED ACCESS HYBRID CARBON NANOTUBES FOR DETERMINATION OF ANTI-SMOKING DRUGS. J Chromatogr A 2022; 1669:462931. [DOI: 10.1016/j.chroma.2022.462931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
6
|
Jin S, Pang W, Zhao L, Zhao Z, Mei S. Review of HPLC-MS methods for the analysis of nicotine and its active metabolite cotinine in various biological matrices. Biomed Chromatogr 2022; 36:e5351. [PMID: 35106788 DOI: 10.1002/bmc.5351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
In recent years, tobacco smoking is a risk factor for a series of diseases including cardiovascular diseases, cerebrovascular diseases, and cancers. Nicotine, the primary component of tobacco smoke, is mainly transformed to its active metabolite cotinine, which is often used as biomarker for tobacco exposure for its higher blood concentration and longer residence time than nicotine. Various analytical methods have been developed for the determination of nicotine and cotinine in biological matrices. This article reviewed the HPLC-MS based methods for nicotine and/or cotinine analysis in various biological matrices. The sample preparation, mass and chromatographic conditions and method validation results of these methods have been summarized and analyzed. Sample was mainly pretreated by protein precipitation and/or extraction. Separation was achieved using methanol and/or acetonitrile:water (with or without ammonium acetate) on C18 columns, and acetonitrile:water (with formic acid, ammonium acetate/formate) on HILIC columns. Nicotine-d3, nicotine-d4 and cotinine-d3 were commonly used internal standards. Other non-deuterated IS were also used such as ritonavir, N-ethylnorcotinine, and milrinone. For both nicotine and cotinine, the calibration range was 0.005-35000 ng/mL, the matrix effect was 75.96% - 126.8% and the recovery was 53% - 124.5%. The two analytes were stable at room temperature for 1-10 days, at -80 °C for up to 6 months, and after 3-6 freeze-thaw cycles. Comedications did not affect nicotine and cotinine analysis.
Collapse
Affiliation(s)
- Siyao Jin
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P. R. China.,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Wenyuan Pang
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China.,Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P. R. China.,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Zhigang Zhao
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Shenghui Mei
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
7
|
Application of HPLC-QQQ-MS/MS and New RP-HPLC-DAD System Utilizing the Chaotropic Effect for Determination of Nicotine and Its Major Metabolites Cotinine, and trans-3'-Hydroxycotinine in Human Plasma Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030682. [PMID: 35163947 PMCID: PMC8839739 DOI: 10.3390/molecules27030682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/14/2023]
Abstract
The routine techniques currently applied for the determination of nicotine and its major metabolites, cotinine, and trans-3′-hydroxycotinine, in biological fluids, include spectrophotometric, immunoassays, and chromatographic techniques. The aim of this study was to develop, and compare two new chromatographic methods high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS), and RP-HPLC enriched with chaotropic additives, which would allow reliable confirmation of tobacco smoke exposure in toxicological and epidemiological studies. The concentrations of analytes were determined in human plasma as the sample matrix. The methods were compared in terms of the linearity, accuracy, repeatability, detection and quantification limits (LOD and LOQ), and recovery. The obtained validation parameters met the ICH requirements for both proposed procedures. However, the limits of detection (LOD) were much better for HPLC-QQQ-MS/MS (0.07 ng mL−1 for trans-3′-hydroxcotinine; 0.02 ng mL−1 for cotinine; 0.04 ng mL−1 for nicotine) in comparison to the RP-HPLC-DAD enriched with chaotropic additives (1.47 ng mL−1 for trans-3′-hydroxcotinine; 1.59 ng mL−1 for cotinine; 1.50 ng mL−1 for nicotine). The extraction efficiency (%) was concentration-dependent and ranged between 96.66% and 99.39% for RP-HPLC-DAD and 76.8% to 96.4% for HPLC-QQQ-MS/MS. The usefulness of the elaborated analytical methods was checked on the example of the analysis of a blood sample taken from a tobacco smoker. The nicotine, cotinine, and trans-3′-hydroxycotinine contents in the smoker’s plasma quantified by the RP-HPLC-DAD method differed from the values measured by the HPLC-QQQ-MS/MS. However, the relative errors of measurements were smaller than 10% (6.80%, 6.72%, 2.04% respectively).
Collapse
|
8
|
Erkmen C, Gebrehiwot WH, Uslu B. Hydrophilic Interaction Liquid Chromatography (HILIC): Latest Applications in the Pharmaceutical Researches. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200402101501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Significant advances have been occurred in analytical research since the 1970s
by Liquid Chromatography (LC) as the separation method. Reverse Phase Liquid Chromatography
(RPLC) method, using hydrophobic stationary phases and polar mobile phases, is the most commonly
used chromatographic method. However, it is difficult to analyze some polar compounds with this
method. Another separation method is the Normal Phase Liquid Chromatography (NPLC), which involves
polar stationary phases with organic eluents. NPLC presents low-efficiency separations and
asymmetric chromatographic peak shapes when analyzing polar compounds. Hydrophilic Interaction
Liquid Chromatography (HILIC) is an interesting and promising alternative method for the analysis of
polar compounds. HILIC is defined as a separation method that combines stationary phases used in the
NPLC method and mobile phases used in the RPLC method. HILIC can be successfully applied to all
types of liquid chromatographic separations such as pharmaceutical compounds, small molecules, metabolites,
drugs of abuse, carbohydrates, toxins, oligosaccharides, peptides, amino acids and proteins.
Objective:
This paper provides a general overview of the recent application of HILIC in the pharmaceutical
research in the different sample matrices such as pharmaceutical dosage form, plasma, serum,
environmental samples, animal origin samples, plant origin samples, etc. Also, this review focuses on
the most recent and selected papers in the drug research from 2009 to the submission date in 2020,
dealing with the analysis of different components using HILIC.
Results and Conclusion:
The literature survey showed that HILIC applications are increasing every
year in pharmaceutical research. It was found that HILIC allows simultaneous analysis of many compounds
using different detectors.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | | | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
9
|
Liu Y, Zhang D, Du J, Qin Y, Zhao Z, Shi Y, Mei S, Liu Y. Simultaneous determination of plasma nicotine and cotinine by UHPLC–MS/MS in C57BL/6 mice and its application in a pharmacokinetic study. Biomed Chromatogr 2019; 33:e4634. [PMID: 31257625 DOI: 10.1002/bmc.4634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Yang Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Dongjie Zhang
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Ying Qin
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Yanjun Shi
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
- Department of Pharmacy, Beijing Tongren HospitalCapital Medical University Beijing P. R. China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| |
Collapse
|
10
|
Glatard A, Guidi M, Dobrinas M, Cornuz J, Csajka C, Eap CB. Influence of body weight and UGT2B7 polymorphism on varenicline exposure in a cohort of smokers from the general population. Eur J Clin Pharmacol 2019; 75:939-949. [PMID: 30868192 DOI: 10.1007/s00228-019-02662-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE The abstinence rate to tobacco after varenicline treatment is moderate and might be partially affected by variability in varenicline concentrations. This study aimed at characterizing the sources of variability in varenicline pharmacokinetics and to relate varenicline exposure to abstinence. METHODS The population pharmacokinetic analysis (NONMEM®) included 121 varenicline concentrations from 82 individuals and tested the influence of genetic and non-genetic characteristics on apparent clearance (CL/F) and volume of distribution (V/F). Model-based average concentrations over 24 h (Cav) were used to test the impact of varenicline exposure on the input rate (Kin) expressed as a function of the number of cigarettes per day in a turnover model of 373 expired carbon monoxide levels. RESULTS A one-compartment model with first-order absorption and elimination appropriately described varenicline concentrations. CL/F was 8.5 L/h (coefficient of variation, 26%), V/F was 228 L, and the absorption rate (ka) was fixed to 0.98 h-1. CL/F increased by 46% in 100-kg individuals compared to 60-kg individuals and was found to be 21% higher in UGT2B7 rs7439366 TT individuals. These covariates explained 14% and 9% of the interindividual variability in CL/F, respectively. No influence of varenicline Cav was found on Kin in addition to the number of cigarettes. CONCLUSIONS Body weight mostly and to a smaller extent genetic polymorphisms of UGT2B7 can influence varenicline exposure. Dose adjustment based on body weight and, if available, on UGT2B7 genotype might be useful to improve clinical efficacy and tolerability of varenicline.
Collapse
Affiliation(s)
- Anaïs Glatard
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Hospital of Cery, University of Lausanne, Prilly, Switzerland
- Service of Clinical Pharmacology, Department of Laboratories, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Monia Guidi
- Service of Clinical Pharmacology, Department of Laboratories, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Maria Dobrinas
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Hospital of Cery, University of Lausanne, Prilly, Switzerland
| | - Jacques Cornuz
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chantal Csajka
- Service of Clinical Pharmacology, Department of Laboratories, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Hospital of Cery, University of Lausanne, Prilly, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
11
|
Stancil SL, Pearce RE, Tyndale RF, Kearns GL, Vyhlidal CA, Leeder JS, Abdel-Rahman S. Evaluating metronidazole as a novel, safe CYP2A6 phenotyping probe in healthy adults. Br J Clin Pharmacol 2019; 85:960-969. [PMID: 30706508 DOI: 10.1111/bcp.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/18/2023] Open
Abstract
AIMS CYP2A6 is a genetically polymorphic enzyme resulting in differential substrate metabolism and health behaviours. Current phenotyping probes for CYP2A6 exhibit limitations related to procurement (deuterated cotinine), toxicity (coumarin), specificity (caffeine) and age-appropriate administration (nicotine, NIC). In vitro, CYP2A6 selectively forms 2-hydroxymetronidazole (2HM) from metronidazole (MTZ). The purpose of this study was to evaluate MTZ as a CYP2A6 phenotyping probe drug in healthy adults against the well-established method of measuring trans-3-hydroxycotinine (3HC)/cotinine (COT). METHODS A randomized, cross-over, pharmacokinetic study was completed in 16 healthy, nonsmoking adults. Separated by a washout period of at least 2 weeks, MTZ 500 mg and NIC gum 2 mg were administered and plasma was sampled over 48 hours and 8 hours, respectively. Correlations of plasma metabolite/parent ratios (2HM/MTZ; 3HC/COT) were assessed by Pearson coefficient. CYP2A6 genotyping was conducted and incorporated as a variable of plasma ratio response. RESULTS Correlations between the plasma ratio 2HM/MTZ and 3HC/COT were ≥ 0.9 at multiple time points (P < 0.001), demonstrating a wide window during which 2HM/MTZ can be queried post-MTZ dose. CYP2A6 genotype had significant impacts on both MTZ and NIC phenotyping ratios with decreased activity predicted phenotypes demonstrating 2HM/MTZ ratios ≤58% and 3HC/COT ratios ≤56% compared with extensive activity predicted phenotypes at all time points examined in the study (P < 0.05). No adverse events were reported in the MTZ arm while 38% (n = 6) of participants reported mild adverse events in the NIC arm. CONCLUSIONS Metronidazole via 2HM/MTZ performed well as a novel, safe phenotyping probe for CYP2A6 in healthy adults.
Collapse
Affiliation(s)
- Stephani L Stancil
- Division of Adolescent Medicine, Children's Mercy Kansas City, MO, USA.,Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Division of Pharmacology & Toxicology, University of Missouri-Kansas City School of Pharmacy, Kansas City, MO, USA
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO, USA
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory L Kearns
- Arkansas Children's Research Institute and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carrie A Vyhlidal
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, MO, USA
| |
Collapse
|
12
|
da Cunha ALM, Osorio AC, Toloza CA, Almeida JM, Khan S, Aucélio RQ. Determination of varenicline after photochemical fluorescence enhancement using spectrofluorimetry and high-performance liquid chromatography. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Impurity profiling of varenicline tartrate by LC-QTOF mass spectrometric techniques during drug development. J Pharm Biomed Anal 2018; 155:306-313. [DOI: 10.1016/j.jpba.2018.03.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 11/20/2022]
|
14
|
A simple and highly sensitive UPLC-ESI-MS/MS method for the simultaneous quantification of nicotine, cotinine, and the tobacco-specific carcinogens N’-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in serum samples. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:229-234. [DOI: 10.1016/j.jchromb.2017.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022]
|
15
|
Piešťanský J, Maráková K, Galba J, Kováč A, Mikuš P. Comparison of hydrodynamically closed two-dimensional capillary electrophoresis coupled with ultraviolet detection and hydrodynamically open capillary electrophoresis hyphenated with mass spectrometry in the bioanalysis of varenicline. J Sep Sci 2017; 40:2292-2303. [DOI: 10.1002/jssc.201700098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Juraj Piešťanský
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
- Institute of Neuroimmunology; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - Andrej Kováč
- Institute of Neuroimmunology; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovak Republic
| |
Collapse
|
16
|
El-Bagary RI, Abo-Talib NF, El-Wahab Mohamed MA. Novel liquid chromatographic methods for the determination of varenicline tartrate. Talanta 2016; 146:83-92. [DOI: 10.1016/j.talanta.2015.07.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
17
|
Ramdzan AN, Barreiros L, Almeida MIG, Kolev SD, Segundo MA. Determination of salivary cotinine through solid phase extraction using a bead-injection lab-on-valve approach hyphenated to hydrophilic interaction liquid chromatography. J Chromatogr A 2016; 1429:284-91. [DOI: 10.1016/j.chroma.2015.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 01/13/2023]
|
18
|
Liachenko N, Boulamery A, Simon N. Nicotine and metabolites determination in human plasma by ultra performance liquid chromatography-tandem mass spectrometry: a simple approach for solving contamination problem and clinical application. Fundam Clin Pharmacol 2015; 29:499-509. [DOI: 10.1111/fcp.12132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/26/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Natalia Liachenko
- Service de Pharmacologie Clinique; Faculté de Médecine; Aix-Marseille Université; 27 Bd Jean Moulin F-13385 Marseille Cedex 05 Marseille France
| | - Audrey Boulamery
- Service de Pharmacologie Clinique; Faculté de Médecine; Aix-Marseille Université; 27 Bd Jean Moulin F-13385 Marseille Cedex 05 Marseille France
| | - Nicolas Simon
- Service de Pharmacologie Clinique; Faculté de Médecine; Aix-Marseille Université; 27 Bd Jean Moulin F-13385 Marseille Cedex 05 Marseille France
- INSERM U912 (SESSTIM); Aix-Marseille Université; F-13006 Marseille France
| |
Collapse
|
19
|
Marks MJ, O'Neill HC, Wynalda-Camozzi KM, Ortiz NC, Simmons EE, Short CA, Butt CM, McIntosh JM, Grady SR. Chronic treatment with varenicline changes expression of four nAChR binding sites in mice. Neuropharmacology 2015; 99:142-55. [PMID: 26192545 DOI: 10.1016/j.neuropharm.2015.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Chronic treatment with nicotine is known to increase the α4β2-nAChR sites in brain, to decrease α6β2-nAChR sites and to have minimal effect on α3β4-and α7-nAChR populations. Varenicline is now used as a smoking cessation treatment, with and without continued smoking or nicotine replacement therapy. Varenicline, like nicotine, upregulates the α4β2-nAChR sites; however, it is not known whether varenicline treatment changes expression of the other nAChR subtypes. METHODS Using a mouse model, chronic treatments (10 days) with varenicline (0.12 mg/kg/h) and/or nicotine (1 mg/kg/hr), alone or in combination, were compared for plasma and brain levels of drugs, tolerance to subsequent acute nicotine and expression of four subtypes of nAChR using autoradiography. RESULTS The upregulation of α4β2-nAChR sites elicited by chronic varenicline was very similar to that elicited by chronic nicotine. Treatment with both drugs somewhat increased up-regulation, indicating that these doses were not quite at maximum effect. Similar down-regulation was seen for α6β2-nAChR sites. Varenicline significantly increased both α3β4-and α7-nAChR sites while nicotine had less effect on these sites. The drug combination was similar to varenicline alone for α3β4-nAChR sites, while for α7 sites the drug combination was less effective than varenicline alone. Varenicline had small but significant effects on tolerance to acute nicotine. CONCLUSIONS Effects of varenicline in vivo may not be limited to the α4β2*-nAChR subtype. In addition, smoking cessation treatment with varenicline may not allow receptor numbers to be restored to baseline and may, in addition, change expression of other receptor subtypes.
Collapse
Affiliation(s)
- Michael J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | | | - Nick C Ortiz
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | - Emily E Simmons
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | - Caitlin A Short
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | | | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah, Salt Lake City, UT, USA.
| | - Sharon R Grady
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
20
|
Recent advances in MS methods for nicotine and metabolite analysis in human matrices: clinical perspectives. Bioanalysis 2015; 6:2171-83. [PMID: 25331861 DOI: 10.4155/bio.14.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tobacco smoking is a major global health issue and represents the leading cause of preventable death in the developed countries. Nicotine is a major alkaloid found in tobacco products and its detection with its metabolites in human matrices is generally used for assessing tobacco consumption and second hand exposure. Several analytical techniques have been developed for the detection of nicotine and its metabolites, and MS coupled with chromatography is considered the standard reference method because of its superior sensitivity and specificity. In this work, we reviewed nicotine metabolism, clinical MS and the latest (2009-2014) development of MS-based techniques for measurement of nicotine and metabolites in human matrices. Appropriate biomarker and matrix selection are also critically discussed.
Collapse
|
21
|
Schweitzer KS, Chen SX, Law S, Van Demark M, Poirier C, Justice MJ, Hubbard WC, Kim ES, Lai X, Wang M, Kranz WD, Carroll CJ, Ray BD, Bittman R, Goodpaster J, Petrache I. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol 2015; 309:L175-87. [PMID: 25979079 DOI: 10.1152/ajplung.00411.2014] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/04/2015] [Indexed: 11/22/2022] Open
Abstract
The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.
Collapse
Affiliation(s)
- Kelly S Schweitzer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah Law
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary Van Demark
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christophe Poirier
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew J Justice
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Walter C Hubbard
- Department of Clinical Pharmacology, The Johns Hopkins University, Baltimore, Maryland
| | - Elena S Kim
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xianyin Lai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - William D Kranz
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Clinton J Carroll
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Bruce D Ray
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Robert Bittman
- Queens College, City University of New York, Flushing, New York; and
| | - John Goodpaster
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University, Indianapolis, Indiana
| | - Irina Petrache
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
22
|
Mao J, Xu Y, Lu B, Liu J, Hong G, Zhang Q, Sun S, Zhang J. Simultaneous determination of nicotine and its nine metabolites in rat blood utilizing microdialysis coupled with UPLC–tandem mass spectrometry for pharmacokinetic application. Anal Bioanal Chem 2015; 407:4101-9. [DOI: 10.1007/s00216-015-8643-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 12/14/2022]
|
23
|
Shastri MD, Lu W, Ferguson SG, Narkowicz CK, Davies NW, Jacobson GA. Determination of Cotinine, 3′-Hydroxycotinine, and Their Glucuronides in Urine by Ultra-high Performance Liquid Chromatography. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.979363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Recent advances in hydrophilic interaction chromatography for quantitative analysis of endogenous and pharmaceutical compounds in plasma samples. Bioanalysis 2014; 6:2421-39. [DOI: 10.4155/bio.14.173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is an increasing need for new analytical methods that can handle a large number of analytes in complex matrices. Hydrophilic interaction chromatography (HILIC) has recently been demonstrated as an important supplement to reversed-phase liquid chromatography for polar analytes, particularly endogenous compounds. With the increasing popularity of HILIC, progressively more polar phases with diverse functional groups have been developed. In addition, the coupling of HILIC to mass spectrometry offers the advantages of improved sensitivity by employing an organic-rich mobile phase. This article reviews recent applications of HILIC for the analysis of endogenous and pharmaceutical compounds in plasma samples. Furthermore, based on recent studies, we provide a discussion of column selection, sample pretreatment for HILIC analysis, and detection sensitivity.
Collapse
|
25
|
On-line column coupled isotachophoresis-capillary zone electrophoresis hyphenated with tandem mass spectrometry in drug analysis: Varenicline and its metabolite in human urine. Anal Chim Acta 2014; 826:84-93. [DOI: 10.1016/j.aca.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 02/02/2023]
|
26
|
Plasma metabonomics study of the patients with acute anterior uveitis based on ultra-performance liquid chromatography-mass spectrometry. Graefes Arch Clin Exp Ophthalmol 2014; 252:925-34. [PMID: 24705912 DOI: 10.1007/s00417-014-2619-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The identification of the biomarkers of patients with acute anterior uveitis (AAU) may allow for a less invasive and more accurate diagnosis, as well as serving as a predictor in AAU progression and treatment response. The aim of this study was to identify the potential biomarkers and the metabolic pathways from plasma in patients with AAU. METHODS Both plasma metabolic biomarkers and metabolic pathways in the AAU patients versus healthy volunteers were investigated using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and a metabonomics approach. The principal component analysis (PCA) was used to separate AAU patients from healthy volunteers as well as to identify the different biomarkers between the two groups. Metabolic compounds were matched to the KEGG, METLIN, and HMDB databases, and metabolic pathways associated with AAU were identified. RESULTS The PCA for UPLC-MS data shows that the metabolites in AAU patients were significantly different from those of healthy volunteers. Of the 4,396 total features detected by UPLC-MS, 102 features were significantly different between AAU patients and healthy volunteers according to the variable importance plot (VIP) values (greater than two) of partial least squares discriminate analysis (PLS-DA). Thirty-three metabolic compounds were identified and were considered as potential biomarkers. Meanwhile, ten metabolic pathways were found that were related to the AAU according to the identified biomarkers. CONCLUSIONS These data suggest that metabolomics study can identify potential metabolites that differ between AAU patients and healthy volunteers. Based on the PCA, PLS-DA, several potential metabolic biomarkers and pathways in AAU patients were found and identified. In addition, the UPLC-MS technique combined with metabonomics could be a suitable systematic biology tool in research in clinical problems in ophthalmology, and can provide further insight into the pathophysiology of AAU.
Collapse
|
27
|
Chiadmi F, Schlatter J. Simultaneous determination of cotinine and trans-3-hydroxycotinine in urine by automated solid-phase extraction using gas chromatography-mass spectrometry. Biomed Chromatogr 2014; 28:453-8. [PMID: 24616054 PMCID: PMC4314699 DOI: 10.1002/bmc.3159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 11/24/2022]
Abstract
A gas chromatography–mass spectrometry method was developed and validated for the simultaneous automated solid-phase extraction and quantification of cotinine and trans-3-hydroxycotinine in human urine. Good linearity was observed over the concentration ranges studied (R2 > 0.99). The limit of quantification was 10 ng/mL for both analytes. The limits of detection were 0.06 ng/mL for cotinine (COT) and 0.02 ng/mL for trans-3-hydroxycotinine (OH-COT). Accuracy for COT ranged from 0.98 to 5.28% and the precision ranged from 1.24 to 8.78%. Accuracy for OH-COT ranged from −2.66 to 3.72% and the precision ranged from 3.15 to 7.07%. Mean recoveries for cotinine and trans-3-hydroxycotinine ranged from 77.7 to 89.1%, and from 75.4 to 90.2%, respectively. This analytical method for the simultaneous measurement of cotinine and trans-3-hydroxycotinine in urine will be used to monitor tobacco smoking in pregnant women and will permit the usefulness of trans-3-hydroxycotinine as a specific biomarker of tobacco exposure to be determined. © 2014 The Authors. Biomedical Chromatography published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Fouad Chiadmi
- Laboratoire de toxicologie de médecine légale, Hôpital Jean Verdier - APHP, Avenue du 14 juillet, 93140, Bondy, France
| | | |
Collapse
|
28
|
Simultaneous determination of nicotine and cotinine in serum using high-performance liquid chromatography with fluorometric detection and postcolumn UV-photoirradiation system. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 934:41-5. [DOI: 10.1016/j.jchromb.2013.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 06/15/2013] [Accepted: 06/22/2013] [Indexed: 11/21/2022]
|
29
|
Online monitoring oxidative products and metabolites of nicotine by free radicals generation with Fenton reaction in tandem mass spectrometry. ScientificWorldJournal 2013; 2013:189162. [PMID: 23983622 PMCID: PMC3745948 DOI: 10.1155/2013/189162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 12/21/2022] Open
Abstract
In general, over 70% absorbed nicotine is metabolized to cotinine and trans-3′-hydroxycotinine by cytochrome oxidase P450, and nicotine is also a major addictive and the psychoactive component in cigarettes. As a xenobiotic metabolism, hydrophobic compounds are usually converted into more hydrophilic products through enzyme systems such as cytochrome oxidase P450, sulfotransferases, and UDP-glucuronosyltransferases to deliver drug metabolites out of the cell during the drug metabolic process. In this study, an electrodeless electrochemical oxidation (EEO) reaction via Fenton reaction by producing free radical to react with nicotine to immediately monitor the oxidative products and metabolic derivatives of nicotine by tandem mass spectrometer (MS) is done. Fenton reaction generates free radicals via ferrous ion (Fe2+) and hydrogen peroxide (H2O2) to oxidize DNA and to degrade proteins in cells. In the EEO method, the oxidative products of nicotine including cotinine, cotinine-N-oxide, trans-3′-hydroxycotinine, nornicotine, norcotinine, 4-oxo-4-(3-pyridyl)-butanoic acid, 4-hydroxy-4-(3-pyridyl)-butanoic acid, and nicotine-N′-oxide were detected by tandem mass spectrometer to simulate the changes of nicotine and its derivatives in a time-dependent manner.
Collapse
|
30
|
Al-Haj A, Alawi M, Arafat T, Hourani MK. Method development, validation and bioequivalence of varenicline in human plasma by liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 931:134-9. [DOI: 10.1016/j.jchromb.2013.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/18/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
|
31
|
Kailasa SK, Wu HF. Recent Advances in Mass Spectrometry for the Identification of Neuro-chemicals and their Metabolites in Biofluids. Curr Neuropharmacol 2013; 11:436-64. [PMID: 24381533 PMCID: PMC3744906 DOI: 10.2174/1570159x11311040007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/22/2022] Open
Abstract
Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat – 395007, India
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 800, Kaohsiung, Taiwan
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
32
|
Coupling ultra high-pressure liquid chromatography with mass spectrometry: Constraints and possible applications. J Chromatogr A 2013; 1292:2-18. [PMID: 23062879 DOI: 10.1016/j.chroma.2012.09.061] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 01/10/2023]
|
33
|
De Cremer K, Van Overmeire I, Van Loco J. On-line solid-phase extraction with ultra performance liquid chromatography and tandem mass spectrometry for the detection of nicotine, cotinine and trans-3′-hydroxycotinine in urine to strengthen human biomonitoring and smoking cessation studies. J Pharm Biomed Anal 2013; 76:126-33. [DOI: 10.1016/j.jpba.2012.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/31/2012] [Accepted: 12/13/2012] [Indexed: 11/26/2022]
|