1
|
Lier C, Dejaco A, Kratzer A, Kees MG, Kees F, Dorn C. Free serum concentrations of antibiotics determined by ultrafiltration: extensive evaluation of experimental variables. Bioanalysis 2024; 16:747-756. [PMID: 39041640 PMCID: PMC11389746 DOI: 10.1080/17576180.2024.2365526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To assess the impact of experimental conditions on free serum concentrations as determined by ultrafiltration and HPLC-DAD analysis in a wide range of antibiotics.Materials & methods: Relative centrifugation force (RCF), temperature, pH and buffer were varied and the results compared with the standard protocol (phosphate buffer pH 7.4, 37°C, 1000 × g).Results: Generally, at 10,000 × g the unbound fraction (fu) decreased with increasing molecular weight, and was lower at 22°C. In unbuffered serum, the fu of flucloxacillin or valproic acid was increased, that of basic or amphoteric drugs considerably decreased. Comparable results were obtained using phosphate or HEPES buffer except for drugs which form metal chelate complexes.Conclusion: Maintaining a physiological pH is more important than strictly maintaining body temperature.
Collapse
Affiliation(s)
- Constantin Lier
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Alexander Dejaco
- Department of Anaesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Regensburg, Germany
| | - Martin G Kees
- Department of Anaesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Wen X, Doherty C, Thompson LE, Kim C, Buckley BS, Jaimes EA, Joy MS, Aleksunes LM. Determination of unbound platinum concentrations in human plasma using ultrafiltration and precipitation methods. J Pharmacol Toxicol Methods 2024; 128:107535. [PMID: 38955285 PMCID: PMC11551886 DOI: 10.1016/j.vascn.2024.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Quantification of the unbound portion of platinum (Pt) in human plasma is important for assessing the pharmacokinetics of the chemotherapeutic drug cisplatin. In this study, we sought to compare the recovery of unbound Pt using Nanosep® filters to 1) traditional filters (Centrifree®, Centrisart®, Amicon®) or trichloroacetic acid (TCA) protein precipitation, and 2) unbound, bound, and total Pt concentrations in clinical specimens. For the tested filters, the impact of 1) molecular weight cut-offs, 2) centrifugation force, and 3) total Pt concentration on Pt binding in human plasma was evaluated. Pt was quantified using inductively coupled-plasma mass spectrometry. In human plasma spiked with 0.9 μg/mL Pt, the percent of unbound Pt increased at higher centrifugation speeds. By comparison, the percent of unbound Pt was highest (42.1%) following TCA protein precipitation. When total Pt was ≤0.9 μg/mL, unbound Pt (∼20-30%) was consistent across filters. Conversely, when plasma was spiked with Pt exceeding 0.9 μg/mL, the percent of unbound Pt increased from 36.5 to 48% using ultrafiltration, compared to 63.4% to 79% with TCA precipitation. In patients receiving cisplatin-containing chemotherapy, the fraction of unbound Pt at concentrations exceeding 0.9 μg/mL ranged between 35 and 90%. Moreover, the unbound fraction of Pt in plasma correlated with the concentration of unbound (R2 = 0.738) and total Pt (R2 = 0.335). In summary, this study demonstrates that 1) the percent of unbound Pt is influenced by total and unbound Pt levels in vitro and in clinical specimens, and 2) ultrafiltration with Nanosep® filters is a feasible method for quantifying unbound Pt concentrations in human plasma.
Collapse
Affiliation(s)
- Xia Wen
- Dept of Pharmacology and Toxicology, United States of America; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States of America
| | - Cathleen Doherty
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States of America
| | - Lauren E Thompson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine Division of Nephrology, Colorado Cancer Center, University of Colorado, Aurora, CO, United States of America
| | - Christine Kim
- Dept of Pharmacology and Toxicology, United States of America
| | - Brian S Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States of America
| | - Edgar A Jaimes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine Division of Nephrology, Colorado Cancer Center, University of Colorado, Aurora, CO, United States of America
| | - Lauren M Aleksunes
- Dept of Pharmacology and Toxicology, United States of America; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States of America; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States of America.
| |
Collapse
|
3
|
Brozmanová H, Šištík P, Ďuricová J, Kacířová I, Kaňková K, Kolek M. Liquid chromatography-tandem mass spectrometry methods for quantification of total and free antibiotic concentrations in serum and exudate from patients with post-sternotomy deep sternal wound infection receiving negative pressure wound therapy. Clin Chim Acta 2024; 554:117704. [PMID: 38185284 DOI: 10.1016/j.cca.2023.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Systemically administered antibiotics are thought to penetrate the wounds more effectively during negative pressure wound therapy (NPWT).To test this hypothesis total and free antibiotic concentrations were quantified in serum and wound exudate. METHODS UHPLC-MS/MS methods were developed and validated for the determination of ceftazidime, cefepime, cefotaxime, cefuroxime, cefazolin, meropenem, oxacillin, piperacillin with tazobactam, clindamycin, ciprofloxacin, sulfamethoxazole/trimethoprim (cotrimoxazole), gentamicin, vancomycin, and linezolid. The unbound antibiotic fraction was obtained by ultrafiltration using a Millipore Microcon-30kda Centrifugal Filter Unit. Analysis was performed on a 1.7-µm Acquity UPLC BEH C18 2.1 × 100-mm column with a gradient elution. RESULTS The validation was performed for serum, exudates and free fractions. For all matrices, requirements were met regarding linearity, precision, accuracy, limit of quantitation, and matrix effect. The coefficient of variation was in the range of 1.2-13.6%.and the recovery 87.6-115.6%, respectively. Among the 29 applications of antibiotics thus far, including vancomycin, clindamycin, ciprofloxacin, oxacillin, cefepime, cefotaxime, cotrimoxazole, and gentamicin, total and free antibiotic concentrations in serum and exudate were correlated. CONCLUSION This method can accurately quantify the total and free concentrations of 16 antibiotics. Comparison of concentration ratios between serum and exudates allows for monitoring individual antibiotics' penetration capacity in patients receiving NPWT.
Collapse
Affiliation(s)
- Hana Brozmanová
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Pavel Šištík
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic.
| | - Jana Ďuricová
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Ivana Kacířová
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Klára Kaňková
- Department of Cardiac Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Martin Kolek
- Department of Cardiac Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinic Subjects, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| |
Collapse
|
4
|
Fage D, Aalhoul F, Cotton F. Protein binding investigation of first-line and second-line antituberculosis drugs. Int J Antimicrob Agents 2023; 62:106999. [PMID: 37838149 DOI: 10.1016/j.ijantimicag.2023.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Data on protein binding are incomplete for first-line antituberculosis drugs, and lacking for second-line antituberculosis drugs that are used extensively for multi-drug-resistant tuberculosis (levofloxacin, linezolid and moxifloxacin). Thus, the main purposes of this study were to investigate: (i) the relationship between carrier protein concentration and drug binding; and (ii) the feasibility of predicting free drug concentration using in-vitro and in-vivo results. In-vitro experiments were performed on spiked plasma mimicking real-case samples (drug combinations from clinical practice). Median in-vivo protein binding was 1.5% for ethambutol, 9.7% for isoniazid, 0.7% for pyrazinamide and 88.2% for rifampicin; and median in-vitro protein binding was 26.2% for levofloxacin, 12.8% for linezolid and 46.3% for moxifloxacin. Albumin concentration (<30 g/L) had a moderate impact on moxifloxacin binding and a strong impact on levofloxacin, linezolid and rifampicin binding. Determination of the free drug concentration seems to be of little value for ethambutol, isoniazid, moxifloxacin and pyrazinamide; limited value for linezolid because of its low binding; and major value for rifampicin in hypoalbuminaemic patients with tuberculosis, and levofloxacin because total concentration was an inaccurate reflection of free concentration. The free concentration predicted by the mathematical model was suitable for levofloxacin and linezolid, whereas the real free concentration should be measured for rifampicin. Further investigations should be carried out to investigate the benefit of using free concentration for levofloxacin, linezolid and rifampicin, particularly in the critical period of active tuberculosis associated with hypoalbuminaemia.
Collapse
Affiliation(s)
- D Fage
- Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel, Brussels, Belgium.
| | - F Aalhoul
- Haute Ecole Lucia de Brouckère, Brussels, Belgium
| | - F Cotton
- Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Fernández‐Rhodes M, Adlou B, Williams S, Lees R, Peacock B, Aubert D, Jalal AR, Lewis MP, Davies OG. Defining the influence of size-exclusion chromatography fraction window and ultrafiltration column choice on extracellular vesicle recovery in a skeletal muscle model. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e85. [PMID: 38939692 PMCID: PMC11080914 DOI: 10.1002/jex2.85] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) have the potential to provide new insights into skeletal muscle (SM) physiology and pathophysiology. However, current isolation protocols often do not eliminate co-isolated components such as lipoproteins and RNA binding proteins that could confound outcomes and hinder downstream clinical translation. In this study, we validated an EV isolation protocol that combined size-exclusion chromatography (SEC) with ultrafiltration (UF) to increase sample throughput, scalability and purity, while providing the very first analysis of the effects of UF column choice and fraction window on EV recovery. C2C12 myotube conditioned medium was pre-concentrated using either Amicon® Ultra 15 or Vivaspin®20 100 KDa UF columns and processed by SEC (IZON, qEV 70 nm). The resulting thirty fractions obtained were individually analysed to identify an optimal fraction window for EV recovery. The EV marker TSG101 could be detected from fractions 5 to 14, while CD9 and Annexin A2 only up to fraction 6. ApoA1+ lipoprotein co-isolates were detected from fraction 6 onwards for both protocols. Strikingly, Amicon and Vivaspin UF concentration protocols led to qualitative and quantitative variations in EV marker profiles and purity. Eliminating lipoprotein co-isolation by reducing the SEC fraction window resulted in a net loss of particles, but increased measures of sample purity and had only a negligible impact on the presence of EV marker proteins. In conclusion, our study developed an effective UF+SEC protocol for the isolation of EVs based on sample purity (fractions 1-5) and total EV abundance (fractions 2-10). We provide evidence to demonstrate that the choice of UF column can affect the composition of the resulting EV preparation and needs to be considered when being applied in EV isolation studies in SM. The resulting protocols will be valuable in isolating highly pure EV preparations for applications in a range of therapeutic and diagnostic studies.
Collapse
Affiliation(s)
- María Fernández‐Rhodes
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | - Bahman Adlou
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | - Soraya Williams
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | | | | | | | - Aveen R. Jalal
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | - Mark P. Lewis
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| | - Owen G. Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughLeicestershireUK
| |
Collapse
|
6
|
Developmental Pharmacokinetics of Antibiotics Used in Neonatal ICU: Focus on Preterm Infants. Biomedicines 2023; 11:biomedicines11030940. [PMID: 36979919 PMCID: PMC10046592 DOI: 10.3390/biomedicines11030940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Neonatal Infections are among the most common reasons for admission to the intensive care unit. Neonatal sepsis (NS) significantly contributes to mortality rates. Empiric antibiotic therapy of NS recommended by current international guidelines includes benzylpenicillin, ampicillin/amoxicillin, and aminoglycosides (gentamicin). The rise of antibacterial resistance precipitates the growth of the use of antibiotics of the Watch (second, third, and fourth generations of cephalosporines, carbapenems, macrolides, glycopeptides, rifamycins, fluoroquinolones) and Reserve groups (fifth generation of cephalosporines, oxazolidinones, lipoglycopeptides, fosfomycin), which are associated with a less clinical experience and higher risks of toxic reactions. A proper dosing regimen is essential for effective and safe antibiotic therapy, but its choice in neonates is complicated with high variability in the maturation of organ systems affecting drug absorption, distribution, metabolism, and excretion. Changes in antibiotic pharmacokinetic parameters result in altered efficacy and safety. Population pharmacokinetics can help to prognosis outcomes of antibiotic therapy, but it should be considered that the neonatal population is heterogeneous, and this heterogeneity is mainly determined by gestational and postnatal age. Preterm neonates are common in clinical practice, and due to the different physiology compared to the full terms, constitute a specific neonatal subpopulation. The objective of this review is to summarize the evidence about the developmental changes (specific for preterm and full-term infants, separately) of pharmacokinetic parameters of antibiotics used in neonatal intensive care units.
Collapse
|
7
|
Allele-specific collateral and fitness effects determine the dynamics of fluoroquinolone resistance evolution. Proc Natl Acad Sci U S A 2022; 119:e2121768119. [PMID: 35476512 PMCID: PMC9170170 DOI: 10.1073/pnas.2121768119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A promising strategy to overcome the evolution of antibiotic-resistant bacteria is to use collateral sensitivity-informed antibiotic treatments that rely on cycling or mixing of antibiotics, such that that resistance toward one antibiotic confers increased sensitivity to the other. Here, focusing on multistep fluoroquinolone resistance in Streptococcus pneumoniae, we show that antibiotic resistance induces diverse collateral responses whose magnitude and direction are determined by allelic identity. Using mathematical simulations, we show that these effects can be exploited via combination treatment regimens to suppress the de novo emergence of resistance during treatment. Collateral sensitivity (CS), which arises when resistance to one antibiotic increases sensitivity toward other antibiotics, offers treatment opportunities to constrain or reverse the evolution of antibiotic resistance. The applicability of CS-informed treatments remains uncertain, in part because we lack an understanding of the generality of CS effects for different resistance mutations, singly or in combination. Here, we address this issue in the gram-positive pathogen Streptococcus pneumoniae by measuring collateral and fitness effects of clinically relevant gyrA and parC alleles and their combinations that confer resistance to fluoroquinolones. We integrated these results in a mathematical model that allowed us to evaluate how different in silico combination treatments impact the dynamics of resistance evolution. We identified common and conserved CS effects of different gyrA and parC alleles; however, the spectrum of collateral effects was unique for each allele or allelic pair. This indicated that allelic identity can impact the evolutionary dynamics of resistance evolution during monotreatment and combination treatment. Our model simulations, which included the experimentally derived antibiotic susceptibilities and fitness effects, and antibiotic-specific pharmacodynamics revealed that both collateral and fitness effects impact the population dynamics of resistance evolution. Overall, we provide evidence that allelic identity and interactions can have a pronounced impact on collateral effects to different antibiotics and suggest that these need to be considered in models examining CS-based therapies.
Collapse
|
8
|
van de Wakker SI, van Oudheusden J, Mol EA, Roefs MT, Zheng W, Görgens A, El Andaloussi S, Sluijter JPG, Vader P. Influence of short term storage conditions, concentration methodsand excipients on extracellular vesicle recovery and function. Eur J Pharm Biopharm 2021; 170:59-69. [PMID: 34864197 DOI: 10.1016/j.ejpb.2021.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer enclosed vesicles which play an important role in intercellular communication. To date, many studies have focused on therapeutic application of EVs. However, to progress EV applications faster towards the clinic, more information about the physical stability and scalable production of EVs is needed. The goal of this study was to evaluate EV recovery and function after varying several conditions in the isolation process or during storage. Physical stability and recovery rates of EVs were evaluated by measuring EV size, particle and protein yields using nanoparticle tracking analysis, microBCA protein quantification assay and transmission electron microscopy. Western blot analyses of specific EV markers were performed to determine EV yields and purity. EV functionality was tested in an endothelial cell wound healing assay. Higher EV recovery rates were found when using HEPES buffered saline (HBS) as buffer compared to phosphate buffered saline (PBS) during EV isolation. When concentrating EVs, 15 ml spinfilters with a 10 kDa membrane cutoff gave the highest EV recovery. Next, EV storage in polypropylene tubes was shown to be superior compared to glass tubes. The use of protective excipients during EV storage, i.e. bovine serum albumin (BSA) and Tween 20, improved EV preservation without influencing their functionality. Finally, it was shown that both 4 °C and -80 °C are suitable for short term storage of EVs. Together, our results indicate that optimizing buffer compositions, concentrating steps, protective excipients and storage properties may collectively increase EV recovery rates significantly while preserving their functional properties, which accelerates translation of EV-based therapeutics towards clinical application.
Collapse
Affiliation(s)
- S I van de Wakker
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J van Oudheusden
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - E A Mol
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - M T Roefs
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - W Zheng
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - A Görgens
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - S El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - J P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - P Vader
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht University, the Netherlands; CDL Research, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
9
|
Çelebier M. Ultrafiltration-based Sample Preparation for Pharmaceutical Analysis. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200729172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pharmaceutical analysis plays an important role in all steps of drug development processes.
Analysis of active pharmaceutical ingredients in biological samples needs sample preparation techniques
to prevent the signal of the analyte from interferences coming from matrix components. Ultrafiltration
is a well-known technique used in the food and pharmaceutical industry. Commercial ultrafiltration
devices have been frequently used on proteomics and metabolomics studies for sample preparation.
In pharmaceutical analysis, these devices have been employed to analyze the free concentration of
drugs in biological fluids after filtration. However, they have been rarely used to determine the total
concentration of targeted compounds when it is compared with some other common sample preparation
techniques. Ultrafiltration-based sample preparation might be used to clean-up the sample easily
from matrix components especially on bioanalysis performed with high-performance liquid chromatography
(HPLC). In the case of using protein precipitation agents on filtration procedure, the quantitative
recovery of this non-selective unique technique is competitive with solid-phase extraction.
Collapse
Affiliation(s)
- Mustafa Çelebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Schießer S, Hitzenbichler F, Kees MG, Kratzer A, Lubnow M, Salzberger B, Kees F, Dorn C. Measurement of Free Plasma Concentrations of Beta-Lactam Antibiotics: An Applicability Study in Intensive Care Unit Patients. Ther Drug Monit 2021; 43:264-270. [PMID: 33086362 DOI: 10.1097/ftd.0000000000000827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The antibacterial effect of antibiotics is linked to the free drug concentration. This study investigated the applicability of an ultrafiltration method to determine free plasma concentrations of beta-lactam antibiotics in ICU patients. METHODS Eligible patients included adult ICU patients treated with ceftazidime (CAZ), meropenem (MEM), piperacillin (PIP)/tazobactam (TAZ), or flucloxacillin (FXN) by continuous infusion. Up to 2 arterial blood samples were drawn at steady state. Patients could be included more than once if they received another antibiotic. Free drug concentrations were determined by high-performance liquid chromatography with ultraviolet detection after ultrafiltration, using a method that maintained physiological conditions (pH 7.4/37°C). Total drug concentrations were determined to calculate the unbound fraction. In a post-hoc analysis, free concentrations were compared with the target value of 4× the epidemiological cut-off value (ECOFF) for Pseudomonas aeruginosa as a worst-case scenario for empirical therapy with CAZ, MEM or PIP/tazobactam and against methicillin-sensitive Staphylococcus aureus for targeted therapy with FXN. RESULTS Fifty different antibiotic treatment periods in 38 patients were evaluated. The concentrations of the antibiotics showed a wide range because of the fixed dosing regimen in a mixed population with variable kidney function. The mean unbound fractions (fu) of CAZ, MEM, and PIP were 102.5%, 98.4%, and 95.7%, with interpatient variability of <6%. The mean fu of FXN was 11.6%, with interpatient variability of 39%. It was observed that 2 of 12 free concentrations of CAZ, 1 of 40 concentrations of MEM, and 11 of 23 concentrations of PIP were below the applied target concentration of 4 × ECOFF for P. aeruginosa. All concentrations of FXN (9 samples from 6 patients) were >8 × ECOFF for methicillin-sensitive Staphylococcus aureus. CONCLUSIONS For therapeutic drug monitoring purposes, measuring total or free concentrations of CAZ, MEM, or PIP is seemingly adequate. For highly protein-bound beta-lactams such as FXN, free concentrations should be favored in ICU patients with prevalent hypoalbuminemia.
Collapse
Affiliation(s)
- Selina Schießer
- Departments of Infection Prevention and Infectious Diseases and
| | | | | | | | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg
| | | | - Frieder Kees
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Abstract
Plasma protein binding plays a critical role in drug therapy, being a key part in the characterization of any compound. Among other methods, this process is largely studied by ultrafiltration based on its advantages. However, the method also has some limitations that could negatively influence the experimental results. The aim of this study was to underline key aspects regarding the limitations of the ultrafiltration method, and the potential ways to overcome them. The main limitations are given by the non-specific binding of the substances, the effect of the volume ratio obtained, and the need of a rigorous control of the experimental conditions, especially pH and temperature. This review presents a variety of methods that can hypothetically reduce the limitations, and concludes that ultrafiltration remains a reliable method for the study of protein binding. However, the methodology of the study should be carefully chosen.
Collapse
|
12
|
Quantification of microdialysis related variability in humans: Clinical trial design recommendations. Eur J Pharm Sci 2020; 157:105607. [PMID: 33141034 DOI: 10.1016/j.ejps.2020.105607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Target-site concentrations obtained via the catheter-based minimally invasive microdialysis technique often exhibit high variability. Catheter calibration is commonly performed via retrodialysis, in which a transformation factor, termed relative recovery (RR), is determined. Leveraging RR values from a rich data set of a very large clinical microdialysis study, promised to contribute critical insight into the origin of the reportedly high target-site variability. The present work aimed (i) to quantify and explain variability in RR associated with the patient (including non-obese vs. obese) and the catheter, and (ii) to derive recommendations on the design of future clinical microdialysis studies. METHODS A prospective, age- and sex-matched parallel group, single-centre trial in non-obese and obese patients (BMI=18.7-86.9 kg/m2) was performed. 1-3 RR values were obtained in the interstitial fluid of the subcutaneous fat tissue in one catheter per upper arm of 120 patients via the retrodialysis method (nRR=1008) for a panel of drugs (linezolid, meropenem, tigecycline, cefazolin, fosfomycin, piperacillin and acetaminophen). A linear mixed-effects model was developed to quantify the different types of variability in RR and to explore the association between RR and patient body size descriptors. RESULTS Estimated RR was highest for acetaminophen (69.7%, 95%CI=65.0% to 74.3%) and lowest for piperacillin (40.4%, 95%CI=34.6% to 46.0%). The linear mixed-effects modelling analysis showed that variability associated with the patient (σ=15.9%) was the largest contributor (46.7%) to overall variability, whereas the contribution of variability linked to the catheter (σ=5.55%) was ~1/6 (16.8%). The relative contribution of residual unexplained variability (σ=12.0%, including intracatheter variability) was ~1/3 (36.4%). The limits of agreement of repeated RR determinations in a single catheter ranged from 0.694-1.64-fold (linezolid) to 0.510-3.02-fold (cefazolin). Calculated fat mass affected RR, explaining the observed lower RR in obese (ΔRRmean= -29.7% relative reduction) versus non-obese patients (p<0.001); yet only 15.8% of interindividual variability was explained by this effect. No difference in RR was found between catheters implanted into the left or right arm (p=0.732). CONCLUSIONS Three recommendations for clinical microdialysis trial design were derived: 1) High interindividual variability underscored the necessity of measuring individual RR per patient. 2) The low relative contribution of intercatheter variability to overall variability indicated that measuring RR with a single catheter per patient is sufficient for reliable catheter calibration. 3) The wide limits of agreement from multiple RR in the same catheter implied an uncertainty of a factor of two in target-site drug concentration estimation necessitating to perform catheter calibration (retrodialysis sampling) multiple times per patient. To allow routine clinical use of microdialysis, research efforts should aim at further understanding and minimising the method-related variability. Optimised study designs in clinical trials will ultimately yield more informative microdialysis data and increase our understanding of this valuable sampling technique to derive target-site drug exposure.
Collapse
|
13
|
Risk of target non-attainment in obese compared to non-obese patients in calculated linezolid therapy. Clin Microbiol Infect 2020; 26:1222-1228. [DOI: 10.1016/j.cmi.2020.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 01/07/2023]
|
14
|
Metsu D, Lanot T, Fraissinet F, Concordet D, Gayrard V, Averseng M, Ressault A, Martin-Blondel G, Levade T, Février F, Chatelut E, Delobel P, Gandia P. Comparing ultrafiltration and equilibrium dialysis to measure unbound plasma dolutegravir concentrations based on a design of experiment approach. Sci Rep 2020; 10:12265. [PMID: 32703975 PMCID: PMC7378073 DOI: 10.1038/s41598-020-69102-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Dolutegravir therapeutic drug monitoring (TDM) could be improved by measuring the unbound dolutegravir plasma concentration (Cu), particularly in patients experiencing virological failure or toxicity despite achieving appropriate DTG total plasma concentrations. Equilibrium dialysis (ED) is the gold standard to measure Cu, but ED is time consuming, precluding its use in clinical practice. In contrast, ultrafiltration is applicable to TDM, but is sensitive to numerous analytical conditions. In order to evaluate measurements of Cu by ultrafiltration, ultrafiltration conditions were validated by comparison with ED. DTG concentrations were measured by LC–MS/MS. Three ultrafiltration factors (temperature, duration and relative centrifugal force [RCF]) were evaluated and compared to ED (25/37 °C), using a design of experiment strategy. Temperature was found to influence Cu results by ED (p = 0.036) and UF (p = 0.002) when results were analysed with ANOVA. Relative centrifugal force (2000 g) and time (20 min) interacted to influence Cu (p = 0.006), while individually they did not influence Cu (p = 0.88 and p = 0.42 for RCF and time). Ultrafiltration conditions which yielded the most comparable results to ED were 37 °C, 1000 g for 20 min. Ultrafiltration results greatly depended on analytical conditions, confirming the need to validate the method by comparison with ED in order to correctly interpret DTG Cu.
Collapse
Affiliation(s)
- David Metsu
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France.,INSERM, CRCT, Toulouse University, UPS, Toulouse, France
| | - Thomas Lanot
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France
| | - François Fraissinet
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France
| | | | | | - Manon Averseng
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France
| | - Alice Ressault
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France
| | - Guillaume Martin-Blondel
- Department of Infectious Diseases, University Hospital of Toulouse, Toulouse, France.,Inserm U1043 - CNRS UMR 5282, Toulouse-Purpan Pathophysiology Center, 31173, Toulouse Cedex, France
| | - Thierry Levade
- Department of Biochemistry, Toulouse University Hospital, Toulouse, France.,INSERM UMR1037, CRCT (Cancer Research Centre of Toulouse), Toulouse University, UPS, Toulouse, France
| | - Frédéric Février
- Department of Laboratory Medicine, GCS Ingres-Quercy, Montauban Hospital, Montauban, France
| | - Etienne Chatelut
- INSERM, CRCT, Toulouse University, UPS, Toulouse, France.,Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Pierre Delobel
- Department of Infectious Diseases, University Hospital of Toulouse, Toulouse, France.,Inserm U1043 - CNRS UMR 5282, Toulouse-Purpan Pathophysiology Center, 31173, Toulouse Cedex, France
| | - Peggy Gandia
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France. .,INTHERES, INRA, ENVT, Toulouse University, Toulouse, France. .,Laboratoire de Pharmacocinétique Et Toxicologie (Pharmacokinetics and Toxicology Laboratory), Centre Hospitalo-Universitaire Purpan (Purpan University Medical Centre), 330 avenue de Grande-Bretagne, 31059, Toulouse, France.
| |
Collapse
|
15
|
Castro TNE, Costa ER, Gonçalves JCS, Estrela RDCE. Pretreatment and non-specific binding in ultrafiltration device: Impact on protease inhibitor quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1146:122127. [PMID: 32371328 DOI: 10.1016/j.jchromb.2020.122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Ultrafiltration (UF) is used to separate unbound drugs; however, non-specific binding (NSB) may be a limiting factor of this technique. Pretreatment of UF devices has been suggested to reduce NSB. Therefore, the pretreatment methodologies for UF devices were evaluated in order to test their effectiveness in reducing NSB of protease inhibitors (PIs). METHODOLOGY Two PIs (lopinavir-LPV and ritonavir-RTV) were tested. UF devices were pretreated with ultrapure water, Tween-20 or Tween-80. To evaluate the NSB, after UF devices being pretreated, ultrafiltrate solutions containing the analytes at two concentrations (low and high) were used. Samples were quantified by LC-MS/MS. RESULTS UF devices pretreated with Tween-5% had the lowest NSB for both analytes. NSB values varied between 7 and 11% at low concentration 16-34% at high LPV concentration, respectively. For RTV, NSB was approximately 6% for low concentration and 18% for high concentration. Failure to completely remove Tween in UF devices could results in an overestimation of NSB. CONCLUSION Pretreatment of UF device with Tween and subsequent removal proved to be effective in reducing NSB of PI.
Collapse
Affiliation(s)
- Thales Nascimento E Castro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Edlaine Rijo Costa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Rita de Cassia Elias Estrela
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Moein MM, Halldin C. Sample preparation techniques for protein binding measurement in radiopharmaceutical approaches: A short review. Talanta 2020; 219:121220. [PMID: 32887121 DOI: 10.1016/j.talanta.2020.121220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Plasma protein binding (PPB) measurement is a key step in radiopharmaceutical studies for the development of positron emission tomography (PET) radioligands. PPB refers to the binding degree of a radioligand, radiotracer, or drug to blood plasma proteins or tissues after administration into the body. Several techniques have been successfully developed and applied for PPB measurement of PET radioligands. However, there is room for progress among these techniques in relation to duration time, adaptability with nonpolar radioligands, in vivo measurement, specificity, and selectivity. This mini review gives a brief overview of advances, limitations, and prospective applications of commercially-available PPB methods.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, S-171 64 Stockholm, Sweden; Karolinska Institutet, Department of Oncology-Pathology, J5:20, S-171 77 Stockholm, Sweden.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| |
Collapse
|
17
|
Dorn C, Schießer S, Wulkersdorfer B, Hitzenbichler F, Kees MG, Zeitlinger M. Determination of free clindamycin, flucloxacillin or tedizolid in plasma: Pay attention to physiological conditions when using ultrafiltration. Biomed Chromatogr 2020; 34:e4820. [PMID: 32115736 DOI: 10.1002/bmc.4820] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/15/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
Pharmacokinetic/pharmacodynamic indices of anti-infective drugs should be referenced to free drug concentrations. In the present study, clindamycin, flucloxacillin and tedizolid have been determined in human plasma by HPLC-UV. The drugs were separated isocratically within 3-6 min on a C18 column using mixtures of phosphate buffer-acetonitrile of pH 7.1-7.2. Sample treatment for the determination of total drug concentrations in plasma included extraction/back-extraction (clindamycin) or protein precipitation (flucloxacillin, tedizolid). The free drug concentrations were determined after ultrafiltration. An ultrafiltration device with a membrane consisting of regenerated cellulose proved to be suitable for all drugs. Maintaining a physiological pH was crucial for clindamycin, whereas maintaining body temperature was essential for tedizolid. The methods were applied to the analysis of total and free drug concentrations in clinical samples and were sufficiently sensitive for pharmacokinetic studies and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Selina Schießer
- Infectious Diseases Unit, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Martin G Kees
- Department of Anaesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Gampfer TM, Wagmann L, Richter MJ, Fischmann S, Westphal F, Meyer MR. Toxicokinetic Studies and Analytical Toxicology of the New Synthetic Opioids Cyclopentanoyl-Fentanyl and Tetrahydrofuranoyl-Fentanyl. J Anal Toxicol 2020; 44:449-460. [DOI: 10.1093/jat/bkaa010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 01/01/2023] Open
Abstract
Abstract
The growing number of new synthetic opioids (NSO) on the new psychoactive substances (NPS) market bears new challenges in toxicology. As their toxicodynamics and particularly their toxicokinetics are usually unknown, impact on human health is not yet fully understood. Detection of the 2 NSO cyclopentanoyl-fentanyl (CP-F) and tetrahydrofuranoyl-fentanyl (THF-F) was first reported in 2016. Both were involved in several fatal intoxication cases, but no detailed information about their toxicological characteristics is available so far. The main purpose of this study was therefore to investigate the in vitro toxicokinetics and in vivo analytical toxicology of CP-F and THF-F by means of liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). These studies included metabolic stability, phase I and II metabolism, isozyme mapping, plasma protein binding and detectability in LC-HRMS/MS standard urine screening approaches (SUSA) using rat urine samples. In total, 12 phase I metabolites of CP-F and 13 of THF-F were identified, among them 9 metabolites described for the first time. Overall, N-dealkylations, hydroxylations and dihydroxylations were the main metabolic reactions. The cytochrome P450 (CYP) isozymes mainly involved were CYP2D6 and CYP3A4, leading to elevated drug levels and intoxications in CYP2D6 poor metabolizers. CP-F showed a high plasma protein binding of 99%, which may increase the risk of toxicity by simultaneous intake of other highly bound drugs. Detectability studies showed that neither the parent compounds nor their metabolites were detectable in rat urine using LC-HRMS/MS SUSA. However, a more sophisticated analytical strategy was successfully applied and should be used for analytical confirmation of an intake of CP-F and/or THF-F.
Collapse
Affiliation(s)
- Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Matthias J Richter
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Svenja Fischmann
- State Bureau of Criminal Investigation Schleswig-Holstein, 24116 Kiel, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, 24116 Kiel, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
19
|
Resztak M, Kosicka K, Zalewska P, Krawiec J, Główka FK. Determination of total and free voriconazole in human plasma: Application to pharmacokinetic study and therapeutic monitoring. J Pharm Biomed Anal 2019; 178:112952. [PMID: 31708268 DOI: 10.1016/j.jpba.2019.112952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Str., 60-781 Poznań, Poland.
| | - Katarzyna Kosicka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Str., 60-781 Poznań, Poland.
| | - Paulina Zalewska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Str., 60-781 Poznań, Poland.
| | - Justyna Krawiec
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Str., 60-781 Poznań, Poland.
| | - Franciszek K Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Str., 60-781 Poznań, Poland.
| |
Collapse
|
20
|
Gampfer TM, Richter LHJ, Schäper J, Wagmann L, Meyer MR. Toxicokinetics and analytical toxicology of the abused opioid U-48800 - in vitro metabolism, metabolic stability, isozyme mapping, and plasma protein binding. Drug Test Anal 2019; 11:1572-1580. [PMID: 31424163 DOI: 10.1002/dta.2683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 11/08/2022]
Abstract
Due to the risk of new synthetic opioids (NSOs) for human health, the knowledge of their toxicokinetic characteristics is important for clinical and forensic toxicology. U-48800 is an NSO structurally non-related to classical opioids such as morphine or fentanyl and offered for abuse. As toxicokinetic data of U-48800 is not currently available, the aims of this study were to identify the in vitro metabolites of U-48800 in pooled human liver S9 fraction (pS9), to map the isozymes involved in the initial metabolic steps, and to determine further toxicokinetic data such as metabolic stability, including the in vitro half-life (t1/2 ), and the intrinsic (CLint ) and hepatic clearance (CLh ). Furthermore, drug detectability studies in rat urine should be done using hyphenated mass spectrometry. In total, 13 phase I metabolites and one phase II metabolite were identified. N-Dealkylation, hydroxylation, and their combinations were the predominant metabolic reactions. The isozymes CYP2C19 and CYP3A4 were mainly involved in these initial steps. CYP2C19 poor metabolizers may suffer from an increased U-48800 toxicity. The in vitro t1/2 and CLint could be rated as moderate, compared to structural related compounds. After administration of an assumed consumer dose to rats, the unchanged parent compound was found only in very low abundance but three metabolites were detected additionally. Due to species differences, metabolites found in rats might be different from those in humans. However, phase I metabolites found in rat urine, the parent compound, and additionally the N-demethyl metabolite should be used as main targets in toxicological urine screening approaches.
Collapse
Affiliation(s)
- Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Lilian H J Richter
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Jan Schäper
- State Bureau of Criminal Investigation Bavaria, Munich, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
21
|
Kratzer A, Schießer S, Matzneller P, Wulkersdorfer B, Zeitlinger M, Schlossmann J, Kees F, Dorn C. Determination of total and free ceftolozane and tazobactam in human plasma and interstitial fluid by HPLC-UV. J Pharm Biomed Anal 2019; 163:34-38. [DOI: 10.1016/j.jpba.2018.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/27/2022]
|
22
|
de Jesús Valle MJ, Coutinho P, Ribeiro MP, Sánchez Navarro A. Lyophilized tablets for focal delivery of fluconazole and itraconazole through vaginal mucosa, rational design and in vitro evaluation. Eur J Pharm Sci 2018; 122:144-151. [PMID: 29969668 DOI: 10.1016/j.ejps.2018.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
The present work deals with the rational design and in vitro evaluation of vaginal tablets for focal delivery of fluconazole (FLZ) and itraconazol (ITZ). Drug loaded liposomes with and without d-alpha-tocopheryl polyethylene glycol 1000 succinate (vit E TPGS) were prepared by direct sonication of the components and mixed with albumin to obtain albusomes. Tablets were obtained by direct compression of the lyophilized cake. The influence of vit E TPGS on size, zeta potential and entrapment efficiency (EE%) of liposomes and albusomes was evaluated. Tablet swelling and drug release were studied by in vitro assays. Vit E TPGS neither affected the zeta potential nor the EE% of liposomes and albusomes, but affected the liposomes size and the tablet disintegration time. A rapid erosion was observed for the tablets with the highest content of vitamin, while a slow swelling for those lacking the vitamin (swelling index = 57.76 ± 13.51%). A faster drug release profile was obtained for the former compared to the latter. The in vitro assay showed that FLZ diffused and solved in the vaginal fluid simulant while ITZ remained into the albusomes, which slowly released ITZ-albumin complex and ITZ-loaded liposomes, both suitable carriers for drug transport to deeper vaginal endothelium.
Collapse
Affiliation(s)
- Maria José de Jesús Valle
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain; Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), Salamanca, Spain.
| | - Paula Coutinho
- CPIRN-IPG - Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Guarda, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Maximiano Prata Ribeiro
- CPIRN-IPG - Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Guarda, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Amparo Sánchez Navarro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain; Institute of Biopharmaceutical Sciences of University of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
23
|
Dorn C, Kratzer A, Liebchen U, Schleibinger M, Murschhauser A, Schlossmann J, Kees F, Simon P, Kees MG. Impact of Experimental Variables on the Protein Binding of Tigecycline in Human Plasma as Determined by Ultrafiltration. J Pharm Sci 2017; 107:739-744. [PMID: 28927988 DOI: 10.1016/j.xphs.2017.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
Tigecycline, a tetracycline derivative, shows atypical plasma protein binding behavior. The unbound fraction decreases with increasing concentration at therapeutic concentrations. Moreover, uncertainty exists about the magnitude of tigecyline's protein binding in man. Unbound fractions between 2.5% and 35% have been reported in plasma from healthy volunteers, and between 25% and 100% in patients, respectively. In the present study, the protein binding of tigecycline has been investigated by ultrafiltration using different experimental conditions. Whereas temperature had only a marginal influence, the unbound fraction at 0.3/3.0 mg/L was low at pH 8.2 (9.4%/1.9%) or in unbuffered pooled plasma (6.3%/1.2%), compared with plasma buffered with HEPES to pH 7.4 (65.9%/39.7%). In experiments with phosphate buffer and EDTA, the concentration dependency was markedly attenuated or abolished, which is compatible with a cooperative binding mechanism involving divalent cations such as calcium. The unbound fraction in clinical plasma samples from patients treated with tigecycline was determined to 66.3 ± 13.7% at concentrations <0.3 mg/L compared with 41.3 ± 16.0% at >1 to <5 mg/L. To summarize, tigecycline appears to be only moderately bound to plasma proteins as determined by ultrafiltration, when a physiological pH is maintained.
Collapse
Affiliation(s)
- Christoph Dorn
- Department of Clinical Pharmacy, University of Regensburg, Regensburg, Germany.
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Regensburg, Germany
| | - Uwe Liebchen
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Michael Schleibinger
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | - Jens Schlossmann
- Department of Pharmacology, University of Regensburg, Regensburg, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Regensburg, Germany
| | - Philipp Simon
- Department of Anesthesia and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Martin G Kees
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Wicha SG, Huisinga W, Kloft C. Translational Pharmacometric Evaluation of Typical Antibiotic Broad-Spectrum Combination Therapies Against Staphylococcus Aureus Exploiting In Vitro Information. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:512-522. [PMID: 28378945 PMCID: PMC5572409 DOI: 10.1002/psp4.12197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/15/2022]
Abstract
Broad‐spectrum antibiotic combination therapy is frequently applied due to increasing resistance development of infective pathogens. The objective of the present study was to evaluate two common empiric broad‐spectrum combination therapies consisting of either linezolid (LZD) or vancomycin (VAN) combined with meropenem (MER) against Staphylococcus aureus (S. aureus) as the most frequent causative pathogen of severe infections. A semimechanistic pharmacokinetic‐pharmacodynamic (PK‐PD) model mimicking a simplified bacterial life‐cycle of S. aureus was developed upon time‐kill curve data to describe the effects of LZD, VAN, and MER alone and in dual combinations. The PK‐PD model was successfully (i) evaluated with external data from two clinical S. aureus isolates and further drug combinations and (ii) challenged to predict common clinical PK‐PD indices and breakpoints. Finally, clinical trial simulations were performed that revealed that the combination of VAN‐MER might be favorable over LZD‐MER due to an unfavorable antagonistic interaction between LZD and MER.
Collapse
Affiliation(s)
- S G Wicha
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - W Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam-Golm, Germany
| | - C Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
25
|
Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep 2017; 7:2704. [PMID: 28577337 PMCID: PMC5457435 DOI: 10.1038/s41598-017-02599-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Identification and validation of extracellular vesicle (EV)-associated biomarkers requires robust isolation and characterization protocols. We assessed the impact of some commonly implemented pre-analytical, analytical and post-analytical variables in EV research. Centrifugal filters with different membrane types and pore sizes are used to reduce large volume biofluids prior to EV isolation or to concentrate EVs. We compared five commonly reported filters for their efficiency when using plasma, urine and EV-spiked PBS. Regenerated cellulose membranes with pore size of 10 kDa recovered EVs the most efficient. Less than 40% recovery was achieved with other filters. Next, we analyzed the effect of the type of protein assays to measure EV protein in colorimetric and fluorometric kits. The fluorometric assay Qubit measured low concentration EV and BSA samples the most accurately with the lowest variation among technical and biological replicates. Lastly, we quantified Optiprep remnants in EV samples from density gradient ultracentrifugation and demonstrate that size-exclusion chromatography efficiently removes Optiprep from EVs. In conclusion, choice of centrifugal filters and protein assays confound EV analysis and should be carefully considered to increase efficiency towards biomarker discovery. SEC-based removal of Optiprep remnants from EVs can be considered for downstream applications.
Collapse
|
26
|
Dorn C, Nowak H, Weidemann C, Martini S, Zeitlinger M, Adamzik M, Kees F. Decreased protein binding of moxifloxacin in patients with sepsis? GMS INFECTIOUS DISEASES 2017; 5:Doc03. [PMID: 30671325 PMCID: PMC6301732 DOI: 10.3205/id000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mean (SD) unbound fraction of moxifloxacin in plasma from patients with severe sepsis or septic shock was determined by ultrafiltration to 85.5±3.0% (range 81.9 and 91.6%) indicating a decreased protein binding of moxifloxacin in this population compared with the value of 58-60% provided in the Summary of Product Characteristics. However, previous investigations neglected the influence of pH and temperature on the protein binding of moxifloxacin. Maintaining physiological conditions (pH 7.4, 37°C) - as in the present study - the unbound fraction of moxifloxacin in plasma from healthy volunteers was 84%. In contrast, the unbound fraction of moxifloxacin was 77% at 4°C and 66-68% in unbuffered plasma or at pH 8.5 in fair agreement with previously published data. PK/PD parameters e.g. fAUC/MIC or ratios between interstitial fluid and free plasma concentrations, which were obtained assuming a protein binding rate of moxifloxacin of 40% or more, should be revised.
Collapse
Affiliation(s)
- Christoph Dorn
- Dept. of Clinical Pharmacy, Institute of Pharmacy, University of Regensburg, Germany,*To whom correspondence should be addressed: Christoph Dorn, Klinische Pharmazie, Institut für Pharmazie der Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany, E-mail:
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Germany
| | - Caroline Weidemann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Germany
| | - Stefan Martini
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Germany
| | - Markus Zeitlinger
- Dept. of Clinical Pharmacology, Medical University of Vienna, Austria
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Germany
| | - Frieder Kees
- Dept. of Pharmacology, University of Regensburg, Germany
| |
Collapse
|