1
|
Tian H, Tao Z, Zhang W, Chen Y, Su T, Wang X, Yang H, Cai H, Liu S, Zhang Y, Zhang Y. Comparative Proteomics and N-Glycoproteomics Reveal the Effects of Different Plasma Protein Enrichment Technologies. J Proteome Res 2025; 24:134-143. [PMID: 39668702 DOI: 10.1021/acs.jproteome.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Human plasma proteomic and glycoproteomic analyses have emerged as an alternate avenue to identify disease biomarkers and therapeutic approaches. However, the vast number of high-abundance proteins in plasma can cause mass spectrometry (MS) suppression, which makes it challenging to detect low-abundance proteins (LAP). Currently, immunoaffinity-based depletion methods and strategies involving nanomaterial protein coronas have been developed to remove high-abundance proteins (HAP) and enhance the depth of plasma protein identification. Despite these advancements, there is a lack of systematic comparison and evaluation of the qualitative and quantitative effects of different strategies on the human plasma proteome and glycoproteome. In this study, we evaluated the performance of four depletion methods including combinatorial peptide ligand libraries (CPLL), Top 2, Top 14, and the nanomaterial protein corona formed by magnetic nanoparticles (MN) in both plasma proteomics and N-glycoproteomics. Compared to the CPLL, Top 2, and Top 14 strategies, the MN approach significantly increased the number of identified peptides and proteins. However, it demonstrated a relatively lower efficacy in identifying intact N-glycopeptides and N-glycoproteins. In contrast, the immunoaffinity-based depletion methods are better suited to glycoproteomics due to higher identification numbers. We believe that this work provides valuable insights and options for various research objectives, as well as clinical applications.
Collapse
Affiliation(s)
- Huohuan Tian
- Department of Respiratory & Critical Care Medicine, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ze Tao
- Department of Respiratory & Critical Care Medicine, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanli Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhe Chen
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Department of Respiratory & Critical Care Medicine, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyuan Wang
- Department of Respiratory & Critical Care Medicine, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Department of Respiratory & Critical Care Medicine, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Cai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu 610097, China
| | - Shuyun Liu
- Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
- Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of General Surgery, Chengdu ShangJinNanFu Hospital, Chengdu 610000, China
| | - Yong Zhang
- Department of Respiratory & Critical Care Medicine, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Nikhil P, Aishwarya D, Dhingra S, Pandey K, Ravichandiran V, Peraman R. Comparative analysis of plasma affinity depletion methods: Impact on protein composition and phosphopeptide abundance in human plasma. Electrophoresis 2024; 45:1860-1873. [PMID: 39031703 DOI: 10.1002/elps.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 07/22/2024]
Abstract
Affinity-based protein depletion and TiO2 enrichment methods play a crucial role in detection of low-abundant proteins and phosphopeptides enrichment, respectively. Here, we assessed the effectiveness of HSA/IgG (HU2) and Human 7 (HU7) depletion methods and their impact on phosphopeptides coverage through comparative proteome analysis, utilizing in-solution digestion and nano-LC-Orbitrap mass spectrometry (MS). Our results demonstrated that both HU2 and HU7 affinity depletion significantly decreased high-abundant proteins by 1.5-7.8-fold (p < 0.001). A total of 1491 proteins were identified, with 48 proteins showing significant expression in the depleted groups. Notably, cadherin-13, neutrophil defensin 1, APM1, and desmoplakin variant protein were exclusively detected in the HU2/HU7-depleted groups. Furthermore, study on effect of depletion on phosphopeptides revealed an increase in tandem MS spectral counts with notable decrease (∼50%) in peptide spectrum matching in depleted groups, which was attributed to significant reduction in protein counts. Our post translation modification workflow for phosphoproteomics detected 42 phosphorylated peptides, corresponding to 12 phosphoproteins with unique peptide match ≥2 (high false discovery rates confidence). Among them, 10 phosphorylated proteins are highly expressed in depleted groups. Overall, these findings offer valuable insights in selection of protein depletion methods for comprehensive plasma proteomics analysis.
Collapse
Affiliation(s)
- Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Krishna Pandey
- Division of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
3
|
Sun T, Lin Y, Yu Y, Gao S, Gao X, Zhang H, Lin K, Lin J. Low-abundance proteins-based label-free SERS approach for high precision detection of liver cancer with different stages. Anal Chim Acta 2024; 1304:342518. [PMID: 38637045 DOI: 10.1016/j.aca.2024.342518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Surface-enhanced Raman scattering (SERS) technology have unique advantages of rapid, simple, and highly sensitive in the detection of serum, it can be used for the detection of liver cancer. However, some protein biomarkers in body fluids are often present at ultra-low concentrations and severely interfered with by the high-abundance proteins (HAPs), which will affect the detection of specificity and accuracy in cancer screening based on the SERS immunoassay. Clearly, there is a need for an unlabeled SERS method based on low abundance proteins, which is rapid, noninvasive, and capable of high precision detection and screening of liver cancer. RESULTS Serum samples were collected from 60 patients with liver cancer (27 patients with stage T1 and T2 liver cancer, 33 patients with stage T3 and T4 liver cancer) and 40 healthy volunteers. Herein, immunoglobulin and albumin were separated by immune sorption and Cohn ethanol fractionation. Then, the low abundance protein (LAPs) was enriched, and high-quality SERS spectral signals were detected and obtained. Finally, combined with the principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, the SERS spectrum of early liver cancer (T1-T2) and advanced liver cancer (T3-T4) could be well distinguished from normal people, and the accuracy rate was 98.5% and 100%, respectively. Moreover, SERS technology based on serum LAPs extraction combined with the partial least square-support vector machine (PLS-SVM) successfully realized the classification and prediction of normal volunteers and liver cancer patients with different tumor (T) stages, and the diagnostic accuracy of PLS-SVM reached 87.5% in the unknown testing set. SIGNIFICANCE The experimental results show that the serum LAPs SERS detection combined with multivariate statistical algorithms can be used for effectively distinguishing liver cancer patients from healthy volunteers, and even achieved the screening of early liver cancer with high accuracy (T1 and T2 stage). These results showed that serum LAPs SERS detection combined with a multivariate statistical diagnostic algorithm has certain application potential in early cancer screening.
Collapse
Affiliation(s)
- Tong Sun
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, 361024, China
| | - Yamin Lin
- MOE Key Laboratory of Opto Electronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yun Yu
- College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases (Fujian Province University), Synthesized Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Siqi Gao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and the Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xingen Gao
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, 361024, China
| | - Hongyi Zhang
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, 361024, China
| | - Kecan Lin
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
| | - Juqiang Lin
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, 361024, China.
| |
Collapse
|
4
|
Paranamana N, El Rassi Z. Precursor carboxy-silica for functionalization with interactive ligands. IV. Carbodiimide assisted preparation of immobilized antibody stationary phases for high performance immuno-affinity chromatography of human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124131. [PMID: 38663075 DOI: 10.1016/j.jchromb.2024.124131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this Part IV of the article series dealing with the functionalization of the precursor carboxy silica with various chromatographic ligands, immuno affinity (IA) columns were prepared with immobilized anti-apolipoprotein B (AAP B) and anti-haptoglobin (AHP) antibodies for use in immuno affinity chromatography (IAC) in the aim of selectivily capturing their corresponding antigens from healthy and cancer human sera. Diseased human serum with adenocarcinoma cancer was selected as a typical diseased biological fluid. Besides preferentially capturing their corresponding antigens, the AAP B column captured from disease-free and cancer sera, 34 proteins and 33 proteins, respectively, while the AHP column enriched 38 and 47 proteins, respectively. This nonspecific binding can be attributed to the many proteins human serum have, which could mediate protein-protein interactions thus leading to the so-called "sponge effect". This kind of behavior can be exploited positively in the determination of differentially expressed proteins (DEPs) for diseased serum with respect to healthy serum and in turn allow the identification of an array of potential biomarkers for cancer. In fact, For AHP column, 13 upregulated and 22 downregulated proteins were identified whereas for AAP B column the numbers were 23 and 10, respectively. The DEPs identified with both columns match those reported in the literature for other types of cancers. The different expression of proteins in each IAC column can be related to the variability of protein-protein interactions. In addition, an array of a few biomarkers is more indicative of a certain disease than a single biomarker.
Collapse
Affiliation(s)
- Nilushi Paranamana
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071.
| |
Collapse
|
5
|
Nakayasu ES, Gritsenko MA, Kim YM, Kyle JE, Stratton KG, Nicora CD, Munoz N, Navarro KM, Claborne D, Gao Y, Weitz KK, Paurus VL, Bloodsworth KJ, Allen KA, Bramer LM, Montes F, Clark KA, Tietje G, Teeguarden J, Burnum-Johnson KE. Elucidating regulatory processes of intense physical activity by multi-omics analysis. Mil Med Res 2023; 10:48. [PMID: 37853489 PMCID: PMC10583322 DOI: 10.1186/s40779-023-00477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Nathalie Munoz
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kathleen M Navarro
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Denver, CO, 80204, USA
| | - Daniel Claborne
- Computational Analytics Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Kelsey A Allen
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Fernando Montes
- Los Angeles County Fire Department, Los Angeles, CA, 90063, USA
| | - Kathleen A Clark
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, USA
| | - Grant Tietje
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Justin Teeguarden
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Kristin E Burnum-Johnson
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
| |
Collapse
|
6
|
Guzman NA, Guzman DE, Blanc T. Advancements in portable instruments based on affinity-capture-migration and affinity-capture-separation for use in clinical testing and life science applications. J Chromatogr A 2023; 1704:464109. [PMID: 37315445 DOI: 10.1016/j.chroma.2023.464109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
The shift from testing at centralized diagnostic laboratories to remote locations is being driven by the development of point-of-care (POC) instruments and represents a transformative moment in medicine. POC instruments address the need for rapid results that can inform faster therapeutic decisions and interventions. These instruments are especially valuable in the field, such as in an ambulance, or in remote and rural locations. The development of telehealth, enabled by advancements in digital technologies like smartphones and cloud computing, is also aiding in this evolution, allowing medical professionals to provide care remotely, potentially reducing healthcare costs and improving patient longevity. One notable POC device is the lateral flow immunoassay (LFIA), which played a major role in addressing the COVID-19 pandemic due to its ease of use, rapid analysis time, and low cost. However, LFIA tests exhibit relatively low analytical sensitivity and provide semi-quantitative information, indicating either a positive, negative, or inconclusive result, which can be attributed to its one-dimensional format. Immunoaffinity capillary electrophoresis (IACE), on the other hand, offers a two-dimensional format that includes an affinity-capture step of one or more matrix constituents followed by release and electrophoretic separation. The method provides greater analytical sensitivity, and quantitative information, thereby reducing the rate of false positives, false negatives, and inconclusive results. Combining LFIA and IACE technologies can thus provide an effective and economical solution for screening, confirming results, and monitoring patient progress, representing a key strategy in advancing diagnostics in healthcare.
Collapse
Affiliation(s)
- Norberto A Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, United States of America.
| | - Daniel E Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, United States of America; Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Timothy Blanc
- Eli Lilly and Company, Branchburg, NJ 08876, United States of America
| |
Collapse
|
7
|
Bottom-Up Proteomics: Advancements in Sample Preparation. Int J Mol Sci 2023; 24:ijms24065350. [PMID: 36982423 PMCID: PMC10049050 DOI: 10.3390/ijms24065350] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based proteomics is a powerful technique for profiling proteomes of cells, tissues, and body fluids. Typical bottom-up proteomic workflows consist of the following three major steps: sample preparation, LC–MS/MS analysis, and data analysis. LC–MS/MS and data analysis techniques have been intensively developed, whereas sample preparation, a laborious process, remains a difficult task and the main challenge in different applications. Sample preparation is a crucial stage that affects the overall efficiency of a proteomic study; however, it is prone to errors and has low reproducibility and throughput. In-solution digestion and filter-aided sample preparation are the typical and widely used methods. In the past decade, novel methods to improve and facilitate the entire sample preparation process or integrate sample preparation and fractionation have been reported to reduce time, increase throughput, and improve reproducibility. In this review, we have outlined the current methods used for sample preparation in proteomics, including on-membrane digestion, bead-based digestion, immobilized enzymatic digestion, and suspension trapping. Additionally, we have summarized and discussed current devices and methods for integrating different steps of sample preparation and peptide fractionation.
Collapse
|
8
|
Abstract
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system, particularly in the separation of intact proteins. A modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual protein species including protein isoforms and post-translational modifications. This chapter discusses the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research, particularly on recombinant Chinese hamster ovary cells, which are also discussed in this chapter.
Collapse
Affiliation(s)
- Paula Meleady
- School of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
9
|
Yang R, Han Y, Yi W, Long Q. Autoantibodies as biomarkers for breast cancer diagnosis and prognosis. Front Immunol 2022; 13:1035402. [PMID: 36451832 PMCID: PMC9701846 DOI: 10.3389/fimmu.2022.1035402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 10/07/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide and is a substantial public health problem. Screening for breast cancer mainly relies on mammography, which leads to false positives and missed diagnoses and is especially non-sensitive for patients with small tumors and dense breasts. The prognosis of breast cancer is mainly classified by tumor, node, and metastasis (TNM) staging, but this method does not consider the molecular characteristics of the tumor. As the product of the immune response to tumor-associated antigens, autoantibodies can be detected in peripheral blood and can be used as noninvasive, presymptomatic, and low-cost biomarkers. Therefore, autoantibodies can provide a possible supplementary method for breast cancer screening and prognosis classification. This article introduces the methods used to detect peripheral blood autoantibodies and the research progress in the screening and prognosis of breast cancer made in recent years to provide a potential direction for the examination and treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Nabeta R, Katselis GS, Chumala P, Dickinson R, Fernandez NJ, Meachem MD. Identification of potential plasma protein biomarkers for feline pancreatic carcinoma by liquid chromatography tandem mass spectrometry. Vet Comp Oncol 2022; 20:720-731. [PMID: 35514180 DOI: 10.1111/vco.12826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
In both humans and cats, pancreatic carcinoma is an aggressive cancer with a grave prognosis. Proteomics techniques have successfully identified several blood-based biomarkers of human pancreatic neoplasia. Thus, this study aims to investigate whether similar biomarkers can be identified in the plasma of cats with FePAC by using liquid chromatography tandem mass spectrometry (LC-MS/MS). To facilitate evaluation of the low abundance plasma proteome, a human-based immunodepletion device (MARS-2) was first validated for use with feline plasma. Marked reduction and/or complete removal of albumin and immunoglobulins was confirmed by analysis of electrophoretograms and mass spectral data. Subsequently, plasma collected from 9 cats with pancreatic carcinoma (FePAC), 10 cats with symptomatic pancreatitis, and 10 healthy control cats was immunodepleted and subjected to LC-MS/MS. Thirty-seven plasma proteins were found to be differentially expressed (p < .05 in one-way ANOVA, FC >2 in fold change analysis). Among these proteins, ETS variant transcription factor 4 (p < .05) was overexpressed, while gelsolin (p < .01), tryptophan 2,3-dioxygenase (p < .05), serpin family F member 1 (p < .01), apolipoprotein A-IV (p < .01) and phosphatidylinositol-glycan-specific phospholipase D (p < .05) were down-regulated in cats with FePAC. Further studies on these potential biomarkers are needed to investigate their diagnostic value.
Collapse
Affiliation(s)
- Rina Nabeta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S Katselis
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paulos Chumala
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan Dickinson
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicole J Fernandez
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Melissa D Meachem
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Abstract
Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the intersection of molecular biology, paleontology, archaeology, paleoecology, and history. Paleoproteomics research leverages the longevity and diversity of proteins to explore fundamental questions about the past. While its origins predate the characterization of DNA, it was only with the advent of soft ionization mass spectrometry that the study of ancient proteins became truly feasible. Technological gains over the past 20 years have allowed increasing opportunities to better understand preservation, degradation, and recovery of the rich bioarchive of ancient proteins found in the archaeological and paleontological records. Growing from a handful of studies in the 1990s on individual highly abundant ancient proteins, paleoproteomics today is an expanding field with diverse applications ranging from the taxonomic identification of highly fragmented bones and shells and the phylogenetic resolution of extinct species to the exploration of past cuisines from dental calculus and pottery food crusts and the characterization of past diseases. More broadly, these studies have opened new doors in understanding past human-animal interactions, the reconstruction of past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored "dark" proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
Collapse
Affiliation(s)
- Christina Warinner
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristine Korzow Richter
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew J. Collins
- Department
of Archaeology, Cambridge University, Cambridge CB2 3DZ, United Kingdom
- Section
for Evolutionary Genomics, Globe Institute,
University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
12
|
Proteomic Discovery and Validation of Novel Fluid Biomarkers for Improved Patient Selection and Prediction of Clinical Outcomes in Alzheimer’s Disease Patient Cohorts. Proteomes 2022; 10:proteomes10030026. [PMID: 35997438 PMCID: PMC9397030 DOI: 10.3390/proteomes10030026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive decline. The two cardinal neuropathological hallmarks of AD include the buildup of cerebral β amyloid (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau. The current disease-modifying treatments are still not effective enough to lower the rate of cognitive decline. There is an urgent need to identify early detection and disease progression biomarkers that can facilitate AD drug development. The current established readouts based on the expression levels of amyloid beta, tau, and phospho-tau have shown many discrepancies in patient samples when linked to disease progression. There is an urgent need to identify diagnostic and disease progression biomarkers from blood, cerebrospinal fluid (CSF), or other biofluids that can facilitate the early detection of the disease and provide pharmacodynamic readouts for new drugs being tested in clinical trials. Advances in proteomic approaches using state-of-the-art mass spectrometry are now being increasingly applied to study AD disease mechanisms and identify drug targets and novel disease biomarkers. In this report, we describe the application of quantitative proteomic approaches for understanding AD pathophysiology, summarize the current knowledge gained from proteomic investigations of AD, and discuss the development and validation of new predictive and diagnostic disease biomarkers.
Collapse
|
13
|
Trinh D, Gardner RA, Franciosi AN, McCarthy C, Keane MP, Soliman MG, O’Donnell JS, Meleady P, Spencer DIR, Monopoli MP. Nanoparticle Biomolecular Corona-Based Enrichment of Plasma Glycoproteins for N-Glycan Profiling and Application in Biomarker Discovery. ACS NANO 2022; 16:5463-5475. [PMID: 35341249 PMCID: PMC9047655 DOI: 10.1021/acsnano.1c09564] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/10/2022] [Indexed: 05/28/2023]
Abstract
Biomolecular corona formation has emerged as a recurring and important phenomenon in nanomedicine that has been investigated for potential applications in disease diagnosis. In this study, we have combined the "personalized protein corona" with the N-glycosylation profiling that has recently gained considerable interest in human plasma biomarker discovery as a powerful early warning diagnostic and patient stratification tool. We envisioned that the protein corona formation could be exploited as an enrichment step that is critically important in both proteomic and proteoglycomic workflows. By using silica nanoparticles, plasma fibrinogen was enriched to a level in which its proteomic and glycomic "fingerprints" could be traced with confidence. Despite being a more simplified glycan profile compared to full plasma, the corona glycan profile revealed a fibrinogen-derived glycan peak that was found to potentially distinguish lung cancer patients from controls in a pilot study.
Collapse
Affiliation(s)
- Duong
N. Trinh
- Department
of Chemistry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Richard A. Gardner
- Ludger
Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom
| | - Alessandro N. Franciosi
- UBC
Faculty of Medicine, Department of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Cormac McCarthy
- Department
of Respiratory Medicine, St. Vincent’s
University Hospital, Dublin 4, Ireland
- School
of Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael P. Keane
- Department
of Respiratory Medicine, St. Vincent’s
University Hospital, Dublin 4, Ireland
- School
of Medicine, University College Dublin, Dublin 4, Ireland
| | - Mahmoud G. Soliman
- Department
of Chemistry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland
- Physics Department,
Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - James S. O’Donnell
- Irish
Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences,
Royal College of Surgeons in Ireland, University
of Medicine and Health Sciences, Dublin 2, Ireland
| | - Paula Meleady
- School
of
Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Daniel I. R. Spencer
- Ludger
Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom
| | - Marco P. Monopoli
- Department
of Chemistry, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin 2, Ireland
| |
Collapse
|
14
|
Sun R, Cui C, Zhou Y, Cui Q. Comprehensive Analysis of RNA Expression Correlations between Biofluids and Human Tissues. Genes (Basel) 2021; 12:935. [PMID: 34207420 PMCID: PMC8234006 DOI: 10.3390/genes12060935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, biofluid has been considered a promising source of non-invasive biomarkers for health monitoring and disease diagnosis. However, the expression consistency between biofluid and human tissue, which is fundamental to RNA biomarker development, has not been fully evaluated. In this study, we collected expression profiles across 53 human tissues and five main biofluid types. Utilizing the above dataset, we uncovered a globally positive correlation pattern between various biofluids (including blood, urine, bile, saliva and stool) and human tissues. However, significantly varied biofluid-tissue similarity levels and tendencies were observed between mRNA and lncRNA. Moreover, a higher correlation was found between biofluid types and their functionally related and anatomically closer tissues. In particular, a highly specific correlation was discovered between urine and the prostate. The biological sex of the donor was also proved to be an important influencing factor in biofluid-tissue correlation. Moreover, genes enriched in basic biological processes were found to display low variability across biofluid types, while genes enriched in catabolism-associated pathways were identified as highly variable.
Collapse
Affiliation(s)
| | | | | | - Qinghua Cui
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-Coding RNA Medicine, Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (R.S.); (C.C.); (Y.Z.)
| |
Collapse
|
15
|
Huang L, Shao D, Wang Y, Cui X, Li Y, Chen Q, Cui J. Human body-fluid proteome: quantitative profiling and computational prediction. Brief Bioinform 2021; 22:315-333. [PMID: 32020158 PMCID: PMC7820883 DOI: 10.1093/bib/bbz160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Empowered by the advancement of high-throughput bio technologies, recent research on body-fluid proteomes has led to the discoveries of numerous novel disease biomarkers and therapeutic drugs. In the meantime, a tremendous progress in disclosing the body-fluid proteomes was made, resulting in a collection of over 15 000 different proteins detected in major human body fluids. However, common challenges remain with current proteomics technologies about how to effectively handle the large variety of protein modifications in those fluids. To this end, computational effort utilizing statistical and machine-learning approaches has shown early successes in identifying biomarker proteins in specific human diseases. In this article, we first summarized the experimental progresses using a combination of conventional and high-throughput technologies, along with the major discoveries, and focused on current research status of 16 types of body-fluid proteins. Next, the emerging computational work on protein prediction based on support vector machine, ranking algorithm, and protein-protein interaction network were also surveyed, followed by algorithm and application discussion. At last, we discuss additional critical concerns about these topics and close the review by providing future perspectives especially toward the realization of clinical disease biomarker discovery.
Collapse
Affiliation(s)
- Lan Huang
- College of Computer Science and Technology in the Jilin University
| | - Dan Shao
- College of Computer Science and Technology in the Jilin University
- College of Computer Science and Technology in Changchun University
| | - Yan Wang
- College of Computer Science and Technology in the Jilin University
| | - Xueteng Cui
- College of Computer Science and Technology in the Changchun University
| | - Yufei Li
- College of Computer Science and Technology in the Changchun University
| | - Qian Chen
- College of Computer Science and Technology in the Jilin University
| | - Juan Cui
- Department of Computer Science and Engineering in the University of Nebraska-Lincoln
| |
Collapse
|
16
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
17
|
Proteomic analysis of platelet-rich and platelet-poor plasma. Regen Ther 2020; 15:226-235. [PMID: 33426223 PMCID: PMC7770407 DOI: 10.1016/j.reth.2020.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022] Open
Abstract
Background Autologous blood products, such as platelet-rich plasma (PRP) are commercial products broadly used to accelerate healing of tissues after injuries. However, their content is not standardized and significantly varies in composition, which may lead to differences in clinical efficacy. Also, the underlying molecular mechanisms for therapeutic effects are not well understood. Purpose A proteomic study was performed to compare the composition of low leukocyte PRP, platelet poor plasma (PPP), and blood plasma. Pathway analysis of the proteomic data was performed to evaluate differences between plasma formulations at the molecular level. Low abundance regulatory proteins in plasma were identified and quantified as well as cellular pathways regulated by those proteins. Methods Quantitative proteomic analysis, using multiplexed isotopically labeled tags (TMT labeling) and label-free tandem mass spectrometry, was performed on plasma, low leukocyte PRP, and PPP. Plasma formulations were derived from two blood donors (one donor per experiment). Pathway analysis of the proteomic data identified the major differences between formulations. Results Nearly 600 proteins were detected in three types of blood plasma formulations in two experiments. Identified proteins showed more than 50% overlap between plasma formulations. Detected proteins represented more than 100 canonical pathways, as was identified by pathway analysis. The major pathways and regulatory molecules were linked to inflammation. Conclusion Three types of plasma formulations were compared in two proteomic experiments. The most represented pathways, such as Acute Phase Response, Coagulation, or System of the Complement, had many proteins in common in both experiments. In both experiments plasma sample sets had the same direction of biochemical pathway changes: up- or down-regulation. The most represented biochemical pathways are linked to inflammation.
Collapse
|
18
|
Contribution of Multiplex Immunoassays to Rheumatoid Arthritis Management: From Biomarker Discovery to Personalized Medicine. J Pers Med 2020; 10:jpm10040202. [PMID: 33142977 PMCID: PMC7712300 DOI: 10.3390/jpm10040202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial, inflammatory and progressive autoimmune disease that affects approximately 1% of the population worldwide. RA primarily involves the joints and causes local inflammation and cartilage destruction. Immediate and effective therapies are crucial to control inflammation and prevent deterioration, functional disability and unfavourable progression in RA patients. Thus, early diagnosis is critical to prevent joint damage and physical disability, increasing the chance of achieving remission. A large number of biomarkers have been investigated in RA, although only a few have made it through the discovery and validation phases and reached the clinic. The single biomarker approach mostly used in clinical laboratories is not sufficiently accurate due to its low sensitivity and specificity. Multiplex immunoassays could provide a more complete picture of the disease and the pathways involved. In this review, we discuss the latest proposed protein biomarkers and the advantages of using protein panels for the clinical management of RA. Simultaneous analysis of multiple proteins could yield biomarker signatures of RA subtypes to enable patients to benefit from personalized medicine.
Collapse
|
19
|
Jankovska E, Lipcseyova D, Svrdlikova M, Pavelcova M, Kubala Havrdova E, Holada K, Petrak J. Quantitative proteomic analysis of cerebrospinal fluid of women newly diagnosed with multiple sclerosis. Int J Neurosci 2020; 132:724-734. [PMID: 33059501 DOI: 10.1080/00207454.2020.1837801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The lack of reliable diagnostic and/or prognostic biomarkers for multiple sclerosis (MS) is the major obstacle to timely and accurate patient diagnosis in MS patients. To identify new proteins associated with MS we performed a detailed proteomic analysis of cerebrospinal fluid (CSF) of patients newly diagnosed with relapsing-remitting MS (RRMS) and healthy controls. MATERIAL Reflecting significantly higher prevalence of MS in women we included only women patients and controls in the study. To eliminate a potential effect of therapy on the CSF composition, only the therapy-naïve patients were included. METHODS Pooled CSF samples were processed in a technical duplicate, and labeled with stable-isotope coded TMT tags. To maximize the proteome coverage, peptide fractionation using 2D-LC preceded mass analysis using Orbitrap Fusion Tribrid Mass Spectrometer. Differential concentration of selected identified proteins between patients and controls was verified using specific antibodies. RESULTS Of the identified 900 CSF proteins, we found 69 proteins to be differentially abundant between patients and controls. In addition to several proteins identified as differentially abundant in MS patients previously, we observed several linked to MS for the first time, namely eosinophil-derived neurotoxin and Nogo receptor. CONCLUSIONS Our data confirm differential abundance of several previously proposed protein markers, and provide indirect support for involvement of copper-iron disbalance in MS. Most importantly, we identified two new differentially abundant CSF proteins that seem to be directly connected with myelin loss and axonal damage via TLR2 signaling and Nogo-receptor pathway in women newly diagnosed with RRMS.
Collapse
Affiliation(s)
- Eliska Jankovska
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Denisa Lipcseyova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michaela Svrdlikova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Miluse Pavelcova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
20
|
Lanigan LT, Mackie M, Feine S, Hublin JJ, Schmitz RW, Wilcke A, Collins MJ, Cappellini E, Olsen JV, Taurozzi AJ, Welker F. Multi-protease analysis of Pleistocene bone proteomes. J Proteomics 2020; 228:103889. [DOI: 10.1016/j.jprot.2020.103889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
|
21
|
Garcia-Rosa S, Carvalho BS, Guest PC, Steiner J, Martins-de-Souza D. Blood plasma proteomic modulation induced by olanzapine and risperidone in schizophrenia patients. J Proteomics 2020; 224:103813. [DOI: 10.1016/j.jprot.2020.103813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
|
22
|
Lamont RF, Richardson LS, Boniface JJ, Cobo T, Exner MM, Christensen IB, Forslund SK, Gaba A, Helmer H, Jørgensen JS, Khan RN, McElrath TF, Petro K, Rasmussen M, Singh R, Tribe RM, Vink JS, Vinter CA, Zhong N, Menon R. Commentary on a combined approach to the problem of developing biomarkers for the prediction of spontaneous preterm labor that leads to preterm birth. Placenta 2020; 98:13-23. [PMID: 33039027 DOI: 10.1016/j.placenta.2020.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Globally, preterm birth has replaced congenital malformation as the major cause of perinatal mortality and morbidity. The reduced rate of congenital malformation was not achieved through a single biophysical or biochemical marker at a specific gestational age, but rather through a combination of clinical, biophysical and biochemical markers at different gestational ages. Since the aetiology of spontaneous preterm birth is also multifactorial, it is unlikely that a single biomarker test, at a specific gestational age will emerge as the definitive predictive test. METHODS The Biomarkers Group of PREBIC, comprising clinicians, basic scientists and other experts in the field, with a particular interest in preterm birth have produced this commentary with short, medium and long-term aims: i) to alert clinicians to the advances that are being made in the prediction of spontaneous preterm birth; ii) to encourage clinicians and scientists to continue their efforts in this field, and not to be disheartened or nihilistic because of a perceived lack of progress and iii) to enable development of novel interventions that can reduce the mortality and morbidity associated with preterm birth. RESULTS Using language that we hope is clear to practising clinicians, we have identified 11 Sections in which there exists the potential, feasibility and capability of technologies for candidate biomarkers in the prediction of spontaneous preterm birth and how current limitations to this research might be circumvented. DISCUSSION The combination of biophysical, biochemical, immunological, microbiological, fetal cell, exosomal, or cell free RNA at different gestational ages, integrated as part of a multivariable predictor model may be necessary to advance our attempts to predict sPTL and PTB. This will require systems biological data using "omics" data and artificial intelligence/machine learning to manage the data appropriately. The ultimate goal is to reduce the mortality and morbidity associated with preterm birth.
Collapse
Affiliation(s)
- R F Lamont
- Research Unit of Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Division of Surgery, Northwick Park Institute for Medical Research Campus, University College London, London, UK.
| | - L S Richardson
- Dept of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Dept. Electrical and Computer Engineering Texas A&M University, College Station, TX, USA
| | - J J Boniface
- Sera Prognostics, Inc., 2749 East Parleys Way, Suite 200, Salt Lake City, UT, 84109, USA
| | - T Cobo
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecología, Obstetrícia I Neonatología, Fetal i+D Fetal Medicine Research Center, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona. Barcelona. Spain, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - M M Exner
- Hologic, Inc., 10210 Genetic Center Dr, San Diego, CA, 92121, USA
| | | | - S K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany
| | - A Gaba
- Department of Obstetrics and Maternal-fetal Medicine, Vienna Medical University, Austria
| | - H Helmer
- Department of Obstetrics and Maternal-fetal Medicine, Vienna Medical University, Austria
| | - J S Jørgensen
- Research Unit of Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Innovative Medical Technologies (CIMT), Odense University Hospital, Kløvervænget 8, 5000, Odense C, Denmark; Odense Patient Data Explorative Network (OPEN), Odense University Hospital/University of Southern Denmark, J. B. Winsløws Vej 9 a, 3. Floor, 5000, Odense C, Denmark
| | - R N Khan
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Room 4115, Medical School, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | | | - K Petro
- Hologic, Inc., 10210 Genetic Center Dr, San Diego, CA, 92121, USA
| | - M Rasmussen
- MIRVIE Inc., 820 Dubuque Ave., South San Francisco, CA, 94080, USA
| | - R Singh
- ARCEDI Biotech ApS, Aarhus, Denmark
| | - R M Tribe
- Dept. of Women and Children's Health, School of Life Course Sciences, King's College London, St Thomas' Hospital Campus, London, SE1 7EH, UK
| | - J S Vink
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA
| | - C A Vinter
- Research Unit of Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - N Zhong
- New York State Institute for Basic Research in Developmental Disabilities, 105 Forest Hill Road, Staten Island, NY, 10314, USA
| | - R Menon
- Dept of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Dept. Electrical and Computer Engineering Texas A&M University, College Station, TX, USA.
| |
Collapse
|
23
|
Radko S, Ptitsyn K, Novikova S, Kiseleva Y, Moysa A, Kurbatov L, Mannanova M, Zgoda V, Ponomarenko E, Lisitsa A, Archakov A. Evaluation of Aptamers as Affinity Reagents for an Enhancement of SRM-Based Detection of Low-Abundance Proteins in Blood Plasma. Biomedicines 2020; 8:E133. [PMID: 32456365 PMCID: PMC7277749 DOI: 10.3390/biomedicines8050133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Selected reaction monitoring (SRM) is a mass spectrometric technique characterized by the exceptionally high selectivity and sensitivity of protein detection. However, even with this technique, the quantitative detection of low- and ultralow-abundance proteins in blood plasma, which is of great importance for the search and verification of novel protein disease markers, is a challenging task due to the immense dynamic range of protein abundance levels. One approach used to overcome this problem is the immunoaffinity enrichment of target proteins for SRM analysis, employing monoclonal antibodies. Aptamers appear as a promising alternative to antibodies for affinity enrichment. Here, using recombinant protein SMAD4 as a model target added at known concentrations to human blood plasma and SRM as a detection method, we investigated a relationship between the initial amount of the target protein and its amount in the fraction enriched with SMAD4 by an anti-SMAD4 DNA-aptamer immobilized on magnetic beads. It was found that the aptamer-based enrichment provided a 30-fold increase in the sensitivity of SRM detection of SMAD4. These results indicate that the aptamer-based affinity enrichment of target proteins can be successfully employed to improve quantitative detection of low-abundance proteins by SRM in undepleted human blood plasma.
Collapse
Affiliation(s)
- Sergey Radko
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Konstantin Ptitsyn
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Yana Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow 117485, Russia;
| | - Alexander Moysa
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Leonid Kurbatov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Maria Mannanova
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Elena Ponomarenko
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Andrey Lisitsa
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| | - Alexander Archakov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.P.); (S.N.); (A.M.); (L.K.); (M.M.); (V.Z.); (E.P.); (A.L.); (A.A.)
| |
Collapse
|
24
|
Van Gool A, Corrales F, Čolović M, Krstić D, Oliver-Martos B, Martínez-Cáceres E, Jakasa I, Gajski G, Brun V, Kyriacou K, Burzynska-Pedziwiatr I, Wozniak LA, Nierkens S, Pascual García C, Katrlik J, Bojic-Trbojevic Z, Vacek J, Llorente A, Antohe F, Suica V, Suarez G, t'Kindt R, Martin P, Penque D, Martins IL, Bodoki E, Iacob BC, Aydindogan E, Timur S, Allinson J, Sutton C, Luider T, Wittfooth S, Sammar M. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 2020; 17:257-273. [PMID: 32427033 DOI: 10.1080/14789450.2020.1763174] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.
Collapse
Affiliation(s)
- Alain Van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Fernado Corrales
- Functional Proteomics Laboratory, Centro Nacional De Biotecnología , Madrid, Spain
| | - Mirjana Čolović
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade , Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade , Belgrade, Serbia
| | - Begona Oliver-Martos
- Neuroimmunology and Neuroinflammation Group. Instituto De Investigación Biomédica De Málaga-IBIMA. UGC Neurociencias, Hospital Regional Universitario De Málaga , Malaga, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias I Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, and Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma De Barcelona , Cerdanyola Del Vallès, Spain
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health , Zagreb, Croatia
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE , Grenoble, France
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Biology, The Cyprus School of Molecular Medicine/The Cyprus Institute of Neurology and Genetics , Nicosia, Cyprus
| | - Izabela Burzynska-Pedziwiatr
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Lucyna Alicja Wozniak
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Stephan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology , Utrecht, The Netherlands
| | - César Pascual García
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences , Bratislava, Slovakia
| | - Zanka Bojic-Trbojevic
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy - INEP, University of Belgrade , Belgrade, Serbia
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital , Oslo, Norway
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Viorel Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne , Lausanne, Switzerland
| | - Ruben t'Kindt
- Research Institute for Chromatography (RIC) , Kortrijk, Belgium
| | - Petra Martin
- Department of Medical Oncology, Midland Regional Hospital Tullamore/St. James's Hospital , Dublin, Ireland
| | - Deborah Penque
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ines Lanca Martins
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Eda Aydindogan
- Department of Chemistry, Graduate School of Sciences and Engineering, Koç University , Istanbul, Turkey
| | - Suna Timur
- Institute of Natural Sciences, Department of Biochemistry, Ege University , Izmir, Turkey
| | | | | | - Theo Luider
- Department of Neurology, Erasmus MC , Rotterdam, The Netherlands
| | | | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel, Israel
| |
Collapse
|
25
|
Doucette AA, Nickerson JL. Developing front-end devices for improved sample preparation in MS-based proteome analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4494. [PMID: 31957906 DOI: 10.1002/jms.4494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Chemical analysis has long relied on instrumentation, from the simplest (eg, burets) to the more sophisticated (eg, mass spectrometers) to facilitate precision measurements. Regardless of their complexity, the development of a new instrumental device can be a valued approach to address problems in science. In this perspective, we outline the process of novel device design, from early phase conception to the manufacturing and testing of the tool or gadget. Focus is placed on the development of improved front-end devices to facilitate protein sample manipulations ahead of mass spectrometry, which therefore augment the proteomics workflow. Highlighted are some of the many training secrets, choices, and challenges that are inherent to the often iterative process of device design. In hopes of inspiring others to pursue instrument design to address relevant research questions, we present a summary list of points to consider prior to innovating their own devices.
Collapse
Affiliation(s)
- Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
26
|
Deatherage Kaiser BL, Jacobs JM, Schepmoes AA, Brewer HM, Webb-Robertson BJM, Valtier S, Bebarta VS, Adkins JN. Assessment of the Utility of the Oral Fluid and Plasma Proteomes for Hydrocodone Exposure. J Med Toxicol 2019; 16:49-60. [PMID: 31677050 DOI: 10.1007/s13181-019-00731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Non-medical use and abuse of prescription opioids is a growing problem in both the civilian and military communities, with minimal technologies for detecting hydrocodone use. This study explored the proteomic changes that occur in the oral fluid and blood plasma following controlled hydrocodone administration in 20 subjects. METHODS The global proteomic profile was determined for samples taken at four time points per subject: pre-exposure and 4, 6, or 168 hours post-exposure. The oral fluid samples analyzed herein provided greater differentiation between baseline and response time points than was observed with blood plasma, at least partially due to significant person-to-person relative variability in the plasma proteome. RESULTS A total of 399 proteins were identified from oral fluid samples, and the abundance of 118 of those proteins was determined to be significantly different upon metabolism of hydrocodone (4 and 6 hour time points) as compared to baseline levels in the oral fluid (pre-dose and 168 hours). CONCLUSIONS We present an assessment of the oral fluid and plasma proteome following hydrocodone administration, which demonstrates the potential of oral fluid as a noninvasive sample that may reveal features of hydrocodone in opioid use, and with additional study, may be useful for other opioids and in settings of misuse.
Collapse
Affiliation(s)
- Brooke L Deatherage Kaiser
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Sandra Valtier
- Science and Technology, 59th Medical Wing, JBSA-Lackland AFB, San Antonio, TX, USA
| | | | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
27
|
Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 2019; 11:1799-1812. [PMID: 31617391 DOI: 10.4155/bio-2019-0145] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasma and serum are widely used for proteomics-based biomarker discovery. However, analysis of these biofluids is highly challenging due to the complexity and wide dynamic range of their proteomes. Notably, highly abundant proteins tend to obscure the detection of potential biomarkers that are usually of lower concentrations. Among the strategies to resolve this problem are: depletion of high-abundance proteins, enrichment of low abundant proteins of interest and prefractionation. In this review, we focus on current and emerging depletion techniques used to enhance the detection and identification of the less abundant proteins in plasma and serum. We discuss the applications and contributions of these methods to proteomics analysis of plasma and serum alongside their limitations and future perspectives.
Collapse
|
28
|
Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, Deutsch EW, Schwenk JM. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J Proteome Res 2019; 18:4085-4097. [PMID: 31573204 DOI: 10.1021/acs.jproteome.9b00503] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteomic analysis of human blood and blood-derived products (e.g., plasma) offers an attractive avenue to translate research progress from the laboratory into the clinic. However, due to its unique protein composition, performing proteomics assays with plasma is challenging. Plasma proteomics has regained interest due to recent technological advances, but challenges imposed by both complications inherent to studying human biology (e.g., interindividual variability) and analysis of biospecimens (e.g., sample variability), as well as technological limitations remain. As part of the Human Proteome Project (HPP), the Human Plasma Proteome Project (HPPP) brings together key aspects of the plasma proteomics pipeline. Here, we provide considerations and recommendations concerning study design, plasma collection, quality metrics, plasma processing workflows, mass spectrometry (MS) data acquisition, data processing, and bioinformatic analysis. With exciting opportunities in studying human health and disease though this plasma proteomics pipeline, a more informed analysis of human plasma will accelerate interest while enhancing possibilities for the incorporation of proteomics-scaled assays into clinical practice.
Collapse
Affiliation(s)
- Vera Ignjatovic
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia.,Department of Paediatrics , The University of Melbourne , Parkville , VIC 3052 , Australia
| | - Philipp E Geyer
- NNF Center for Protein Research, Faculty of Health Sciences , University of Copenhagen , 2200 Copenhagen , Denmark.,Department of Proteomics and Signal Transduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Krishnan K Palaniappan
- Freenome , 259 East Grand Avenue , South San Francisco , California 94080 , United States
| | - Jessica E Chaaban
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Human Genetics, and Internal Medicine and School of Public Health , University of Michigan , 100 Washtenaw Avenue , Ann Arbor , Michigan 48109-2218 , United States
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , 75 Talavera Road , North Ryde , NSW 2109 , Australia
| | - Eric W Deutsch
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109 , United States
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab , KTH Royal Institute of Technology , 171 65 Stockholm , Sweden
| |
Collapse
|
29
|
Nakayasu ES, Qian WJ, Evans-Molina C, Mirmira RG, Eizirik DL, Metz TO. The role of proteomics in assessing beta-cell dysfunction and death in type 1 diabetes. Expert Rev Proteomics 2019; 16:569-582. [PMID: 31232620 PMCID: PMC6628911 DOI: 10.1080/14789450.2019.1634548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Type 1 diabetes (T1D) is characterized by autoimmune-induced dysfunction and destruction of the pancreatic beta cells. Unfortunately, this process is poorly understood, and the current best treatment for type 1 diabetes is the administration of exogenous insulin. To better understand these mechanisms and to develop new therapies, there is an urgent need for biomarkers that can reliably predict disease stage. Areas covered: Mass spectrometry (MS)-based proteomics and complementary techniques play an important role in understanding the autoimmune response, inflammation and beta-cell death. MS is also a leading technology for the identification of biomarkers. This, and the technical difficulties and new technologies that provide opportunities to characterize small amounts of sample in great depth and to analyze large sample cohorts will be discussed in this review. Expert opinion: Understanding disease mechanisms and the discovery of disease-associated biomarkers are highly interconnected goals. Ideal biomarkers would be molecules specific to the different stages of the disease process that are released from beta cells to the bloodstream. However, such molecules are likely to be present in trace amounts in the blood due to the small number of pancreatic beta cells in the human body and the heterogeneity of the target organ and disease process.
Collapse
Affiliation(s)
- Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
30
|
Ptitsyn KG, Novikova SE, Kiseleva YY, Moysa AA, Kurbatov LK, Farafonova TE, Radko SP, Zgoda VG, Archakov AI. [Use of DNA-aptamers for enrichment of low abundant proteins in cellular extracts for quntitative detection by selected reaction monitoring]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:5-9. [PMID: 29460828 DOI: 10.18097/pbmc20186401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The relationship between the amount of a target protein in a complex biological sample and its amount measured by selected reaction monitoring (SRM) mass spectrometry upon the affinity enrichment of target protein with aptamers immobilized on a solid phase was studied. Human thrombin added in known concentrations to cellular extracts derived from bacterial cells was used as model target protein. It has been demonstrated that the affinity enrichment of thrombin in cellular extracts by means of the thrombin-binding aptamer immobilized on the surface of magnetic microbeads results in an approximately 10-fold increase of the concentration of target protein and a 100-fold decrease of the low limit of a target protein concentration range where its quantitative detection by SRM is possible without an interference from other peptides present in a tryptic digest.
Collapse
Affiliation(s)
- K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Y Y Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - A A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
31
|
Dielectrophoresis-based filtration effect and detection of amyloid beta in plasma for Alzheimer's disease diagnosis. Biosens Bioelectron 2019; 128:166-175. [DOI: 10.1016/j.bios.2018.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022]
|
32
|
Jankovska E, Svitek M, Holada K, Petrak J. Affinity depletion versus relative protein enrichment: a side-by-side comparison of two major strategies for increasing human cerebrospinal fluid proteome coverage. Clin Proteomics 2019; 16:9. [PMID: 30890900 PMCID: PMC6390343 DOI: 10.1186/s12014-019-9229-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Cerebrospinal fluid (CSF) is in direct contact with the central nervous system. This makes human CSF an attractive source of potential biomarkers for neurologic diseases. Similarly to blood plasma, proteomic analysis of CSF is complicated by a high dynamic range of individual protein concentrations and by the presence of several highly abundant proteins. To deal with the abundant human CSF proteins, methods developed for blood plasma/serum are routinely used. Multiple affinity removal systems and protein enrichment of less abundant proteins using a combinatorial peptide ligand library are among the most frequent approaches. However, their relative impact on CSF proteome coverage has never been evaluated side-by-side in a single study. Therefore, we explored the effect of CSF depletion using MARS 14 cartridge and ProteoMiner ligand library on the number of CSF proteins identified in subsequent LC–MS/MS analysis. LC–MS/MS analysis of crude (non-treated) CSF provided roughly 500 identified proteins. Depletion of CSF by MARS 14 cartridge increased the number of identifications to nearly 800, while treatment of CSF using ProteoMiner enabled identification of 600 proteins. To explore the potential losses of CSF proteins during the depletion process, we also analyzed the “waste” fractions generated by both methods, i.e., proteins retained by the MARS 14 cartridge, and the molecules present in the flow-through fraction from ProteoMiner. More than 250 proteins were bound to MARS 14 cartridge, 100 of those were not identified in the corresponding depleted CSF. Similarly, analysis of the waste fraction in ProteoMiner workflow provided almost 70 unique proteins not found in the CSF depleted by the ligand library. Both depletion strategies significantly increased the number of identified CSF proteins compared to crude CSF. However, MARS 14 depletion provided a markedly higher number of identified proteins (773) compared to ProteoMiner (611). Further, we showed that CSF proteins are lost due to co-depletion (MARS 14) or exclusion (ProteoMiner) during the depletion process. This suggests that the routinely discarded “waste” fractions contain proteins of potential interest and should be included in CSF biomarker studies.
Collapse
Affiliation(s)
- Eliska Jankovska
- 1BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Svitek
- 2Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University, Prague, Czech Republic.,3General University Hospital, Prague, Czech Republic
| | - Karel Holada
- 4Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- 1BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
33
|
Andjelković U, Josić D. Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|
35
|
Van Raemdonck GA, Osbak KK, Van Ostade X, Kenyon CR. Needle lost in the haystack: multiple reaction monitoring fails to detect Treponema pallidum candidate protein biomarkers in plasma and urine samples from individuals with syphilis. F1000Res 2018; 7:336. [PMID: 30519456 PMCID: PMC6248270 DOI: 10.12688/f1000research.13964.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Current syphilis diagnostic strategies are lacking a sensitive manner of directly detecting
Treponema pallidum antigens. A diagnostic test that could directly detect
T. pallidum antigens in individuals with syphilis would be of considerable clinical utility, especially for the diagnosis of reinfections and for post-treatment serological follow-up. Methods: In this study, 11 candidate
T. pallidum biomarker proteins were chosen according to their physiochemical characteristics,
T. pallidum specificity and predicted abundance. Thirty isotopically labelled proteotypic surrogate peptides (hPTPs) were synthesized and incorporated into a scheduled multiple reaction monitoring assay. Protein extracts from undepleted/unenriched plasma (N = 18) and urine (N = 4) samples from 18 individuals with syphilis in various clinical stages were tryptically digested, spiked with the hPTP mixture and analysed with a triple quadruple mass spectrometer. Results: No endogenous PTPs corresponding to the eleven candidate biomarkers were detected in any samples analysed. To estimate the Limit of Detection (LOD) of a comparably sensitive mass spectrometer (LTQ-Orbitrap), two dilution series of rabbit cultured purified
T. pallidum were prepared in PBS. Polyclonal anti-
T. pallidum antibodies coupled to magnetic Dynabeads were used to enrich one sample series; no LOD improvement was found compared to the unenriched series. The estimated LOD of MS instruments is 300
T. pallidum/ml in PBS. Conclusions: Biomarker protein detection likely failed due to the low (femtomoles/liter) predicted concentration of
T. pallidum proteins. Alternative sample preparation strategies may improve the detectability of
T. pallidum proteins in biofluids.
Collapse
Affiliation(s)
- Geert A Van Raemdonck
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, 2000, Belgium.,Laboratory for Protein Science, Proteomics and Epigenetic Signalling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, 2610, Belgium
| | - Kara K Osbak
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, 2000, Belgium
| | - Xaveer Van Ostade
- Laboratory for Protein Science, Proteomics and Epigenetic Signalling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, 2610, Belgium
| | - Chris R Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, 2000, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
36
|
Abstract
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.
Collapse
Affiliation(s)
- Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
37
|
|
38
|
Boschetti E, D'Amato A, Candiano G, Righetti PG. Protein biomarkers for early detection of diseases: The decisive contribution of combinatorial peptide ligand libraries. J Proteomics 2017; 188:1-14. [PMID: 28882677 DOI: 10.1016/j.jprot.2017.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/31/2022]
Abstract
The present review deals with biomarker discovery, especially in regard to sample treatment via combinatorial peptide ligand libraries, perhaps the only technique at present allowing deep exploration of biological fluids and tissue extracts in search for low- to very-low-abundance proteins, which could possibly mark the onset of most pathologies. Early-stage biomarkers, in fact, might be the only way to detect the beginning of most diseases thus permitting proper intervention and care. The following cancers are reviewed, with lists of potential biomarkers suggested in various reports: hepatocellular carcinoma, ovarian cancer, breast cancer and pancreatic cancer, together with some other interesting applications. Although panels of proteins have been presented, with robust evidence, as potential early-stage biomarkers in these different pathologies, their approval by FDA as novel biomarkers in routine clinical chemistry settings would require plenty of additional work and efforts from the pharma industry. The science environment in universities could simply not afford such heavy monetary investments. SIGNIFICANCE After more than 16years of search for novel biomarkers, to be used in a clinical chemistry set-up, via proteomic analysis (mostly in biological fluids) it was felt a critical review was due. In the present report, though, only papers reporting biomarker discovery via combinatorial peptide ligand libraries are listed and assessed, since this methodology seems to be the most advanced one for digging in depth into low-to very-low-abundance proteins, which might represent important biomarkers for the onset of pathologies. In particular, a large survey has been made for the following diseases, since they appear to have a large incidence on human population and/or represent fatal diseases: ovarian cancer, breast cancer, pancreatic cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Alfonsina D'Amato
- Quadram Institute of Bioscience, Norwich Research Park, NR4 7UA Norwich, UK
| | - Giovanni Candiano
- Nephrology, Dialysis, Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa, Italy
| | - Pier Giorgio Righetti
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Via Mancinelli 7, Milano 20131, Italy.
| |
Collapse
|
39
|
Karkra K, Tetala KK, Vijayalakshmi M. A structure based plasma protein pre-fractionation using conjoint immobilized metal/chelate affinity (IMA) system. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:1-9. [DOI: 10.1016/j.jchromb.2017.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/11/2017] [Accepted: 02/25/2017] [Indexed: 11/27/2022]
|
40
|
Legg KM, Powell R, Reisdorph N, Reisdorph R, Danielson PB. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry. Electrophoresis 2017; 38:833-845. [PMID: 27943336 DOI: 10.1002/elps.201600352] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/15/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
Advances in proteomics technology over the past decade offer forensic serologists a greatly improved opportunity to accurately characterize the tissue source from which a DNA profile has been developed. Such information can provide critical context to evidence and can help to prioritize downstream DNA analyses. Previous proteome studies compiled panels of "candidate biomarkers" specific to each of five body fluids (i.e., peripheral blood, vaginal/menstrual fluid, seminal fluid, urine, and saliva). Here, a multiplex quadrupole time-of-flight mass spectrometry assay has been developed in order to verify the tissue/body fluid specificity the 23 protein biomarkers that comprise these panels and the consistency with which they can be detected across a sample population of 50 humans. Single-source samples of these human body fluids were accurately identified by the detection of one or more high-specificity biomarkers. Recovery of body fluid samples from a variety of substrates did not impede accurate characterization and, of the potential inhibitors assayed, only chewing tobacco juice appeared to preclude the identification of a target body fluid. Using a series of 2-component mixtures of human body fluids, the multiplex assay accurately identified both components in a single-pass. Only in the case of saliva and peripheral blood did matrix effects appear to impede the detection of salivary proteins.
Collapse
Affiliation(s)
- Kevin M Legg
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA.,The Center for Forensic Science Research and Education, Willow Grove, PA, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Rick Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Phillip B Danielson
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA.,The Center for Forensic Science Research and Education, Willow Grove, PA, USA
| |
Collapse
|
41
|
Huang Z, Ma L, Huang C, Li Q, Nice EC. Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics 2016; 17. [PMID: 27550791 DOI: 10.1002/pmic.201600240] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Zhao Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou P. R. China
- Criminal police detachment of Guang'an City Public Security Bureau; P. R. China
| | - Linguang Ma
- Criminal police detachment of Guang'an City Public Security Bureau; P. R. China
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Qifu Li
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou P. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|