1
|
Zheng Q, Wang T, Wang S, Chen Z, Jia X, Yang H, Chen H, Sun X, Wang K, Zhang L, Fu F. The anti-inflammatory effects of saponins from natural herbs. Pharmacol Ther 2025; 269:108827. [PMID: 40015518 DOI: 10.1016/j.pharmthera.2025.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Inflammation is a protective mechanism that also starts the healing process. However, inflammatory reaction may cause severe tissue damage. The increased influx of phagocytic leukocytes may produce excessive amount of reactive oxygen species, which leads to additional cell injury. Inflammatory response activates the leukocytes and thus induces tissue damage and prolongs inflammation. The inflammation-induced activation of the complement system may also contribute to cell injury. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are chief agents for treating inflammation associated with the diseases. However, the unwanted side effects of NSAIDs (e.g., gastrointestinal disturbances, skin reactions, adverse renal effects, cardiovascular side effects) and glucocorticoids (e.g., suppression of immune system, Cushing's syndrome, osteoporosis, hyperglycemia) limit their use in patients. Natural herbs are important sources of anti-inflammatory drugs. The ingredients extracted from natural herbs display anti-inflammatory effects to work through multiple pathways with lower risk of adverse reaction. At present, the main anti-inflammatory natural agents include saponins, flavonoids, alkaloids, polysaccharides, and so on. The present article will review the anti-inflammatory effects of saponins including escin, ginsenosides, glycyrrhizin, astragaloside, Panax notoginseng saponins, saikosaponin, platycodin, timosaponin, ophiopogonin D, dioscin, senegenin.
Collapse
Affiliation(s)
- Qinpin Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sensen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Jia
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huijin Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Kejun Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Si-Qi L, Wei Z, Bin-Ru Z, Hao W, Ke Z, Xiang L, Chu Y, Qi-Miao Z, Guo-Shun S. Pharmacokinetics comparison of seven active components after oral administration of Zhizhu pill using raw and processed Rhizoma Atractylodis Macrocephalae. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124521. [PMID: 40015007 DOI: 10.1016/j.jchromb.2025.124521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 02/09/2025] [Indexed: 03/01/2025]
Abstract
Zhizhu pills (ZZP) is a Traditional Chinese Medicine that has been extensively applied in the treatment of spleen deficiency and constipation for many years. As a commonly used prescription in Traditional Chinese medicine, there had been a controversy over whether to use raw Rhizoma Atractylodis Macrocephalae (RRAM) or Bran-Fired Rhizoma Atractylodis Macrocephalae (BRAM) in ZZP. In this study, a specific, sensitive, fast and accurate liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to analyze the main active components in ZZP. It was used to determine the compound of Atractylenolide I, Atractylenolide III, Synephrine, Nuciferine, Narirutin, Naringin and Hesperidin in rat various biological matrices (plasma, tissue, urine and feces). The liquiritin was used as the internal standard. All the biological samples were prepared using a simple protein precipitation with acetonitrile and methanol (1:1, V/V). A waters UPLC HSS T3 (100 × 2.1 mm, 1.8 μm) column was used in this research. The mobile phase consisting of 0.1 % aqueous formic acid (A)-0.1 % formic acid in acetonitrile (B) was employed to separate seven components from endogenous interferences. The components were detected with a triple quadrupole mass spectrometer using positive and negative ion multiple reaction monitoring (MRM) mode. The newly developed method was successfully applied to investigate the pharmacokinetics, tissue distribution and excretion of seven components after intragastric administration ZZP which was composed with RRAM or BRAM in rats. The pharmacokinetic results indicated that seven active components can be quickly absorbed and had undergone the enterohepatic circulation. It could also indicate higher Cmax of Nuciferine, Narirutin, Naringin and Hesperidin in the plasma after intragastric administration ZZP compose of BRAM than RRAM. In tissue distribution, the seven active components in ZZP were mainly distributed in the stomach, large intestine and small intestine. It could indicate a lower Cmax of Atractylenolide I, Atractylenolide III in the stomach, large intestine and small intestine after intragastric administration ZZP compose of BRAM compared to RRAM. It could also indicate higher Cmax of Narirutin, Naringin, and Synephrine in the stomach, large intestine and small intestine after intragastric administration ZZP compose of BRAM than RRAM. The results of the excretion study showed that the total urinary excretion rate of the 7 active components at 48 h was lower after intragastric administration ZZP compose of BRAM than RRAM. Meanwhile, the total fecal excretion rate of the 7 active components was higher after intragastric administration ZZP compose of BRAM than RRAM. The pharmacokinetics, tissue distribution and excretion characteristics of seven active components in ZZP were first revealed. It also used to compare the difference of ZZP compose of BRAM than RRAM in the pharmacokinetics perspective. It will provide references for the rationality application of the ZZP in clinical.
Collapse
Affiliation(s)
- Liu Si-Qi
- School of pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, Dalian 116600, PR China
| | - Zheng Wei
- School of pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, Dalian 116600, PR China
| | - Zang Bin-Ru
- Department of medical, Chaoyang Central Hospital, Liaoning, Chaoyang 122000, PR China
| | - Wu Hao
- School of pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, Dalian 116600, PR China
| | - Zhang Ke
- School of pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, Dalian 116600, PR China
| | - Liu Xiang
- School of pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, Dalian 116600, PR China
| | - Yuan Chu
- School of pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, Dalian 116600, PR China
| | - Zhao Qi-Miao
- School of pharmacy, Liaoning Vocational College of Medicine, Liaoning, Shenyang 110101, PR China
| | - Shan Guo-Shun
- School of pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning, Dalian 116600, PR China.
| |
Collapse
|
3
|
Lu Z, Mao T, Chen K, Chai L, Dai Y, Liu K. Ginsenoside Rc: A potential intervention agent for metabolic syndrome. J Pharm Anal 2023; 13:1375-1387. [PMID: 38223453 PMCID: PMC10785250 DOI: 10.1016/j.jpha.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 01/16/2024] Open
Abstract
Ginsenoside Rc, a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng, has garnered significant attention due to its diverse pharmacological properties. This review outlined the sources, putative biosynthetic pathways, extraction, and quantification techniques, as well as the pharmacokinetic properties of ginsenoside Rc. Furthermore, this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome (MetS) across various phenotypes including obesity, diabetes, atherosclerosis, non-alcoholic fatty liver disease, and osteoarthritis. It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules. In conclusion, the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs, multiple targets, and multiple ways. Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited, its proven safety and tolerability suggest its potential as an effective treatment option.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Longxin Chai
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
4
|
Wu J, Song Z, Cai N, Cao N, Wang Q, Xiao X, Yang X, He Y, Zou S. Pharmacokinetics, tissue distribution and excretion of six bioactive components from total glucosides picrorhizae rhizoma, as simultaneous determined by a UHPLC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123830. [PMID: 37459691 DOI: 10.1016/j.jchromb.2023.123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Total glucosides picrorhizae rhizome (TGPR) is an innovative traditional Chinese medicine, which is a candidate drug for the treatment of nonalcoholic steatohepatitis (NASH). However, there is still lack of deep research on the behaviors of TGPR in vivo. In this study, a reliable, specific, and sensitive liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been constructed for simultaneous determination of picroside I, picroside II, vanillic acid, androsin, cinnamic acid and picroside IV, the major active constituents of TGPR, in rat various biological matrices (plasma, tissue, bile, urine and feces) using diphenhydramine hydrochloride and paeoniflorin as the internal standard. All biosamples were prepared using a simple protein precipitation with acetonitrile. Chromatographic separation was achieved on a waters UHPLC® HSS T3 (100×2.1 mm, 1.8 μm) column. The mobile phase consisted of methanol: acetonitrile1(1:1, V/V) and 0.5 mM ammonium formate in water, was employed to separate six components from endogenous interferences. The components were detected with a triple quadrupole mass spectrometer using positive and negative ion multiple reaction monitoring (MRM) mode. The newly developed method was successfully applied to investigate the pharmacokinetics, tissue distribution and excretion of six components in rats. The pharmacokinetic results indicated that the six components in TGPR could be quickly absorbed and slowly eliminated and their bioavailability were less than 12.37%, which implied the poor absorption after intragastric dosing. For tissue distribution, the six components in TGPR were detected in liver and only androsin could penetrate the blood-brain barrier. Meanwhile, the excretion study demonstrated that vanillic acid was mostly excreted as prototype drugs and the remaining five components might be widely metabolized in vivo as the metabolites, the unconverted form was excreted mainly by feces route. The pharmacokinetics, tissue distribution and excretion characteristics of six bioactive components in TGPR were firstly revealed, which will provide references for further clinical application of TGPR as an anti-NASH drug.
Collapse
Affiliation(s)
- Jieyi Wu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhaohui Song
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Nan Cai
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Ningning Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingguo Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaokun Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Yi He
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China.
| | - Shuxuan Zou
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Head-to-Head Comparison of High-Performance Liquid Chromatography versus Nuclear Magnetic Resonance for the Quantitative Analysis of Carbohydrates in Yiqi Fumai Lyophilized Injection. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020765. [PMID: 36677822 PMCID: PMC9860785 DOI: 10.3390/molecules28020765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Carbohydrate analysis can be used as a standard analysis for quality control of industries of plants, foods and pharmaceuticals. Quantitative 1H NMR spectroscopy (qNMR) is an excellent alternative to chromatography-based mixture analysis. However, the application of qNMR in sugar analysis has rarely been reported. In this study, the performance of qNMR in sugar analysis was investigated and compared with the results from HPLC analysis. A head-to-head comparison of qNMR (internal and external standard methods) versus HPLC (PMP pre-column derivatization HPLC, HPLC-RID and HPLC-ELSD) based on quantitative analysis of four carbohydrates (fructose, glucose, sucrose and maltose) in Yiqi Fumai lyophilized injection (YQFM) is presented. Both assays showed similar performance characteristics, including linearity range, accuracy, precision and recovery, and analysis times of less than 30 min/sample. After methodological validation, both qNMR and HPLC have good accuracy, precision and stability. Indeed, the qNMR method is simple, sensitive and rapid in quantifying the four sugars. By analysis of variance (ANOVA) for sugar content with HPLC and qNMR methods, we demonstrated that the two analytical methods had no significant difference and could be used interchangeably for the quantitative analysis of carbohydrates.
Collapse
|
6
|
Lv S, Wang Y, Zhang W, Shang H. The chemical components, action mechanisms, and clinical evidences of YiQiFuMai injection in the treatment of heart failure. Front Pharmacol 2022; 13:1040235. [PMID: 36506553 PMCID: PMC9729553 DOI: 10.3389/fphar.2022.1040235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
YiQiFuMai injection (YQFM), derived from Shengmai Powder, is wildly applied in the treatment of cardiovascular diseases, such as coronary heart disease and chronic cardiac insufficiency. YiQiFuMai injection is mainly composed of Radix of Panax ginseng C.A. Mey. (Araliaceae), Radix of Ophiopogon japonicus (Thunb.) Ker Gawl (Liliaceae), and Fructus of Schisandra chinensis (Turcz.) Baill (Schisandraceae), and Triterpene saponins, steroidal saponins, lignans, and flavonoids play the vital role in the potency and efficacy. Long-term clinical practice has confirmed the positive effect of YiQiFuMai injection in the treatment of heart failure, and few adverse events have been reported. In addition, the protective effect of YiQiFuMai injection is related to the regulation of mitochondrial function, anti-apoptosis, amelioration of oxidant stress, inhibiting the expression of inflammatory mediators, regulating the expression of miRNAs, maintaining the balance of matrix metalloproteinases/tissue inhibitor of metalloproteinases (MMP/TIMP) and anti-hypoxia.
Collapse
Affiliation(s)
- Shichao Lv
- Key Laboratory of Chinese Internal Medicine of MOE, Dongzhimen Hospital, Beijing, China,Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunjiao Wang
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanqin Zhang
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of MOE, Dongzhimen Hospital, Beijing, China,*Correspondence: Hongcai Shang,
| |
Collapse
|
7
|
Zhang M, Hu R, Huang Y, Zhou F, Li F, Liu Z, Geng Y, Dong H, Ma W, Song K, Song Y. Present and Future: Crosstalks Between Polycystic Ovary Syndrome and Gut Metabolites Relating to Gut Microbiota. Front Endocrinol (Lausanne) 2022; 13:933110. [PMID: 35928893 PMCID: PMC9343597 DOI: 10.3389/fendo.2022.933110] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common disease, affecting 8%-13% of the females of reproductive age, thereby compromising their fertility and long-term health. However, the pathogenesis of PCOS is still unclear. It is not only a reproductive endocrine disease, dominated by hyperandrogenemia, but also is accompanied by different degrees of metabolic abnormalities and insulin resistance. With a deeper understanding of its pathogenesis, more small metabolic molecules, such as bile acids, amino acids, and short-chain fatty acids, have been reported to be involved in the pathological process of PCOS. Recently, the critical role of gut microbiota in metabolism has been focused on. The gut microbiota-related metabolic pathways can significantly affect inflammation levels, insulin signaling, glucose metabolism, lipid metabolism, and hormonal secretions. Although the abnormalities in gut microbiota and metabolites might not be the initial factors of PCOS, they may have a significant role in the pathological process of PCOS. The dysbiosis of gut microbiota and disturbance of gut metabolites can affect the progression of PCOS. Meanwhile, PCOS itself can adversely affect the function of gut, thereby contributing to the aggravation of the disease. Inhibiting this vicious cycle might alleviate the symptoms of PCOS. However, the role of gut microbiota in PCOS has not been fully explored yet. This review aims to summarize the potential effects and modulative mechanisms of the gut metabolites on PCOS and suggests its potential intervention targets, thus providing more possible treatment options for PCOS in the future.
Collapse
Affiliation(s)
- Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanru Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yufan Song,
| |
Collapse
|
8
|
Miao L, Yang Y, Li Z, Fang Z, Zhang Y, Han CC. Ginsenoside Rb2: A review of pharmacokinetics and pharmacological effects. J Ginseng Res 2021; 46:206-213. [PMID: 35509822 PMCID: PMC9058830 DOI: 10.1016/j.jgr.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ginsenoside Rb2 is an active protopanaxadiol-type saponin, widely existing in the stem and leave of ginseng. Rb2 has recently been the focus of studies for pharmaceutical properties. This paper provides an overview of the preclinical and clinical pharmacokinetics for Rb2, which exhibit poor absorption, rapid tissue distribution and slow excretion through urine. Pharmacological studies indicate a beneficial role of Rb2 in the prevention and treatment of diabetes, obesity, tumor, photoaging, virus infection and cardiovascular problems. The underlying mechanism is involved in an inhibition of oxidative stress, ROS generation, inflammation and apoptosis via regulation of various cellular signaling pathways and molecules, including AKT/SHP, MAPK, EGFR/SOX2, TGF-β1/Smad, SIRT1, GPR120/AMPK/HO-1 and NF-κB. This work would provide a new insight into the understanding and application of Rb2. However, its therapeutic effects have not been clinically evaluated. Further studies should be aimed at the clinical treatment of Rb2.
Collapse
Affiliation(s)
- Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yijun Yang
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zhongwen Li
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zengjun Fang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, China
- Corresponding author. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Chun-chao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, China
- Corresponding author. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China. Tel.: +86 531 82613129; Fax: +86 86 531 82613129.
| |
Collapse
|
9
|
Han X, Zhang Y, Qiao O, Ji H, Zhang X, Wang W, Li X, Wang J, Li D, Ju A, Liu C, Gao W. Proteomic Analysis Reveals the Protective Effects of Yiqi Fumai Lyophilized Injection on Chronic Heart Failure by Improving Myocardial Energy Metabolism. Front Pharmacol 2021; 12:719532. [PMID: 34630097 PMCID: PMC8494180 DOI: 10.3389/fphar.2021.719532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Yiqi Fumai lyophilized injection (YQFM) is the recombination of Sheng mai san (SMS).YQFM has been applied clinically to efficaciously and safely treat chronic heart failure (CHF). However, the mechanism of YQFM is still not fully elucidated. The purpose of our study was to investigate the protective mechanism of YQFM against abdominal aortic coarctation (AAC) in rats by proteomic methods. After YQFM treatment, the cardiac function were obviously meliorated. One hundred and fifty-seven important differentially expressed proteins (DEPs) were identified, including 109 in model rat compared with that in control rat (M:C) and 48 in YQFM-treated rat compared with that in model rat (T:M) by iTRAQ technology to analyze the proteomic characteristics of heart tissue. Bioinformatics analysis showed that DEPs was mainly involved in the body’s energy metabolism and was closely related to oxidative phosphorylation. YQFM had also displayed efficient mitochondrial dysfunction alleviation properties in hydrogen peroxide (H2O2)-induced cardiomyocyte damage by Transmission Electron Microscope (TEM), Metabolic assay, and Mitotracker staining. What’s more, the levels of total cardiomyocyte apoptosis were markedly reduced following YQFM treatment. Furthermore, Western blot analysis showed that the expressions of peroxisome proliferator activated receptor co-activator-1α(PGC-1α) (p < 0.01 or p < 0.001), perixisome proliferation-activated receptor alpha (PPAR-α) (p < 0.001)and retinoid X receptor alpha (RXR-α) were upregulated (p < 0.001), PGC-1α as well as its downstream effectors were also found to be upregulated in cardiomyocytes after YQFM treatment(p < 0.001).These results provided evidence that YQFM could enhance mitochondrial function of cardiomyocytes to play a role in the treatment of CHF by regulating mitochondrial biogenesis-related proteins.
Collapse
Affiliation(s)
- Xiaoying Han
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ou Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Haixia Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wenzhe Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Dekun Li
- Tasly Pride Pharmaceutical Company Limited, Tianjin, China
| | - Aichun Ju
- Tasly Pride Pharmaceutical Company Limited, Tianjin, China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Li ZW, Wei WL, Li HJ, Wu SF, Huang Y, Yao CL, Zhang JQ, Li JY, Bi QR, Guo DA. A systematic strategy integrating solid-phase extraction, full scan range splitting, mass defect filter and precursor ion list for comprehensive metabolite profiling of Danqi Tongmai tablet in rats. J Pharm Biomed Anal 2021; 198:113989. [PMID: 33684829 DOI: 10.1016/j.jpba.2021.113989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/30/2023]
Abstract
In vivo metabolite profiling of herbal medicines remains a challenge due to the complex chemical composition and drastic interference from biological matrix. In this study, a systematic strategy was established for comprehensive metabolite profiling of Danqi Tongmai (DQTM) tablet, a combination of salvianolic acids and notoginsenosides, in rats after oral administration. This strategy was composed of six steps. Firstly, the rat plasma and tissue samples were collected at multiple time points to increase the representativeness of samples. Secondly, different sample preparation methods were systematically investigated including protein precipitation, liquid-liquid extraction and solid-phase extraction to obtain superior extraction efficiency for both salvianolic acids and notoginsenosides. Thirdly, the MS acquisition method was optimized by splitting the full scan range into two separate segments to improve the detection capability for minor components. Fourthly, an extended polygonal mass defect filter (EP-MDF) model was constructed to filter potential metabolites of salvianolic acids and notoginsenosides, and remove large amounts of interference ions. Fifthly, ion intensity-based time point-staggered precursor ion list (IITPS-PIL) was generated to trigger more targeted MS/MS acquisition for potential metabolites at the highest concentration. Finally, the absorbed prototypes and metabolites were comprehensively characterized by reference standards and MS/MS fragmentation. The proposed strategy significantly improved the detection ability for trace prototypes and metabolites in vivo. A total of 370 components, including 94 prototypes (38 confirmed with reference standards) and 276 metabolites, were tentatively characterized in rat plasma and tissue samples after oral administration of DQTM. Collectively, this paper provided an applicable reference for comprehensive metabolite profiling of herbal medicines in complex biological samples.
Collapse
Affiliation(s)
- Zhen-Wei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Jv Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Fei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yong Huang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia-Yuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qi-Rui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Wei WL, Li HJ, Yang WZ, Qu H, Li ZW, Yao CL, Hou JJ, Wu WY, Guo DA. An integrated strategy for comprehensive characterization of metabolites and metabolic profiles of bufadienolides from Venenum Bufonis in rats. J Pharm Anal 2021; 12:136-144. [PMID: 35573889 PMCID: PMC9073132 DOI: 10.1016/j.jpha.2021.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Comprehensive characterization of metabolites and metabolic profiles in plasma has considerable significance in determining the efficacy and safety of traditional Chinese medicine (TCM) in vivo. However, this process is usually hindered by the insufficient characteristic fragments of metabolites, ubiquitous matrix interference, and complicated screening and identification procedures for metabolites. In this study, an effective strategy was established to systematically characterize the metabolites, deduce the metabolic pathways, and describe the metabolic profiles of bufadienolides isolated from Venenum Bufonis in vivo. The strategy was divided into five steps. First, the blank and test plasma samples were injected into an ultra-high performance liquid chromatography/linear trap quadrupole-orbitrap-mass spectrometry (MS) system in the full scan mode continuously five times to screen for valid matrix compounds and metabolites. Second, an extension-mass defect filter model was established to obtain the targeted precursor ions of the list of bufadienolide metabolites, which reduced approximately 39% of the interfering ions. Third, an acquisition model was developed and used to trigger more tandem MS (MS/MS) fragments of precursor ions based on the targeted ion list. The acquisition mode enhanced the acquisition capability by approximately four times than that of the regular data-dependent acquisition mode. Fourth, the acquired data were imported into Compound Discoverer software for identification of metabolites with metabolic network prediction. The main in vivo metabolic pathways of bufadienolides were elucidated. A total of 147 metabolites were characterized, and the main biotransformation reactions of bufadienolides were hydroxylation, dihydroxylation, and isomerization. Finally, the main prototype bufadienolides in plasma at different time points were determined using LC-MS/MS, and the metabolic profiles were clearly identified. This strategy could be widely used to elucidate the metabolic profiles of TCM preparations or Chinese patent medicines in vivo and provide critical data for rational drug use. Extension-mass defect filter model could reduce about 39% interfering ions. The optimized acquisition mode enhanced about 4 times acquisition capability than regular DDA mode. 147 metabolites were characterized with metabolic network prediction, and the metabolic pathways were deduced in plasmas. The quantitative method of 14 prototypes was established by LC-MS/MS for metabolic profiles study.
Collapse
Affiliation(s)
- Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Jv Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Zhi Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hua Qu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen-Wei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Jun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wan-Ying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Corresponding author.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Corresponding author. Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
12
|
Chen Z, Luo T, Zhang L, Zhou Z, Huang Y, Lu L, Yang Z, Wang L, Xian S. A simplified herbal formula for the treatment of heart failure: Efficacy, bioactive ingredients, and mechanisms. Pharmacol Res 2019; 147:104251. [PMID: 31233804 DOI: 10.1016/j.phrs.2019.104251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Heart failure (HF) is a complex pathology for which single-agent therapy cannot provide comprehensive efficacy. Therefore, effective combination therapies for HF are increasingly emphasized. Multiple-component drugs derived from Chinese herbal formulae provide efficacy and safety when administered to patients with HF. Nuanxinkang (NXK) is a simplified Chinese herbal formula which has been widely applied in HF for decades. It exhibits comprehensive cardiac protective effects in HF patients as an adjuvant therapy, including improving heart function and quality-of-life, reducing inflammation, and regulating neurohormones. Nevertheless, the bioactive ingredients and mechanisms of action of NXK are unknown, which hinders its further application. Here, we examined the therapeutic efficacy of NXK in a mouse model of HF. Using transcriptome analysis and drug similarity analysis we found that NXK inhibits apoptosis and inflammation, while improving cardiac contraction and reversing myocardial fibrosis. In addition, we detected 21 bioactive species in NXK using UHPLC-MS analysis. Based on these data, we performed network pharmacology analysis to investigate ingredient-target-pathway interactions. We further confirmed 13 genes as potential targets, and assessed the effects of NXK on the AKT to validate the anti-apoptotic role of NXK both in vivo and in vitro. Thus, our work has identified a simplified herbal formula with efficacy against HF by exploring its constituents and mechanism of action, providing evidence for an innovative treatment strategy and novel therapeutic targets for HF.
Collapse
Affiliation(s)
- Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Tong Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Lu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zheng Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, PR China.
| |
Collapse
|
13
|
Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res 2019; 142:176-191. [PMID: 30818043 DOI: 10.1016/j.phrs.2019.02.024] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
As an important component of complementary and alternative medicines, traditional Chinese medicines (TCM) are gaining more and more attentions around the world because of the powerful therapeutic effects and less side effects. However, there are still some doubts about TCM because of the questionable TCM theories and unclear biological active compounds. In recent years, gut microbiota has emerged as an important frontier to understand the development and progress of diseases. Together with this trend, an increasing number of studies have indicated that drug molecules can interact with gut microbiota after oral administration. In this context, more and more studies pertaining to TCM have paid attention to gut microbiota and have yield rich information for understanding TCM. After oral administration, TCM can interact with gut microbiota: (1) TCM can modulate the composition of gut microbiota; (2) TCM can modulate the metabolism of gut microbiota; (3) gut microbiota can transform TCM compounds. During the interactions, two types of metabolites can be produced: gut microbiota metabolites (of food and host origin) and gut microbiota transformed TCM compounds. In this review, we summarized the interactions between TCM and gut microbiota, and the pharmacological effects and features of metabolites produced during interactions between TCM and gut microbiota. Then, focusing on gut microbiota and metabolites, we summarized the aspects in which gut microbiota has facilitated our understanding of TCM. At the end of this review, the outlooks for further research of TCM and gut microbiota were also discussed.
Collapse
|
14
|
Gu Y, Ju A, Jiang B, Zhang J, Man S, Liu C, Gao W. Yiqi Fumai lyophilized injection attenuates doxorubicin-induced cardiotoxicity, hepatotoxicity and nephrotoxicity in rats by inhibition of oxidative stress, inflammation and apoptosis. RSC Adv 2018; 8:40894-40911. [PMID: 35557896 PMCID: PMC9091596 DOI: 10.1039/c8ra07163b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Doxorubicin (DOX) is one of the most effective antineoplastic drugs, however, its organ toxicity inhibits the clinical utility. This study was aimed at investigating the protective effects of Yiqi Fumai lyophilized injection (YQFM) against DOX-induced tissue injury and exploring the mechanisms which mediated reactive oxygen species (ROS), inflammation and apoptosis. The experiment was as follows: rats were subjected to an intraperitoneal injection (i.p.) of YQFM (0.481 g kg-1, i.p.) for 12 days; DOX (5 mg kg-1, i.p.) was administered on the 4th, 8th and 12th days to achieve a cumulative dose of 15 mg kg-1. Pretreatment of YQFM significantly ameliorated intracellular damage and dysfunction of the heart, liver and kidneys via decreasing activities of injury indexes. The levels of lipid peroxidation and glutathione depletion were clearly reduced following YQFM pretreatment, meanwhile the activities of glutathione peroxidase, superoxide dismutase, and catalase were elevated. Additionally administering YQFM could mitigate the cardiotoxicity, hepatotoxicity and nephrotoxicity via reducing levels of inflammatory factors and decreasing apoptosis. Accordingly, this study indicated that YQFM attenuated DOX-induced toxicity by ameliorating organ function, decreasing ROS production, and preventing excessive inflammation and apoptosis.
Collapse
Affiliation(s)
- Yue Gu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| | - Aichun Ju
- Tasly Pride Pharmaceutical Company Limited Tianjin 300410 China
| | - Bingjie Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| | - Jingze Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces Tianjin 300309 China +86-22-84876773
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China +86-22-60601265
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics Tianjin 300193 China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| |
Collapse
|
15
|
Ouyang H, Bo T, Zhang Z, Guo X, He M, Li J, Yang S, Ma X, Feng Y. Ion mobility mass spectrometry with molecular modelling to reveal bioactive isomer conformations and underlying relationship with isomerization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1931-1940. [PMID: 30151930 DOI: 10.1002/rcm.8271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/21/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE In medicine and drug development, molecular modelling is an important tool. It is attractive to develop a platform connecting the theoretical structural modelling and the results from experimental measurement. In addition, the separation and structural analysis of bioactive constituent isomers are still challenging tasks. METHODS Drift tube ion mobility (IM) mass spectrometry (MS) provides the experimental collision cross section (CCS) which contains the structural information. The experimental CCS can be compared with the calculated CCS of the molecular modelling structures. This technique is especially useful for bioactive constituents in herbal medicine because active isomers with the same chemical formula are common in these samples. IM helps separate and identify these isomers and reveals details about their structures and conformations. RESULTS Two model bioactive constituents, caffeoylquinic acids (CQAs) and dicaffeoylquinic acids (di-CQAs), were selected to systematically investigate the influence of solution, ion source conditions and ion heating on the isomer CCS distributions. By comparing the calculated CCS with the experimental value, we identified the favorable conformations of CQAs. The most compact conformation of a CQA was less likely to isomerize than the more extended conformation. It was found that the isomerization tendency was in accord with the conformation favorability. CONCLUSIONS This study offers an effective approach to predict and demystify the conformation and isomerization of the active constituents in herbal medicines.
Collapse
Affiliation(s)
- Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
| | - Tao Bo
- Agilent Technologies, No. 3, Wang Jing Bei Lu, Beijing, 100102, China
| | - Zhengxiang Zhang
- Agilent Technologies, No. 3, Wang Jing Bei Lu, Beijing, 100102, China
| | - Xinqiu Guo
- Ming De Tian Sheng Biotech Inc., Changping Campus of Peking University, Beijing, 102200, China
| | - Mingzhen He
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
| | - Junmao Li
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
| | - Shilin Yang
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, 330006, China
| | - Xin Ma
- Agilent Technologies, No. 3, Wang Jing Bei Lu, Beijing, 100102, China
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang, 330006, China
| |
Collapse
|
16
|
Wang Y, Li X, Li Z, Zhang Y, Wang D. YiQiFuMai injection for chronic heart failure: Protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e9957. [PMID: 29465586 PMCID: PMC5842014 DOI: 10.1097/md.0000000000009957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic heart AQ4 failure (CHF) is the final stage of various heart diseases. YiQiFuMai injection (YQFMI) has been widely applied in the treatment of CHF. However, to our knowledge, there has been no systematic review or meta-analysis of randomized controlled trails (RCTs) regarding the effectiveness of this treatment. Here, we provide a protocol to evaluate the efficacy and safety of YQFMI for CHF. METHODS To evaluate the clinical efficacy of YQFMI in treating CHF, 2 researcher members will independently search the RCTs in the following 8 Chinese and English databases, in which the data collection will be from the time when the respective databases were established to January 2018. The databases will include MEDLINE, EMBASE, Cochrane CENTRAL, CINAHL, the Chinese Biomedical Literature Database, the China National Knowledge Infrastructure, VIP Information and Wanfang Data. The therapeutic effects according to the mortality and the New York Heart Association (NYHA) function classification will be accepted as the primary outcomes. We will use RevMan V.5.3 software as well to compute the data synthesis carefully when a meta-analysis is allowed. RESULTS This study will provide a high-quality synthesis of current evidence of YQFMI for CHF from several aspects including mortality, NYHA function classification. CONCLUSION The conclusion of our systematic review will provide evidence to judge whether YQFMI is an effective intervention for CHF.PROSPERO registration number: PROSPERO CRD42017079696.
Collapse
Affiliation(s)
- Yuanping Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou
| | - Xiaohui Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou
| | - Ziqing Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou
| | - Yu Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou
| | - Dawei Wang
- Shunde Hospital Affiliated of Guangzhou University of Chinese Medicine, Shunde, China
| |
Collapse
|