1
|
Zhu P, Zhou L, Lin Y, Wang Y, Han Y, Cai S. A magnetic beads-based ligand fishing method Coupled with UHPLC-QTOF MS for screening and identification of α-glucosidase inhibitors from Houttuynia cordata Thunb. Talanta 2024; 270:125583. [PMID: 38141464 DOI: 10.1016/j.talanta.2023.125583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
In this study, a method for the screening and identification of α-glucosidase inhibitors from natural products was developed. The α-glucosidase was immobilized on carboxyl terminated magnetic beads to form a ligand fishing system to screen the potential inhibitors. A total of 9 compounds were fishing out from the crude Houttuynia cordata Thunb. extract. Meanwhile, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) was used for the identification of the chemical structures, including 3 chlorogenic acid isomers, 2 flavone C-glycosides and 4 flavone O-glycosides. The combination of enzyme immobilization magnetic beads and UHPLC-QTOF MS could be used for the screening of bioactive multi-components from herbs with appropriate targets. Taking the advantage of the specificity of enzyme binding and the convenience of magnetic separation, the method has great potential for rapid screening of α-glucosidase inhibitors from complicated natural product extracts.
Collapse
Affiliation(s)
- Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Luxi Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuxiu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yixi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yu Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Sheng Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
2
|
Li B, Jiao P, Tang C. Deep eutectic solvent extraction combined with magnetic bead ligand fishing for identification of α-glucosidase inhibitors from Pueraria lobata. J Sep Sci 2024; 47:e2300672. [PMID: 38135874 DOI: 10.1002/jssc.202300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
In this study, a deep eutectic solvent (DES) extraction combined with a magnetic bead ligand affinity analytical method was developed and used for α-glucosidase inhibitor identification from Pueraria lobata. Several critical parameters affecting the analysis performance, including the type of DES, molar ratio, water amount, pH, salt concentration, and volume of DES, were investigated. The selected analytical sample preparation conditions were as follows. The composition of DES is choline chloride-1,4-butanediol (1:3), the water content is 40%, pH is 7.0 and the volume of extraction solution is 2 mL. The obtained sample extraction solution was analyzed directly using α-glucosidase immobilized magnetic beads (GMBs). Three α-glucosidase inhibitors in Pueraria lobata, including puerarin, daidzin, and daidzein, were identified. Luteolin was used as a positive control to evaluate the method's selectivity. Results showed it could selectively bond to the GMBs in the DES. As the affinity analysis was performed directly in a DES, the solution-removing process could be avoided. The intra-day and inter-day precisions of the method are 5.21% and 6.38%, respectively. The solvent amount was 1/50-1/2000 of that used in traditional methods.
Collapse
Affiliation(s)
- Bing Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Natural Medicine, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Pan Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Natural Medicine, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Cheng Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Natural Medicine, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
3
|
Recent Advances in Intrinsically Fluorescent Polydopamine Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorescence nanoparticles have gained much attention due to their unique properties in the sensing and imaging fields. Among the very successful candidates are fluorescent polydopamine (FPDA) nanoparticles, attributed to their simplicity in tracing and excellent biocompatibility. This article aims to highlight the recent achievements in FPDA materials, especially on the part of luminescence mechanisms. We focus on the intrinsic fluorescence of PDA and will not discuss fluorescent reaction with a fluorometric reagent or coupling reaction with a fluorophore, which may cause more in vivo interferences. We believe that intrinsic FPDA presents great potential in bioapplications.
Collapse
|
4
|
Ifra, Singh A, Saha S. High Adsorption of α-Glucosidase on Polymer Brush-Modified Anisotropic Particles Acquired by Electrospraying-A Combined Experimental and Simulation Study. ACS APPLIED BIO MATERIALS 2021; 4:7431-7444. [PMID: 35006717 DOI: 10.1021/acsabm.1c00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this particular contribution, we aim to immobilize a model enzyme such as α-glucosidase onto poly(DMAEMA) [poly(2-dimethyl amino ethyl methacrylate)] brush-modified anisotropic (cup- and disc-shaped) biocompatible polymeric particles. The anisotropic particles comprising a blend of PLA [poly(lactide)] and poly(MMA-co-BEMA) [poly((methyl methacrylate)-co-(2-(2-bromopropionyloxy) ethyl methacrylate)] were acquired by electrospraying, a scalable and convenient technique. We have also demonstrated the role of a swollen polymer brush grafted on the surface of cup-/disc-shaped particles via surface-initiated atom transfer radical polymerization in immobilizing an unprecedentedly high loading of enzyme [441 mg/g (cup)-589 mg/g (disc) of particles, 15-20 times higher than that of the literature-reported system] as compared to non-brush-modified particles. Circular dichroism spectroscopy was used to predict the structural changes of the enzyme upon immobilization onto the carrier particles. An enormously high amount of enzymes with preserved activity (∼85 ± 13% for cups and ∼78 ± 15% for discs) was found to adhere onto brush-modified particles at pH 7 via electrostatic adsorption. These findings were further explored at the atomistic level using a coarse-grained dissipative particle dynamics simulation approach, which exhibited excellent correlation with experimental results. In addition, accelerated particle separation was also achieved via magnetic force-induced aggregation within 20 min (without a centrifuge) by incorporating magnetic nanoparticles into disc-shaped particles while electrojetting. This further strengthens the technical feasibility of the process, which holds immense potential to be applied for various enzymes intended for several applications.
Collapse
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Alacid Y, Martínez-Tomé MJ, Mateo CR. Reusable Fluorescent Nanobiosensor Integrated in a Multiwell Plate for Screening and Quantification of Antidiabetic Drugs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25624-25634. [PMID: 34043318 DOI: 10.1021/acsami.1c02505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A highly stable and reusable fluorescent multisample nanobiosensor for the detection of α-glucosidase inhibitors has been developed by coupling fluorescent liposomal nanoparticles based on conjugated polymers (L-CPNs) to the enzyme α-glucosidase, one of the main target enzymes in the treatment of type 2 diabetes. The mechanism of sensing is based on the fluorescence "turn-on" of L-CPNs by p-nitrophenol (PNP), the end product of the enzymatic hydrolysis of p-nitrophenyl-α-d-glucopyranoside. L-CPNs, composed of lipid vesicles coated with a blue-emitting cationic polyfluorene, were designed and characterized to obtain a good response to PNP. Two nanobiosensor configurations were developed in this study. In the first step, a single-sample nanobiosensor composed of L-CPNs and α-glucosidase entrapped in a sol-gel glass was developed in order to characterize and optimize the device. In the second part, the nanobiosensor was integrated and adapted to a multiwell microplate and the possibility of reusing it and performing multiple measurements simultaneously with samples containing different α-glucosidase inhibitors was investigated. Using super-resolution confocal microscopy, L-CPNs could be visualized within the sol-gel matrix, and the quenching of their fluorescence, induced by the substrate, was directly observed in situ. The device was also shown to be useful not only as a platform for screening of antidiabetic drugs but also for quantifying their presence. The latter application was successfully tested with the currently available drug, acarbose.
Collapse
Affiliation(s)
- Yolanda Alacid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - C Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| |
Collapse
|
6
|
Demirci S, Sahiner M, Yilmaz S, Karadag E, Sahiner N. Enhanced enzymatic activity and stability by in situ entrapment of α-Glucosidase within super porous p(HEMA) cryogels during synthesis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00534. [PMID: 33024715 PMCID: PMC7528077 DOI: 10.1016/j.btre.2020.e00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/08/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
Here, poly(2-hydroxyethyl methacrylate) (p(HEMA)) cryogel were prepared in the presence 0.48, 0.96, and 1.92 mL of α-Glucosidase enzyme (0.06 Units/mL) solutions to obtain enzyme entrapped superporous p(HEMA) cryogels, donated as α-Glucosidase@p(HEMA)-1, α-Glucosidase@p(HEMA)-2, and α-Glucosidase@p(HEMA)-3, respectively. The enzyme entrapped p(HEMA) cryogels revealed no interruption for hemolysis and coagulation of blood rendering viable biomedical application in blood contacting applications. The α-Glucosidase@p(HEMA)-1 was found to preserve its' activity% 92.3 ± 1.4 % and higher activity% against free α-Glucosidase enzymes in 15-60℃ temperature, and 4-9 pH range. The Km and Vmax values of α-Glucosidase@p(HEMA)-1 cryogel was calculated as 3.22 mM, and 0.0048 mM/min, respectively versus 1.97 mM, and 0.0032 mM/min, for free enzymes. The α-Glucosidase@p(HEMA)-1 cryogel was found to maintained enzymatic activity more than 50 % after 10 consecutive uses, and also preserved their activity more than 50 % after 10 days of storage at 25 ℃, whereas free α-Glucosidase enzyme maintained only 1.9 ± 0.9 % activity under the same conditions.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Fashion Design, Faculty of Canakkale Applied Science, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Selehattin Yilmaz
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
| | - Erdener Karadag
- Department of Chemistry, Faculty of Sciences and Arts, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100, Canakkale, Turkey
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL, 33620 USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Robkhob P, Ghosh S, Bellare J, Jamdade D, Tang IM, Thongmee S. Effect of silver doping on antidiabetic and antioxidant potential of ZnO nanorods. J Trace Elem Med Biol 2020; 58:126448. [PMID: 31901726 DOI: 10.1016/j.jtemb.2019.126448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Increasing resistance to available drugs and their associated side-effects have drawn wide attention towards designing alternative therapeutic strategies for control of hyperglycemia and oxidative stress. The roles of the sizes and shapes of the nanomaterials used in the treatment and management of Type 2 Diabetes Mellitus (T2DM) in preventing chronic hyperglycaemia and oxidative stress are investigated. We report specifically on the effects of doping silver (Ag) into the ZnO nanorods (ZnO:Ag NR's) as a rational drug designing strategy. METHODS Inhibition of porcine pancreatic α-amylase, murine pancreatic amylase, α-glucosidase, murine intestinal glucosidase and amyloglucosidase are checked for evaluation of antidiabetic potential. In addition, the radical scavenging activities of ZnO:Ag NR's against nitric oxide, DDPH and superoxide radicals are evaluated. RESULTS Quantitative radical scavenging and metabolic enzyme inhibition activities of ZnO:Ag NR's at a concentration of 100 μg/mL were found to depend on the amount of Ag doped in up to a threshold level (3-4 %). Circular dichroism analysis revealed that the interaction of the NR's with the enzymes altered their secondary conformation. This alteration is the underlying mechanism for the potent enzyme inhibition. CONCLUSIONS Enhanced inhibition of enzymes and scavenging of free radicals primarily responsible for reactive oxygen species (ROS) mediated damage, provide a strong scientific rationale for considering ZnO:Ag NR's as a candidate nanomedicine for controlling postprandial hyperglycaemia and the associated oxidative stress.
Collapse
Affiliation(s)
- Prissana Robkhob
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat 360020, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Dhiraj Jamdade
- Department of Microbiology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune 411016, India
| | - I-Ming Tang
- Computional & Applied Science for Innovation Cluster (CLASSIC), Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
8
|
Okon E, Kukula-Koch W, Jarzab A, Halasa M, Stepulak A, Wawruszak A. Advances in Chemistry and Bioactivity of Magnoflorine and Magnoflorine-Containing Extracts. Int J Mol Sci 2020; 21:ijms21041330. [PMID: 32079131 PMCID: PMC7072879 DOI: 10.3390/ijms21041330] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
The review collects together some recent information on the identity and pharmacological properties of magnoflorine, a quaternary aporphine alkaloid, that is widely distributed within the representatives of several botanical families like Berberidaceae, Magnoliaceae, Papaveraceae, or Menispermaceae. Several findings published in the scientific publications mention its application in the treatment of a wide spectrum of diseases including inflammatory ones, allergies, hypertension, osteoporosis, bacterial, viral and fungal infections, and some civilization diseases like cancer, obesity, diabetes, dementia, or depression. The pharmacokinetics and perspectives on its introduction to therapeutic strategies will also be discussed.
Collapse
Affiliation(s)
- Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland
- Correspondence: (W.K.-K.); (A.W.); Tel.: +48-81448-6350 (W.K.-K.); +48-81448-7087 (A.W.)
| | - Agata Jarzab
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
- Correspondence: (W.K.-K.); (A.W.); Tel.: +48-81448-6350 (W.K.-K.); +48-81448-7087 (A.W.)
| |
Collapse
|
9
|
The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA−CoOOH. Anal Chim Acta 2019; 1080:170-177. [DOI: 10.1016/j.aca.2019.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
|
10
|
Molecular docking and glucosidase inhibition studies of novel N-arylthiazole-2-amines and Ethyl 2-[aryl(thiazol-2-yl)amino]acetates. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2018-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Liu QS, Deng R, Yan QF, Cheng L, Luo Y, Li K, Yin X, Qin X. Novel Beta-Tubulin-Immobilized Nanoparticles Affinity Material for Screening β-Tubulin Inhibitors from a Complex Mixture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5725-5732. [PMID: 28112513 DOI: 10.1021/acsami.6b13477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to efficiently screen and isolate β-tubulin inhibitors, β-tubulin was immobilized on core-shell PMMA/CS (poly(methyl methacrylate)/Chitosan) nanoparticles to produce a new type of immobilized affinity material named β-tubulin-immobilized nanoparticles (β-TIN). The selectivity and adsorption performance of β-TIN were characterized using various control drugs. The β-TIN, the paclitaxel molecularly imprinted ploymers (MIP), and the C18 adsorbing material were compared for selectivity and enrichment ratio. Microtubule-targeting antitumor compounds were screened and isolated from a typical Chinese medicine, Chloranthus multistachys, by β-TIN. Three active compounds (curcolnol, zedoarofuran, and codonolactone) in Chloranthus multistachys extract were captured successfully. Microscale thermophoresis demonstrated that these three compounds strongly bind to β-tubulin, and the dissociation constants (Kd) between the three active compounds and β-tubulin were 1820 ± 0.68 nM, 1640 ± 0.52 nM, and 284 ± 1.00 nM, respectively. Moreover, the binding affinity between codonolactone and β-tubulin was greater than that between paclitaxel and β-tubulin. The antitumor activities of the three compounds were confirmed by the microtubule inhibition model, and the results showed a similar antitumor mechanism as paclitaxel. Molecular dynamics simulations were performed to preliminarily investigate the potential binding sites and the structure-activity relationship between the three active molecules and β-tubulin. Our study is the first to report the use of this novel material which is highly efficient in capturing low-content β-tubulin inhibitors from a complex mixture. The three screened compounds exhibited potential antineoplastic activity, and these lead compounds utilize a new mechanism of action with promising development prospects. Because β-TIN is easily prepared, displays excellent adsorption and selectivity for targets, and can effectively maintain the steric conformation and activities of target proteins, it will be very useful in the screening of lead compounds for different drug target proteins.
Collapse
Affiliation(s)
- Qing-Shan Liu
- Key Lab of Ministry of Education, National Center on Minority Medicine and Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, China
| | - Ran Deng
- Key Lab of Ministry of Education, National Center on Minority Medicine and Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, China
| | - Qing-Fang Yan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang 330004, China
| | - Lin Cheng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang 330004, China
| | - Yongming Luo
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang 330004, China
| | - Keqin Li
- Key Lab of Ministry of Education, National Center on Minority Medicine and Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Xiaoyan Qin
- Key Lab of Ministry of Education, National Center on Minority Medicine and Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, China
| |
Collapse
|