1
|
Sae-Foo W, Singkham S, Srisongkhram P, Yusakul G, Masugarut P, Putalun W. Development and characterisation of highly specific monoclonal antibody-based immunoassays for the detection and quantification of genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside in Derris scandens (Roxb.) Benth. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:483-492. [PMID: 37965872 DOI: 10.1002/pca.3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION The stem of the plant species Derris scandens (Roxb.) Benth. (DS) contains genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (GTG), which is a unique marker. Previous analyses of GTG using antibody-based immunoassays were compromised because of their high cross-reactivity with structurally related compounds of DS, thereby limiting their applicability in DS quality control. OBJECTIVE Conjugation of GTG with carrier proteins was achieved using the Mannich reaction to produce a highly specific monoclonal antibody (mAb) targeting GTG (anti-GTG mAb). METHODS The anti-GTG mAb was generated using hybridoma technology and characterised using an indirect competitive enzyme-linked immunosorbent assay (icELISA). Both lateral-flow immunoassay (LFIA) and icELISA were developed to detect and quantify GTG in DS raw materials and associated products. RESULTS icELISA using the anti-GTG mAb showed 100% specificity for GTG, with only 1.77% cross-reactivity with genistin and less than 0.01% cross-reactivity with other compounds. icELISA demonstrated a linear range for GTG determination between 62.5 and 2000 ng/mL. The limits of detection (LOD) and quantification were 49.68 and 62.50 ng/mL for GTG, respectively. The precision of the analysis ranged from 1.28% to 4.20% for repeatability and from 1.03% to 7.05% for reproducibility. The accuracy of the analysis ranged from 101.97% to 104.01% for GTG recovery. GTG levels determined via icELISA were consistent with those confirmed via high-performance liquid chromatography (HPLC) (R2 = 0.9903). Moreover, the LOD of LFIA for GTG was 500 ng/mL. CONCLUSION Immunoassays utilising specific anti-GTG mAbs were successfully developed, including LFIA for rapid GTG detection and icELISA for GTG quantification.
Collapse
Affiliation(s)
- Worapol Sae-Foo
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Sukritta Singkham
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pisitchai Masugarut
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Nuntawong P, Putalun W, Tanaka H, Morimoto S, Sakamoto S. Lateral flow immunoassay for small-molecules detection in phytoproducts: a review. J Nat Med 2022; 76:521-545. [PMID: 35171397 PMCID: PMC9165253 DOI: 10.1007/s11418-022-01605-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
Phytoproducts are involved in various fields of industry. Small-molecule (Mw < 900 Da) organic compounds can be used to indicate the quality of plant samples in the perspective of efficacy by measuring the necessary secondary metabolites and in the perspective of safety by measuring the adulterant level of toxic compounds. The development of reliable detection methods for these compounds in such a complicated matrix is challenging. The lateral flow immunoassay (LFA) is one of the immunoassays well-known for its simplicity, portability, and rapidity. In this review, the general principle, components, format, and application of the LFA for phytoproducts are discussed.
Collapse
Affiliation(s)
- Poomraphie Nuntawong
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen, Khon Kaen, Thailand
| | - Hiroyuki Tanaka
- School of Pharmacy, Sanyo-Onoda City University, 1-1-1 Daigakudouri, Sanyo-onoda-shi, Yamaguchi, 756-0884, Japan
| | - Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
3
|
Zhou H, He C, Li Z, Huo J, Xue Y, Xu X, Qi M, Chen L, Hammock BD, Zhang J. Development of a Rapid Gold Nanoparticle Immunochromatographic Strip Based on the Nanobody for Detecting 2,4-DichloRophenoxyacetic Acid. BIOSENSORS 2022; 12:84. [PMID: 35200344 PMCID: PMC8869386 DOI: 10.3390/bios12020084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a systemic conductive herbicide widely used across the world. With the large-scale and continuous use of 2,4-D, its possible harm to the environment and non-target organisms has attracted increasing attention, and the construction of a stable rapid on-site detection method is particularly important. In order to achieve on-site rapid detection of 2,4-D, we developed a gold nanoparticle immunochromatographic strip method with the visual elimination value was 50 ng/mL, and a quantitative detection limit of 11 ng/mL based on a nanobody. By combing with the color snap, the immunochromatographic strip could quantitatively analyze the amounts of 2,4-D. Meanwhile, a colorimetric card based on the true color of the test strips was developed for the qualitative analysis of 2,4-D on-site. The samples (water, fruits and vegetables) with and without 2,4-D were detected by the immunochromatographic strips, and the results showed the accuracy and reliability. Thus, this assay is a rapid and simple on-site analytical tool to detect and quantify 2,4-D levels in environmental samples, and the analytical results can be obtained in about ten minutes. In addition, the nanobody technology used in this study provides an inexhaustible supply of a relatively stable antibodies that can be archived as a nanobody, plasmid or even its sequence.
Collapse
Affiliation(s)
- Hui Zhou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Cong He
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Zhenfeng Li
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (Z.L.); (B.D.H.)
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Yu Xue
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Xiaotong Xu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Meng Qi
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (Z.L.); (B.D.H.)
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (Z.L.); (B.D.H.)
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| |
Collapse
|
4
|
Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies. Antibodies (Basel) 2021; 10:antib10040048. [PMID: 34940000 PMCID: PMC8698370 DOI: 10.3390/antib10040048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/09/2021] [Accepted: 11/30/2021] [Indexed: 01/31/2023] Open
Abstract
In this study, we present a review on a useful approach, namely, immunoaffinity column coupled with monoclonal antibodies (MAbs), to separate natural compounds and its application for cell-based studies. The immunoaffinity column aids in separating the specific target compound from the crude extract. The column capacity was stable even after more than 10 purification cycles of use under the same conditions. After applying the crude extract to the column, the column was washed with washing buffer and eluted with elution buffer. The elution fraction contained the target compound bound to MAb, whereas the washing fraction was the crude extract, which contained all compounds except a group of target compounds; therefore, the washing fraction was referred to as a knockout (KO) crude extract. Cell-based studies using the KO extract revealed the actual effects of the natural compounds in the crude extract. One-step separation of natural compounds using the immunoaffinity column coupled with MAbs may help in determining the potential functions of natural compounds in crude extracts.
Collapse
|
5
|
Sae-Foo W, Krittanai S, Juengsanguanpornsuk W, Yusakul G, Sakamoto S, Putalun W. Fragment antigen-binding (Fab) antibody-based lateral flow immunoassay for rapid and sensitive detection of potent phytoestrogen, deoxymiroestrol. J Nat Med 2021; 75:1043-1049. [PMID: 34106388 DOI: 10.1007/s11418-021-01539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Pueraria candollei is an ingredient of Thai herbal medicine, dietary supplements, and cosmetics. The in vitro and in vivo studies of this plant supported anti-osteoporotic activity and used for hormone replacement therapy. Deoxymiroestrol shows the most potent phytoconstituent in tuberous root of P. candollei with estrogenic activity. The quality controls are important for good agricultural practice (GAP) and good manufacturing practice (GMP) of plant-derived raw materials. The rapid detection of lateral flow immunoassay (LFIA) using colloidal gold is simply method, easy visualize detection and produce less waste than conventional chromatographic detection. In this study, LFIA for qualitative detection of deoxymiroestrol using antigen-binding fragment antibody (Fab) was developed. The result showed that the developed LFIA displays specific detection of deoxymiroestrol. Cross reactivity of this method was analyzed with miroestrol, isomiroestrol and methylisomiroestrol which showed 39.97%, 7.71% and 5.72%, respectively. After optimal condition, limit of detection (LOD) for deoxymiroestrol is 250 ng/ml. Plant samples were applied to strip test compare with indirect competitive ELISA using polyclonal antibody to confirm the application of LFIA. The results of LFIA method were comparable with those from ELISA. This developed lateral flow immunoassay can apply to detect deoxymiroestrol for the rapid testing. The developed method can use for quality control in plant samples as deoxymiroestrol is biomarker compound in P. candollei.
Collapse
Affiliation(s)
- Worapol Sae-Foo
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supaluk Krittanai
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Ethnopharmacology, chemodiversity, and bioactivity of Cephalotaxus medicinal plants. Chin J Nat Med 2021; 19:321-338. [PMID: 33941338 DOI: 10.1016/s1875-5364(21)60032-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/16/2022]
Abstract
Cephalotaxus is the only genus of Cephalotaxaceae family, and its natural resources are declining due to habitat fragmentation, excessive exploitation and destruction. In many areas of China, folk herbal doctors traditionally use Cephalotaxus plants to treat innominate swollen poison, many of which are cancer. Not only among Han people, but also among minority ethnic groups, Cephalotaxus is used to treat various diseases, e.g., cough, internal bleeding and cancer in Miao medicine, bruises, rheumatism and pain in Yao medicine, and ascariasis, hookworm disease, scrofula in She medicine, etc. Medicinal values of some Cephalotaxus species and compounds are acknowledged officially. However, there is a lack of comprehensive review summarizing the ethnomedicinal knowledge of Cephalotaxus, relevant medicinal phytometabolites and their bioactivities. The research progresses in ethnopharmacology, chemodiversity, and bioactivities of Cephalotaxus medicinal plants are reviewed and commented here. Knowledge gaps are pinpointed and future research directions are suggested. Classic medicinal books, folk medicine books, herbal manuals and ethnomedicinal publications were reviewed for the genus Cephalotaxus (Sanjianshan in Chinese). The relevant data about ethnobotany, phytochemistry, and pharmacology were collected as comprehensively as possible from online databases including Scopus, NCBI PubMed, Bing Scholar, and China National Knowledge Infrastructure (CNKI). "Cephalotaxus", and the respective species name were used as keywords in database search. The obtained articles of the past six decades were collated and analyzed. Four Cephalotaxus species are listed in the official medicinal book in China. They are used as ethnomedicines by many ethnic groups such as Miao, Yao, Dong, She and Han. Inspirations are obtained from traditional applications, and Cephalotaxus phytometabolites are developed into anticancer reagents. Cephalotaxine-type alkaloids, homoerythrina-type alkaloids and homoharringtonine (HHT) are abundant in Cephalotaxus, e.g., C. lanceolata, C. fortunei var. alpina, C. griffithii, and C. hainanensis, etc. New methods of alkaloid analysis and purification are continuously developed and applied. Diterpenoids, sesquiterpenoids, flavonoids, lignans, phenolics, and other components are also identified and isolated in various Cephalotaxus species. Alkaloids such as HHT, terpenoids and other compounds have anticancer activities against multiple types of human cancer. Cephalotaxus extracts and compounds showed anti-inflammatory and antioxidant activities, immunomodulatory activity, antimicrobial activity and nematotoxicity, antihyperglycemic effect, and bone effect, etc. Drug metabolism and pharmacokinetic studies of Cephalotaxus are increasing. We should continue to collect and sort out folk medicinal knowledge of Cephalotaxus and associated organisms, so as to obtain new enlightenment to translate traditional tips into great therapeutic drugs. Transcriptomics, genomics, metabolomics and proteomics studies can contribute massive information for bioactivity and phytochemistry of Cephalotaxus medicinal plants. We should continue to strengthen the application of state-of-the-art technologies in more Cephalotaxus species and for more useful compounds and pharmacological activities.
Collapse
|
7
|
Lu Q, Xu X, Song S, Wu A, Liu L, Kuang H, Xu C. Development of a monoclonal antibody-based immunochromatographic strip for the rapid detection of tigecycline in human serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:817-824. [PMID: 33502396 DOI: 10.1039/d0ay02182b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a gold labelled immunochromatographic assay was developed to detect tigecycline (TGC) in human serum. For this purpose, an anti-TGC monoclonal antibody, 2G7, was produced and characterized, and was found to have a 50%-inhibitory concentration (IC50) of 2.303 ng mL-1 and a limit of detection (LOD) of 0.215 ng mL-1 for TGC. This strip assay had a visual limit of detection (vLOD) of 50 ng mL-1 and a cut-off value of 1000 ng mL-1 for TGC in human serum, when assessed by eye. With the aid of a strip scan reader, a quantitative determination of TGC was obtained with a calculated limit of detection (cLOD) of 15.03 ng mL-1. Analysis of TGC in human serum indicated that the results of our strip assay compared well with results obtained using ic-ELISA and LC-MS/MS. Therefore, this strip assay represents a sensitive and reliable method for the on-site detection of TGC in serum samples.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
8
|
Nuntawong P, Lohseethong K, Juengwatanatrakul T, Yusakul G, Putalun W, Tanaka H, Sakamoto S, Morimoto S. Competitive immunochromatographic test strips for the rapid semi-quantitative analysis of the biologically active bitter glycoside, amarogentin. J Immunoassay Immunochem 2021; 42:48-61. [PMID: 32896225 DOI: 10.1080/15321819.2020.1819308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Amarogentin (AG), a biologically active secoiridoid glycoside, is responsible for the efficacy of Gentianaceae based medications. Thus, qualitative and quantitative analyses of AG are of significance for batch to batch quality control purposes. By conjugating colloidal gold nanoparticles with the AG-specific monoclonal antibody, MAb 1E9, we were able to develop a single-step competitive immunochromatographic assay (ICA) for simple quantification of the AG content in plant samples. With a limit of detection of 250 ng/mL, the analytical results were obtained after immersing the ICA test strip in the detection mixture for 15 min. This new ICA is superior to conventional ICAs as it is considerably faster due to the speed with which the test strips can be produced and the omission of the time-consuming preparation phase that was previously required to make the fiber pad. Moreover, our ICA only needs a small amount of analyte (20 µL).The reliability of the reported test strip was confirmed by comparing its semi-quantitative results with those obtained via an indirect competitive enzyme-linked immunosorbent assay (icELISA). The positive correlation between these methods (R2 = 0.984) indicated that this new ICA could be applied for the semi-quantitative analysis of the AG content in plant samples.
Collapse
Affiliation(s)
| | | | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Hiroyuki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Nuntawong P, Ochi A, Chaingam J, Tanaka H, Sakamoto S, Morimoto S. The colloidal gold nanoparticle-based lateral flow immunoassay for fast and simple detection of plant-derived doping agent, higenamine. Drug Test Anal 2020; 13:762-769. [PMID: 33217196 DOI: 10.1002/dta.2981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Higenamine (HM), an alkaloid found in various plant species, is obtained when norcoclaurine synthase selectively condenses dopamine and 4-hydroxyphenylacetaldehyde to give (S)-higenamine ((S)-HM). The World Anti-doping Agency has listed HM as a prohibited agent in athletics. As a result, many commercial, academic, and regulatory bodies across the globe are invested in finding a rapid method for (S)-HM detection. In the current study, a lateral flow immunoassay (LFA) was developed in which the relevant biosensor was generated as a conjugate of the monoclonal antibody against (S)-HM (namely, MAb E8) and colloidal gold nanoparticles. The HM-γ-globulin conjugates and rabbit anti-mouse IgG antibodies were placed in the test and control zones, respectively. The free (S)-HM molecules in the samples and the immobilized HM-γ-globulin conjugates competitively reacted with the developed biosensor in the LFA. An inverse relationship existed between the biosensors' visible response, which was noted by the variation in the intensity of a pinkish spot in the test zone, and the content of the free (S)-HM. The limit of detection of the developed LFA was 156 ng/mL. Various validation methods confirmed that the LFA exhibited sufficient sensitivity, selectivity, repeatability, and reliability, making it ideal for (S)-HM detection in plant samples and plant-containing products. The developed system required only a small sample volume (20 μL) and a concise sample preparation time compared with conventional LFAs. Thus, the LFA reported in this study could serve as a rapid response kit for the detection of (S)-HM in plant samples.
Collapse
Affiliation(s)
| | - Akihiro Ochi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Jiranan Chaingam
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Hiroyuki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
The Development of a Photothermal Immunochromatographic Lateral Flow Strip for Rapid and Sensitive Detection of Bisphenol A in Food Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01841-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Han W, Chen Z, Niu P, Ren X, Ding C, Yu S. Development of a colloidal gold immunochromatographic strip for rapid detection of Riemerella anatipestifer in ducks. Poult Sci 2020; 99:4741-4749. [PMID: 32988508 PMCID: PMC7598101 DOI: 10.1016/j.psj.2020.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/25/2020] [Accepted: 06/07/2020] [Indexed: 10/28/2022] Open
Abstract
Riemerella anatipestifer is one of the major bacterial pathogens of ducks and causes significant economic losses in poultry agriculture. Usually, methods for detecting R. anatipestifer infection need specialized equipment and highly skilled personnel. In this study, a novel colloidal gold immunochromatographic strip was developed for rapid detection of R. anatipestifer in ducks. The monoclonal antibodies 2D5 and 2A6 against R. anatipestifer were used as colloidal gold-labeled protein and capture protein, respectively, to recognize the bacteria in tryptic soy broth medium culture and in hearts of infected ducks. The goat anti-mouse IgG antibody was labeled on nitrocellulose membrane as a control for C line. The labeling pH was optimized as 10.0, and the concentration of 2D5 labeled to colloidal gold particles was optimized as 18 μg/mL. The strip specifically detected serotypes 1, 2, and 10 R. anatipestifer strains and showed no cross-reaction with Escherichia coli, Salmonella enterica, and Pasteurella multocida strains. The sensitivity of the strip for detecting R. anatipestifer was 1.0 × 106 colony forming unit. The strips remained stable for up to 8 mo at 4°C, and the detection can be completed within 15 min. The strip can detect R. anatipestifer in hearts of the ducks experimentally infected with R. anatipestifer but not infected with E. coli, which were also confirmed with bacterial isolation followed by multiplex polymerase chain reaction. These results suggested that the strips are reliable methods for identification of R. anatipestifer in laboratories and in duck farms.
Collapse
Affiliation(s)
- Wenlong Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Zongchao Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Pengfei Niu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Xiaomei Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China; Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
| |
Collapse
|
12
|
Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorg Chem 2020; 94:103385. [DOI: 10.1016/j.bioorg.2019.103385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
|
13
|
Yusakul G, Sakamoto S, Chanpokapaiboon K, Tanaka H, Morimoto S. Preincubation format for a sensitive immunochromatographic assay for monocrotaline, a toxic pyrrolizidine alkaloid. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:653-660. [PMID: 31056786 DOI: 10.1002/pca.2838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Monocrotaline (MCT), which is classified as a 1,2-dehydropyrrolizidine alkaloid (DHPA), is a toxic compound that is mainly produced by Crotalaria spp. MCT contamination in cereals and herbs leads to hepatitis, gastroenteritis, pulmonary vasculitis and hypertension, and different types of cancer. The current analytical methods for MCT are complicated and expensive using liquid chromatography equipped with mass spectrometry detection. OBJECTIVE The aim of this study was to develop a simple and sensitive preincubation format for an immunochromatographic assay (PI-ICA) for MCT detection. METHODOLOGY We conducted the PI-ICA via incubation of an MCT-containing sample with an anti-MCT monoclonal antibody conjugated with colloidal gold before strip dipping. We compared the PI-ICA detection sensitivity with that of the conventional ICA (Conv-ICA) format. RESULTS The PI-ICA was sensitive with a limit of detection (LOD) of 0.61 ng/mL, which is a 16-fold improvement over the Conv-ICA format. These results indicated that the PI-ICA method exhibits high binding specificity for MCT and low cross-reactivity towards retronecine, retrorsine, senecionine and heliotrine. Sample solutions from plants containing MCT and related DHPAs produced positive results via PI-ICA analysis. CONCLUSIONS The proposed PI-ICA system provides a highly sensitive method compared to Conv-ICA. In addition, the developed PI-ICA method is simple and highly effective for detecting MCT contamination.
Collapse
Affiliation(s)
- Gorawit Yusakul
- Drug and Cosmetics Excellence Centre, Walailak University, Nakhon Si Thammarat, Thailand
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hiroyuki Tanaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Wang M, Guo L, Yu M, Zhao H. The application of a lateral flow immunographic assay to rapidly test for dexamethasone in commercial facial masks. Anal Bioanal Chem 2019; 411:5703-5710. [PMID: 31342091 PMCID: PMC6704111 DOI: 10.1007/s00216-019-01948-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022]
Abstract
Dexamethasone (DE) is a synthetic glucocorticoid that is frequently added to cosmetic products for its good short-term effects, especially in facial masks, but long-term use is hazardous to the health. The abuse of DE in whitening and acne cosmetic products is currently a serious problem in China. It is necessary to establish a rapid method of detecting illegal DE addition in cosmetics. In the present study, a monoclonal antibody (mAb) against DE, 2D5-3D12, was developed that displayed cross-reactivities of 124.5%, 38.8%, 6.7%, 0.9%, 1.1%, 1.82%, and 2.39% with prednisolone, betamethasone, prednisone, beclomethasone, hydrocortisone, triamcinolone, and flumetasone, respectively. A colloidal gold-based lateral flow immunographic assay based on mAb 2D5-3D12 was established and used to determine the DE contents of commercial facial masks. The indicator range of the immunographic assay for DE was 100-200 ng/mL, and the results were consistent with those afforded by LC-MS. This novel method provides the advantages of simple sample treatment, a user-friendly procedure, and rapid detection. Graphical abstract.
Collapse
Affiliation(s)
- Min Wang
- College of Science, Beijing Technology and Business University, Beijing, 102488, China.
| | - Liqun Guo
- College of Science, Beijing Technology and Business University, Beijing, 102488, China
| | - Miao Yu
- College of Science, Beijing Technology and Business University, Beijing, 102488, China
| | - Hua Zhao
- College of Science, Beijing Technology and Business University, Beijing, 102488, China
| |
Collapse
|
15
|
Zhou X, Cui Z, Liu L, Sun Z, Lin M, Hu Q, Wang H, Xiao X. Small molecule-protein interactions in branch migration thermodynamics: modelling and application in the homogeneous detection of proteins and small molecules. Analyst 2018; 143:2755-2759. [PMID: 29850719 DOI: 10.1039/c8an00555a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have disclosed the unique inhibition effect of small molecule-protein interactions toward the DNA branch migration process and constructed a complete thermodynamic model for it. The disclosed effect was further coupled with the steric hindrance effect to establish a homogeneous assay for proteins and small molecules with ultra-high inhibition factors and sensitivity.
Collapse
Affiliation(s)
- Xing Zhou
- Centre of Reproductive Medicine/Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sakamoto S, Miyamoto T, Usui K, Tanaka H, Morimoto S. Sodium-Periodate-Mediated Harringtonine Derivatives and Their Antiproliferative Activity against HL-60 Acute Leukemia Cells. JOURNAL OF NATURAL PRODUCTS 2018; 81:34-40. [PMID: 29286665 DOI: 10.1021/acs.jnatprod.7b00541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Harringtonine (HT) is a naturally occurring alkaloid isolated from the plant genus Cephalotaxus. It possesses antileukemic activity and has been clinically utilized for the treatment of acute leukemia and lymphoma. Sodium periodate (NaIO4) was reacted with HT to produce five HT derivatives including four novel compounds. Their antiproliferative activity against HL-60 acute promyelocytic leukemia cells revealed that the presence of the C-5' methyl group enhances the antiproliferative activity because the IC50 values of the HT derivatives, including HT1 (5'-de-O-methylharringtonine), were at least 2000 times higher (>100 μM) than that of HT (∼47 nM). In addition, an indirect competitive enzyme-linked immunosorbent assay (icELISA) using a monoclonal antibody against HT (mAb 1D2) revealed that these antiproliferative activities were related to their cellular uptake. These results indicated that esterification of HT1 at the C-4' carboxylic acid group may enhance the antiproliferative activity of HT.
Collapse
Affiliation(s)
- Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|