1
|
Deura K, Sakama A, Moriwaki Y, Citterio D, Hiruta Y. IgG-Binding Peptidomimetic Mixed-Charge Polymer-Modified Resins for Chromatographic Purification of Antibodies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67468-67476. [PMID: 39588642 DOI: 10.1021/acsami.4c16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The process of antibody purification using Fc affinity ligands such as protein A, G, and L faces several challenges including high cost, low stability, and loss of antibody activity due to harsh elution conditions. Here, we describe a chromatographic purification of antibodies utilizing a pH-responsive mixed-charge polymer that mimics the IgG-binding peptide (Z34C) derived from the B domain of protein A. The protein A mimetic resins were prepared by modifying the surface of a TOYOPEARL, methacrylate resin with a polymer that mimics the amino acid sequence of Z34C and the functions of histidine and acidic and neutral amino acids using histamine methacrylamide (HisMA), methacrylic acid, and neutral monomers. The therapeutic monoclonal antibody (mAb), rituximab, was retained on the column at pH 7 and eluted under mildly acidic conditions at pH 5 using a protein A mimetic resin (HisMA20-EEMA) optimized for antibody interaction. The injected antibodies were selectively captured on the column by hydrophobic and electrostatic interactions with the protein A mimetic polymer under neutral conditions and eluted by electrostatic repulsion under acidic conditions. The HisMA20-EEMA column successfully purified mAbs from mixtures with BSA, mouse ascites fluid, and hybridoma cell culture supernatant. In addition, the HisMA20-EEMA column consistently achieved 90% antibody recovery in 100 consecutive purifications from cell culture supernatant. The antibody purification method presented in this study is low cost, highly durable, easy to synthesize, and allows for mild elution conditions. The results demonstrate that the approach of mimicking IgG-binding peptides with mixed-charge polymers is useful for the development of column packing materials for antibody purification.
Collapse
Affiliation(s)
- Koichi Deura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akihiro Sakama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yasuhiro Moriwaki
- Division of Basic Biological Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Lei Y, Liu X, Lu L, Liu C, Xu R, Huang S, Shen Y, Deng C, Yu J, Zhang T, Crommen J, Wang Q, Jiang Z. Rapid preparation of 1-vinylimidazole based non-affinity polymers for the highly-selective purification of antibodies from multiple biological sources. J Chromatogr A 2020; 1632:461607. [PMID: 33080535 DOI: 10.1016/j.chroma.2020.461607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
There is an urgent need for developing advanced purification techniques with the merits of low cost and satisfactory capacity in order to meet the challenges in the current downstream purification of monoclonal antibodies (mAbs). Herein, a simple and inexpensive nitrogen heterocycle molecule, 1-vinylimidazole (VIM), was proposed as the capture ligand of antibodies for the first time. The corresponding VIM-based non-affinity polymeric material (polyVIM) was then fabricated via a one-step polymerization for use in the highly selective purification of antibodies. Compared to the previously reported materials, this novel material exhibited many advantages without clearly sacrificing selectivity, such as a simpler and faster fabrication (within 1.5 h), comparable or even higher binding capacity (saturated static adsorption capacity > 190 mg/g polymer, dynamic binding capacity about 31.62 mg/g polymer), lower non-specific protein adsorption, and much lower cost. Notably, the polyVIM can effectively purify the antibodies from multiple biological sources with high purity (95.4% for mAbs in the cell culture medium, 93.3% for hIgG in the human serum), with an acceptable recovery (91.6% for mAbs, 77.0% for hIgG), and good reusability (> 10 times). Moreover, the target ELISA binding assay and NFAT-luc reporter gene assay demonstrated that the enriched antibodies can well maintain their binding activity and bioactivity during the whole purification process. The excellent performance of the polyVIM material may be attributed to the high recognition ability of VIM for antibodies, as well as the biocompatible and antifouling properties of the porous polymer. This study provides a promising alternative material for the purification of mAbs in downstream processes and the enrichment of hIgG in human serum.
Collapse
Affiliation(s)
- Yutian Lei
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Li Lu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Cuihua Liu
- Bio-Thera Solutions, Ltd., Guangzhou 510700, China
| | - Rongrong Xu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shengfeng Huang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yuan Shen
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | | | - Jinchen Yu
- Bio-Thera Solutions, Ltd., Guangzhou 510700, China
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000, Liege, Belgium
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
4
|
Islam T, Naik AD, Hashimoto Y, Menegatti S, Carbonell RG. Optimization of Sequence, Display, and Mode of Operation of IgG-Binding Peptide Ligands to Develop Robust, High-Capacity Affinity Adsorbents That Afford High IgG Product Quality. Int J Mol Sci 2019; 20:E161. [PMID: 30621158 PMCID: PMC6337475 DOI: 10.3390/ijms20010161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
This work presents the use of peptide ligand HWRGWV and its cognate sequences to develop affinity adsorbents that compete with Protein A in terms of binding capacity and quality of the eluted product. First, the peptide ligand was conjugated to crosslinked agarose resins (WorkBeads) at different densities and using different spacer arms. The optimization of ligand density and display resulted in values of static and dynamic binding capacity of 85 mg/mL and 65 mg/mL, respectively. A selected peptide-WorkBeads adsorbent was utilized for purifying Mabs from Chinese Hamster Ovary (CHO) cell culture supernatants. The peptide-WorkBeads adsorbent was found able to withstand sanitization with strong alkaline solutions (0.5 M NaOH). The purity of the eluted product was consistently higher than 95%, with logarithmic removal value (LRV) of 1.5 for host cell proteins (HCPs) and 4.0 for DNA. HCP clearance was significantly improved by adding a post-load washing step with either 0.1 M Tris HCl pH 9 or 1 M NaCl. The cognate peptide of HWRGWV, constructed by replacing arginine (R) with citrulline, further increased the HCP LRV to 2.15. The peptide-based adsorbent also showed a remarkable performance in terms of removal of Mab aggregates; unlike Protein A, in fact, HWRGWV was found to bind only monomeric IgG. Collectively, these results demonstrate the potential of peptide-based adsorbents as alternative to Protein A for the purification of therapeutic antibodies.
Collapse
Affiliation(s)
- Tuhidul Islam
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Amith D Naik
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Yasuhiro Hashimoto
- Department of Research and Development, Fuji Silysia Chemical LTD, Kasugai Aichi 487-0013, Japan.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
5
|
Pavan GL, Bresolin ITL, Muzio AFV, Cunha DC, Bueno SMA. Phospho-l
-tyrosine-agarose chromatography: Adsorption of human IgG and its proteolytic fragments. Biomed Chromatogr 2018; 33:e4397. [DOI: 10.1002/bmc.4397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Gisele Luiza Pavan
- School of Chemical Engineering; University of Campinas; Campinas SP Brazil
| | | | | | | | | |
Collapse
|
6
|
Marinou M, Platis D, Ataya FS, Chronopoulou E, Vlachakis D, Labrou NE. Structure-based design and application of a nucleotide coenzyme mimetic ligand: Application to the affinity purification of nucleotide dependent enzymes. J Chromatogr A 2018; 1535:88-100. [PMID: 29331223 DOI: 10.1016/j.chroma.2018.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
In the present study, a structure-based approach was exploited for the in silico design of a nucleotide coenzyme mimetic ligand. The enzyme formate dehydrogenase (FDH) was employed as a model in our study. The biomimetic ligand was designed and synthesized based on a tryptamine/3-aminopropylphosphonic acid bi-substituted 1,3,5-triazine (Trz) scaffold (Tra-Trz-3APP), which potentially mimics the interactions of NAD+-FDH complex. Molecular docking studies of the biomimetic ligand predicted that it can occupy the same binding site as the natural coenzyme. Molecular modeling and dynamics simulations revealed that the ligand binds in an energetically more stable pose in the FDH binding site, as it adopts a more twisty conformation, compared to the natural coenzyme. Study of the FDH/Tra-Trz-3APP-Sepharose interaction, through adsorption equilibrium studies and site-directed mutagenesis of selected FDH coenzyme binding residues, provided additional experimental evidences of the specificity of the interaction. The Tra-Trz-3APP-Sepharose biomimetic adsorbent was further evaluated towards a range of different dehydrogenases and was exploited for the development of a single-step purification protocol for FDH. The protocol afforded enzyme with high yield and purity, suitable for analytical and industrial purposes.
Collapse
Affiliation(s)
- Marigianna Marinou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Dimitrios Platis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece
| | - Dimitrios Vlachakis
- Genetics and Structural Bioinformatics Group, Division of Clinical - Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, Athens, 11527, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece.
| |
Collapse
|
7
|
Serge NE, Laurette Blandine MK, Kumar S, Clergé T, Vijayalakshmi M. Extraction, purification, and biochemical characterization of serine protease from leaves of Abrus precatorius. Prep Biochem Biotechnol 2017; 47:1016-1024. [DOI: 10.1080/10826068.2017.1373289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ngangoum Eric Serge
- Bioprocess Laboratory, Institute University of Technology, University of Ngaoundere, Ngaoundere, Cameroon
- Centre for Bio-separation Technology, VIT University, Vellore, Tamil Nadu, India
| | | | - Sanjit Kumar
- Bioprocess Laboratory, Institute University of Technology, University of Ngaoundere, Ngaoundere, Cameroon
| | - Tchiégang Clergé
- Bioprocess Laboratory, Institute University of Technology, University of Ngaoundere, Ngaoundere, Cameroon
| | | |
Collapse
|
8
|
Karkra K, Tetala KK, Vijayalakshmi M. A structure based plasma protein pre-fractionation using conjoint immobilized metal/chelate affinity (IMA) system. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:1-9. [DOI: 10.1016/j.jchromb.2017.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/11/2017] [Accepted: 02/25/2017] [Indexed: 11/27/2022]
|