1
|
Wang J, Jin M, Wang Q, Lu X, Gao R, Sun F, Pei C, Wang H. Study on phosphonylation and modification characteristics of organophosphorus nerve agents on multi-species and multi-source albumins. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124155. [PMID: 38735125 DOI: 10.1016/j.jchromb.2024.124155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Protein adducts are vital targets for exploring organophosphorus nerve agents (OPNAs) exposure and identification, that can be used to characterize the chemical burden and initiate chemical safety measures. However, the use of protein adducts as biomarkers of OPNA exposure has developed slowly. To further promote the development of biomarkers in chemical forensics, it is crucial to expand the range of modified peptides and active sites, and describe the characteristics of OPNA adducts at specific reaction sites. This study utilized multi-species and multi-source albumins as the protein targets. We identified 56 peptides in albumins from various species (including human, horse, rat and pig), that were modified by at least two OPNAs. Diverse modification characteristics were observed in response to certain agents: including (1) multiple sites on the same peptide modified by one or more agents, (2) different reactivities at the same site in homologous albumins, and (3) different preferences at the same active sites associated with differences in the biological matrix during exposure. Our studies provided an empirical reference with rationalized underpinnings supported by estimated conformation energetics through molecular modeling. We employed different peptide markers for detection of protein adducts, as (one would do) in forensic screening for identification and quantification of chemical damage. Three characteristic peptides were screened and analyzed in human albumin, including Y287ICENQDSISSK, K438VPQVS443TPTLVEVSR, and Y162LY164EIAR. Stable fragment ions with neutral loss were found from their tandem MS/MS spectra, which were used as characteristic ions for identification and extraction of modified peptides in enzymatic digestion mixtures. Coupling these observations with computer simulations, we found that the structural stability of albumin and albumin-adduct complexes (as well as the effective force that promotes stability of different adducts) changes in the interval before and after adduct formation. In pig albumin, five active peptides existed stably in vivo and in vitro. Most of them can be detected within 30 min after OPNA exposure, and the detection window can persist about half a month. These early findings provided the foundation and rationale for utilizing pig albumin as a sampling target for rapid analysis in future forensic work.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Meng Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; School of Chemistry and Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050000, China
| | - Qian Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; School of Chemistry and Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050000, China
| | - Xiaogang Lu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Runli Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fengxia Sun
- School of Chemistry and Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050000, China
| | - Chengxin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
2
|
Li XS, Yang FC, Yan L, Wu JN, Yuan L, Yang Y, Liu SL. Simultaneous Quantification of Biomarkers for Bis-(2-chloroethyl) Sulfide and 1,2-Bis(2-chloroethylthio) Ethane Exposure in Human Urine at Trace Exposure Levels by Gas Chromatography Tandem Mass Spectrometry via Simultaneous Incubation and Extraction. Chem Res Toxicol 2023; 36:1549-1559. [PMID: 37657424 DOI: 10.1021/acs.chemrestox.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Sulfur mustard [HD; bis-(2-chloroethyl) sulfide] and other analogues are a kind of highly toxic vesicant and have been prohibited by the Organization for the Prohibition of Chemical Weapons (OPCW) since 1997. Exposures to HD could generate several adducts in the plasma and hydrolysis products in the urine, which are widely applied as biomarkers to identify HD exposure in forensic analysis. Several methods have been developed for the detection of related biomarkers. However, most methods are based on complex derivatization, and not enough attention is paid to HD analogues. A modified and convenient analytical method reported herein includes simultaneous incubation and organic solvent extraction. The biomarkers such as thiodiglycol and 1,2-bis (2-hydroxyethylthio) are transferred to HD and 1,2-bis(2-chloroethylthio) ethane via hydrochloric acid at the appropriate temperature. The analytes are analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS) with 2-chloroethyl ethyl sulfide (2-CEES) applied as the internal standard. The interday and intraday study according to FDA rules has been achieved to evaluate the accuracy and precision of the method. The two targets are detected with a good linearity (R2 > 0.99) in the concentration ranges from 5 to 1000 ng/mL and 10 to 1000 ng/mL, with small relative standard deviations (RSD ≤6.62% and RSD ≤6.93%) and favorable recoveries between 90.3 and 107.3% and between 89.4 and 108.7%, respectively. The established method can be used for retrospective detection of sulfur mustards in biological samples and successfully applied in the biomedical proficiency testing organized by the OPCW.
Collapse
Affiliation(s)
- Xiao-Sen Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fang-Chao Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology, Nanjing 210094, P. R. China
| | - Long Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ji-Na Wu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ling Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
3
|
Ren Z, Chen B, Liang D, Liu D, Lei W, Liu S. A retrospective screening method for carbamate toxicant exposure based on butyrylcholinesterase adducts in human plasma with ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123775. [PMID: 37285767 DOI: 10.1016/j.jchromb.2023.123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Carbamate pesticides are extensively used in agriculture for their inhibition to acetylcholinesterase and damages to the insects' neural systems. Because of their toxicity, human poisoning incidents caused by carbamate pesticide exposure have occurred from time to time. What's more, some lethally toxic carbamate toxicants known as carbamate nerve agents (CMNAs) have been supplemented in Schedule 1 of the Annex on Chemicals in the Chemical Weapons Convention (CWC) by Organisation of the Prohibition of Chemical Weapons (OPCW) from 2020. And some other carbamates, like physostigmine, have been used in clinical treatment as anticholinergic drugs and their misuse may also cause damages to the body. Similar to organophosphorus toxicants, carbamate toxicants would react with butyrylcholinesterase (BChE) in plasma when entering the human body, resulting in the BChE adducts, based on which the exposure of carbamate toxicants could be detected retrospectively. In this study, methylcarbamyl nonapeptide and dimethylcarbamyl nonapeptide from pepsin digestion of BChE adducts were identified with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in product ion scan mode. Carbofuran was chosen as the target to establish the detection method of carbamate toxicant exposure based on methylcarbamyl nonapeptide digested from methylcarbamyl BChE. Procainamide-gel affinity purification, pepsin digestion and UHPLC-MS/MS analysis in multiple reaction monitoring (MRM) mode were applied. Under the optimized conditions of sample preparation and UHPLC-MS/MS MRM analysis, the limits of detection (LODs) reached 10.0 ng/mL of plasma exposed to carbofuran with satisfactory specificity. The quantitation approach was established with d3-carbofuran-exposed plasma as the internal standard (IS) and the linearity range was 30.0-1.00 × 103 nmol/L (R2 >0.998) with the accuracy of 95.6%-107% and precision of ≤9% relative standard deviation (RSD). The applicability was also evaluated by N,N-dimethyl-carbamates with the LODs of 30.0 nmol/L for pirimicarb-exposed plasma based on dimethylcarbamyl nonapeptide. Because most of carbamate toxicants has methylcarbamyl or dimethylcarbamyl groups, this approach could be applied on the retrospective screening of carbamate toxicant exposure including CMNAs, carbamate pesticides or carbamate drugs. This study could provide an effective means in the fields of CWC verification, toxicological mechanism investigation and down-selection of potential treatment options.
Collapse
Affiliation(s)
- Zhe Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Deshen Liang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China.
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China.
| |
Collapse
|
4
|
Liu CC, Liang LH, Yan L, Chen B, Liu XJ, Yang Y, Liu SL, Xi HL. Generic detection of organophosphorus nerve agent adducts to butyrylcholinesterase in plasma using liquid chromatography-tandem mass spectrometry combined with an improved procainamide-gel separation and pepsin digestion method. J Chromatogr A 2023; 1697:463990. [PMID: 37075496 DOI: 10.1016/j.chroma.2023.463990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Organophosphorus nerve agent (OPNA) adducts to butyrylcholinesterase (BChE) can be applied to confirm exposure in humans. A sensitive method for generic detection of G- and V-series OPNA adducts to BChE in plasma was developed by combining an improved procainamide-gel separation (PGS) and pepsin digestion protocol with ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Residual matrix interferences from prior PGS purification of OPNA-BChE adducts from plasma were found to be a critical cause of significantly reduced UHPLC-MS/MS detection sensitivity. In our developed on-column PGS approach, the matrix interference was successfully removed by adding an appropriate concentration of NaCl to the washing buffer, and it could capture ≥92.5% of the BChE in plasma. The lower pH value and the longer digestion time in all previous pepsin digestion methods were found to be a key accelerated aging factor of several adducts such as tabun (GA)-, cyclohexylsarin (GF)-, and soman (GD)-BChE nonapeptide adducts, making them difficult to detect. The aging event of several OPNA-BChE nonapeptide adducts was so successfully addressed that the formic acid level in enzymatic buffer and digestion time were lowered to 0.05% (pH 2.67) and 0.5 h, respectively, and the post-digestion reaction was immediately terminated. The improved condition parameters were optimal for pepsin digestion of all types of OPNA-BChE adducts into their individual unaged nonapeptide adducts with the highest yields, expanding the applicability of the method. The method had a nearly one-fold decrease in sample preparation time through the reduction of digestion time and removal of ultrafiltration procedure after digestion. The limit of identification (LOI) were determined respectively as 0.13 ng mL-1, 0.28 ng mL-1, 0.50 ng mL-1, 0.41 ng mL-1 and 0.91 ng mL-1 for VX-, sarin (GB)-, GA-, GF-, and GD-exposed human plasma, being low exposure value compared to previously documented approaches. The approach was utilized to fully characterize the adducted (aged and unaged) BChE levels of five OPNAs in a series of their individual exposed concentration (1.00-400 nM) of plasma sample, and successfully detect OPNA exposure from all unknown plasma samples from OPCW's second and third biomedical proficiency tests. The OPNA-BChE adducts, their aged adducts, and unadducted BChE from OPNA-exposed plasma can simultaneously be measured using the method. The study provides a recommended diagnostic tool for generic verification of any OPNA exposure with high confidence by detecting its corresponding BChE adduct.
Collapse
Affiliation(s)
- Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Long Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiu-Jie Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
5
|
Jeong WH, Lee JY, Lim KC, Kim HS. Identification and Study of Biomarkers from Novichok-Inhibited Butyrylcholinesterase in Human Plasma. Molecules 2021; 26:3810. [PMID: 34206601 PMCID: PMC8270327 DOI: 10.3390/molecules26133810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
To identify biomarkers of ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234)- or methyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A232)-inhibited butyrylcholinesterase (BChE), we investigated nonapeptide adducts containing the active site serine, which plays a key role in enzyme activity, using LC-MS/HRMS. Biomarkers were acquired as expected, and they exhibited a significant amount of fragment ions from the inhibiting agent itself, in contrast to the MS2 spectra of conventional nerve agents. These biomarkers had a higher abundance of [M+2H]2+ ions than [M+H]+ ions, making doubly charged ions more suitable for trace analysis.
Collapse
Affiliation(s)
- Woo-Hyeon Jeong
- Agency for Defense Development (ADD), P.O. Box 35, Yuseong-gu, Daejeon 34186, Korea; (J.-Y.L.); (K.-C.L.); (H.-S.K.)
| | | | | | | |
Collapse
|
6
|
John H, Thiermann H. Poisoning by organophosphorus nerve agents and pesticides: An overview of the principle strategies and current progress of mass spectrometry-based procedures for verification. J Mass Spectrom Adv Clin Lab 2021; 19:20-31. [PMID: 34820662 PMCID: PMC8601002 DOI: 10.1016/j.jmsacl.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/02/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence of poisoning with organophosphorus (OP) nerve agents requires biomedical verification. OP nerve agents undergo common biotransformation pathways producing valuable biomarkers. Internationally accepted methods target remaining poison, hydrolysis products and protein-adducts. Mass spectrometry-based methods provide optimum selectivity and sensitivity for identification. Methods, strategies, current proceedings, quality criteria and real cases of poisoning are presented.
Intoxication by organophosphorus (OP) poisons, like nerve agents and pesticides, is characterized by the life-threatening inhibition of acetylcholinesterase (AChE) caused by covalent reaction with the serine residue of the active site of the enzyme (phosphylation). Similar reactions occur with butyrylcholinesterase (BChE) and serum albumin present in blood as dissolved proteins. For forensic purposes, products (adducts) with the latter proteins are highly valuable long-lived biomarkers of exposure to OP agents that are accessible by diverse mass spectrometric procedures. In addition, the evidence of poison incorporation might also succeed by the detection of remaining traces of the agent itself, but more likely its hydrolysis and/or enzymatic degradation products. These relatively short-lived molecules are distributed in blood and tissue, and excreted via urine. This review presents the mass spectrometry-based methods targeting the different groups of biomarkers in biological samples, which are already internationally accepted by the Organisation for the Prohibition of Chemical Weapons (OPCW), introduces novel approaches in the field of biomedical verification, and outlines the strict quality criteria that must be fulfilled for unambiguous forensic analysis.
Collapse
|
7
|
Fu F, Chen J, Zhao P, Lu X, Gao R, Chen D, Liu H, Wang H, Pei C. Tracing and attribution of V-type nerve agents in human exposure by strategy of assessing the phosphonylated and disulfide adducts on ceruloplasmin. Toxicology 2020; 430:152346. [DOI: 10.1016/j.tox.2019.152346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/29/2023]
|
8
|
Fu F, Sun F, Lu X, Song T, Ding J, Gao R, Wang H, Pei C. A Novel Potential Biomarker on Y263 Site in Human Serum Albumin Poisoned by Six Nerve Agents. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:168-175. [DOI: 10.1016/j.jchromb.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
|
9
|
Carmany DO, Mach PM, Rizzo GM, Dhummakupt ES, McBride EM, Sekowski JW, Benton B, Demond PS, Busch MW, Glaros T. On-substrate Enzymatic Reaction to Determine Acetylcholinesterase Activity in Whole Blood by Paper Spray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2436-2442. [PMID: 30280314 PMCID: PMC6276064 DOI: 10.1007/s13361-018-2072-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Currently, all assays measuring acetylcholinesterase (AChE) activity following a suspected nerve agent exposure leverage methodologies that fail to identify the agent. This limits the overall effectiveness and ability to administer proper countermeasures. As such, there is an urgent need to identify novel, rapid, and more comprehensive approaches to establish AChE activity, including identification of the toxicant. Paper spray mass spectrometry was used to monitor the activity of acetylcholinesterase, both in-solution and on modified hydrophobic paper surface. Hydrophobic paper surfaces were prepared using vaporized trichloro(3,3,3-trifluoropropyl)silane. In both approaches, mixtures of diluted human whole blood with and without VX were mixed with a non-endogenous AChE specific substrate, 1,1-dimethyl-4-acetylthiomethylpiperidinium (MATP+). Formation of the cleaved MATP+ product was monitored over time and compared to MATP+ to determine relative AChE activity. This on-substrate assay was effective at determining AChE activity and identifying the toxicant; however, determination of AChE activity in-solution proceeded at a slower rate. The on-substrate assay serves as a pioneering example of an enzymatic reaction occurring on the surface of a paper spray ionization ticket. This work broadens the range of applications relating to paper spray ionization-based clinical diagnostic assays. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Daniel O Carmany
- Excet, Inc., 6225 Brandon Ave, Suite 360, Springfield, VA, 22150, USA
| | - Phillip M Mach
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Gabrielle M Rizzo
- Excet, Inc., 6225 Brandon Ave, Suite 360, Springfield, VA, 22150, USA
| | - Elizabeth S Dhummakupt
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Ethan M McBride
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Jennifer W Sekowski
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Bernard Benton
- Toxicology and Obscurants Division, Analytical Toxicology Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Paul S Demond
- Excet, Inc., 6225 Brandon Ave, Suite 360, Springfield, VA, 22150, USA
| | - Michael W Busch
- Excet, Inc., 6225 Brandon Ave, Suite 360, Springfield, VA, 22150, USA
| | - Trevor Glaros
- Biosciences Division, BioDefense Branch, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| |
Collapse
|
10
|
Purification of recombinant human butyrylcholinesterase on Hupresin®. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:109-115. [PMID: 30384187 DOI: 10.1016/j.jchromb.2018.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Affinity chromatography on procainamide-Sepharose has been an important step in the purification of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) since its introduction in 1978. The procainamide affinity gel has limitations. In the present report a new affinity gel called Hupresin® was evaluated for its ability to purify truncated, recombinant human butyrylcholinesterase (rHuBChE) expressed in a stably transfected Chinese Hamster Ovary cell line. We present a detailed example of the purification of rHuBChE secreted into 3940 mL of serum-free culture medium. The starting material contained 13,163 units of BChE activity (20.9 mg). rHuBChE was purified to homogeneity in a single step by passage over 82 mL of Hupresin® eluted with 0.1 M tetramethylammonium bromide in 20 mM TrisCl pH 7.5. The fraction with the highest specific activity of 630 units/mg contained 11 mg of BChE. Hupresin® is superior to procainamide-Sepharose for purification of BChE, but is not suitable for purifying native AChE because Hupresin® binds AChE so tightly that AChE is not released with buffers, but is desorbed with denaturing solvents such as 50% acetonitrile or 1% trifluoroacetic acid. Procainamide-Sepharose will continue to be useful for purification of AChE.
Collapse
|
11
|
Bonichon M, Combès A, Desoubries C, Bossée A, Pichon V. Development of immunosorbents coupled on-line to immobilized pepsin reactor and micro liquid chromatography–tandem mass spectrometry for analysis of butyrylcholinesterase in human plasma. J Chromatogr A 2017; 1526:70-81. [DOI: 10.1016/j.chroma.2017.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
12
|
Bonichon M, Valbi V, Combès A, Desoubries C, Bossée A, Pichon V. Online coupling of immunoextraction, digestion, and microliquid chromatography-tandem mass spectrometry for the analysis of sarin and soman-butyrylcholinesterase adducts in human plasma. Anal Bioanal Chem 2017; 410:1039-1051. [PMID: 28971225 DOI: 10.1007/s00216-017-0640-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/16/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
Organophosphorus nerve agent (OPNA) adducts formed with human butyrylcholinesterase (HuBuChE) can be used as biomarker of OPNA exposure. Indeed, intoxication by OPNAs can be confirmed by the LC/MS2 analysis of a specific HuBuChE nonapeptide on which OPNAs covalently bind. A fast, selective, and highly sensitive online method was developed to detect sarin and soman adducts in plasma, including immunoextraction by anti-HuBuChE antibodies, pepsin digestion on immobilized enzyme reactors (IMER), and microLC/MS2 analysis of the OPNA adducts. The potential of three different monoclonal antibodies, covalently grafted on sepharose, was compared for the extraction of HuBuChE. The online method developed with the most promising antibodies allowed the extraction of up to 100% of HuBuChE contained in plasma and the digestion of 45% of it in less than 40 min. Moreover, OPNA-HuBuChE adducts, aged OPNA adducts, and unadducted HuBuChE could be detected (with S/N > 2000), even in plasma spiked with a low concentration of OPNA (10 ng mL-1). Finally, the potential of this method was compared to approaches involving other affinity sorbents, already described for HuBuChE extraction. Graphical abstract Online coupling of immunoextraction, digestion, and microliquid chromatography-tandem mass spectrometry for the analysis of organophosphorous nerve agent adducts formed with human butyrylcholinesterase.
Collapse
Affiliation(s)
- Maud Bonichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CNRS-ESPCI Paris, CBI 8231, PSL Research University, ESPCI Paris, 10 rue Vauquelin, Paris, France
| | - Valentina Valbi
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CNRS-ESPCI Paris, CBI 8231, PSL Research University, ESPCI Paris, 10 rue Vauquelin, Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CNRS-ESPCI Paris, CBI 8231, PSL Research University, ESPCI Paris, 10 rue Vauquelin, Paris, France
| | | | - Anne Bossée
- DGA, CBRN Defence, 5 rue Lavoisier, Vert-le-Petit, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR CNRS-ESPCI Paris, CBI 8231, PSL Research University, ESPCI Paris, 10 rue Vauquelin, Paris, France. .,UPMC, Sorbonne University, 4 Place Jussieu, Paris, France.
| |
Collapse
|
13
|
Liu CC, Liu SL, Xi HL, Yu HL, Zhou SK, Huang GL, Liang LH, Liu JQ. Simultaneous quantification of four metabolites of sulfur mustard in urine samples by ultra-high performance liquid chromatography-tandem mass spectrometry after solid phase extraction. J Chromatogr A 2017; 1492:41-48. [DOI: 10.1016/j.chroma.2017.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/06/2017] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
|