1
|
Erdogan-Kablan S, Yayla S, Hurkul MM, Cetinkaya A, Nemutlu E, Ozkan SA. Recent advancements in the bioactive alkaloids analysis in plant and biological specimen: From the perspective of activity, sample preparation, and analytical method selection. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1258:124592. [PMID: 40228463 DOI: 10.1016/j.jchromb.2025.124592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Alkaloids are a diverse group of naturally occurring organic compounds. They are known for their significant pharmacological properties. This review provides an up-to-date analysis of bioactive alkaloids in plant and biological samples, emphasizing their biological activities, extraction techniques, and analytical methods. The study focuses on significant alkaloids such as morphine, codeine, vinblastine, vincristine, berberine, quinine, quinidine, caffeine, nicotine, ephedrine, and atropine, highlighting their chemical structures, therapeutic applications, and mechanisms of action. Recent advances in extraction methods, including conventional and modern green techniques such as supercritical fluid extraction, microwave-assisted extraction, and solid-phase microextraction, are discussed in detail. In addition, the review provides an overview of state-of-the-art analytical techniques used for alkaloid quantification, such as high-performance liquid chromatography, liquid chromatography-mass spectrometry, and novel spectroscopic methods. Emphasis is placed on the challenges associated with alkaloid analysis, including matrix effects, stability, and structural diversity. The results contribute to the growing body of knowledge in alkaloid research, providing insights into their potential therapeutic applications and analytical improvements for more accurate and efficient detection in various biological and plant matrices.
Collapse
Affiliation(s)
- Sevilay Erdogan-Kablan
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Seyda Yayla
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Türkiye
| | - M Mesud Hurkul
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Türkiye
| | - Ahmet Cetinkaya
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye.
| |
Collapse
|
2
|
Lu Y, Qin Q, Pan J, Deng S, Wang S, Li Q, Cao J. Advanced applications of two-dimensional liquid chromatography in quantitative analysis of natural products. J Chromatogr A 2025; 1743:465662. [PMID: 39808906 DOI: 10.1016/j.chroma.2025.465662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Two-dimensional liquid chromatography (2D-LC) separation systems, based on two independent columns with different separation mechanisms, have exhibited strong resolving power for complex samples. Therefore, in recent years, the exceptional resolution of 2D-LC has significantly advanced the chemical separation of natural products, such as complex herbs, greatly facilitating their qualitative and quantitative analysis. This paper aims to review the latest strategies of 2D-LC in the quantitative analysis of complex chemical compositions in natural products. To this end, the major advantages and disadvantages of various column couplings in 2D-LC are discussed based on specific studies, along with suggested solutions to address the identified drawbacks. Moreover, the applications of different detectors combined with the latest chemometrics in 2D-LC for accurate quantitative analysis of natural products are reviewed and discussed.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Qiubing Qin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Juan Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Shuqi Deng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China.
| |
Collapse
|
3
|
Sarkar J, Singh R, Chandel S. Understanding LC/MS-Based Metabolomics: A Detailed Reference for Natural Product Analysis. Proteomics Clin Appl 2025; 19:e202400048. [PMID: 39474988 DOI: 10.1002/prca.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 01/14/2025]
Abstract
Liquid chromatography, when used in conjunction with mass spectrometry (LC/MS), is a powerful tool for conducting accurate and reproducible investigations of numerous metabolites in natural products (NPs). LC/MS has gained prominence in metabolomic research due to its high throughput, the availability of multiple ionization techniques and its ability to provide comprehensive metabolite coverage. This unique method can significantly influence various scientific domains. This review offers a comprehensive overview of the current state of LC/MS-based metabolomics in the investigation of NPs. This review provides a thorough overview of the state of the art in LC/MS-based metabolomics for the investigation of NPs. It covers the principles of LC/MS, various aspects of LC/MS-based metabolomics such as sample preparation, LC modes, method development, ionization techniques and data pre-processing. Moreover, it presents the applications of LC/MS-based metabolomics in numerous fields of NPs research such as including biomarker discovery, the agricultural research, food analysis, the study of marine NPs and microbiological research. Additionally, this review discusses the challenges and limitations of LC/MS-based metabolomics, as well as emerging trends and developments in this field.
Collapse
Affiliation(s)
- Jyotirmay Sarkar
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Barrientos RC, Singh AN, Ukaegbu O, Hemida M, Wang H, Haidar Ahmad I, Hu H, Dunn ZD, Appiah-Amponsah E, Regalado EL. Two-Dimensional SEC-SEC-UV-MALS-dRI Workflow for Streamlined Analysis and Characterization of Biopharmaceuticals. Anal Chem 2024; 96:4960-4968. [PMID: 38436624 DOI: 10.1021/acs.analchem.3c05969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The emergence of complex biological modalities in the biopharmaceutical industry entails a significant expansion of the current analytical toolbox to address the need to deploy meaningful and reliable assays at an unprecedented pace. Size exclusion chromatography (SEC) is an industry standard technique for protein separation and analysis. Some constraints of traditional SEC stem from its restricted ability to resolve complex mixtures and notoriously long run times while also requiring multiple offline separation conditions on different pore size columns to cover a wider molecular size distribution. Two-dimensional liquid chromatography (2D-LC) is becoming an important tool not only to increase peak capacity but also to tune selectivity in a single online method. Herein, an online 2D-LC framework in which both dimensions utilize SEC columns with different pore sizes is introduced with a goal to increase throughput for biomolecule separation and characterization. In addition to improving the separation of closely related species, this online 2D SEC-SEC approach also facilitated the rapid analysis of protein-based mixtures of a wide molecular size range in a single online experimental run bypassing time-consuming deployment of different offline SEC methods. By coupling the second dimension with multiangle light scattering (MALS) and differential refractive index (dRI) detectors, absolute molecular weights of the separated species were obtained without the use of calibration curves. As illustrated in this report for protein mixtures and vaccine processes, this workflow can be used in scenarios where rapid development and deployment of SEC assays are warranted, enabling bioprocess monitoring, purity assessment, and characterization.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew N Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ophelia Ukaegbu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mohamed Hemida
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Hang Hu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zachary D Dunn
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Emmanuel Appiah-Amponsah
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Chen X, Yang Z, Xu Y, Liu Z, Liu Y, Dai Y, Chen S. Progress and prediction of multicomponent quantification in complex systems with practical LC-UV methods. J Pharm Anal 2023; 13:142-155. [PMID: 36908853 PMCID: PMC9999300 DOI: 10.1016/j.jpha.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Complex systems exist widely, including medicines from natural products, functional foods, and biological samples. The biological activity of complex systems is often the result of the synergistic effect of multiple components. In the quality evaluation of complex samples, multicomponent quantitative analysis (MCQA) is usually needed. To overcome the difficulty in obtaining standard products, scholars have proposed achieving MCQA through the "single standard to determine multiple components (SSDMC)" approach. This method has been used in the determination of multicomponent content in natural source drugs and the analysis of impurities in chemical drugs and has been included in the Chinese Pharmacopoeia. Depending on a convenient (ultra) high-performance liquid chromatography method, how can the repeatability and robustness of the MCQA method be improved? How can the chromatography conditions be optimized to improve the number of quantitative components? How can computer software technology be introduced to improve the efficiency of multicomponent analysis (MCA)? These are the key problems that remain to be solved in practical MCQA. First, this review article summarizes the calculation methods of relative correction factors in the SSDMC approach in the past five years, as well as the method robustness and accuracy evaluation. Second, it also summarizes methods to improve peak capacity and quantitative accuracy in MCA, including column selection and two-dimensional chromatographic analysis technology. Finally, computer software technologies for predicting chromatographic conditions and analytical parameters are introduced, which provides an idea for intelligent method development in MCA. This paper aims to provide methodological ideas for the improvement of complex system analysis, especially MCQA.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Xu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhe Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuntao Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Corresponding author.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Corresponding author. Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Xu Y, Liu Y, Zhou H, Wang R, Yu D, Guo Z, Liang X. A guide of column selection for two-dimensional liquid chromatography method development of natural alkaloids. Talanta 2023; 251:123738. [DOI: 10.1016/j.talanta.2022.123738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
|
7
|
Yang Y, Jin Y, Zhang Y, Wang Z. Differentiating root and rhizome of panax notoginseng based on precursor ion scanning and multi heart-cutting two-dimensional liquid chromatography. J Sep Sci 2023; 46:e2200542. [PMID: 36409143 DOI: 10.1002/jssc.202200542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Owing to increasing demand for Panax notoginseng-based medicines and health products, establishing a fast, simple, and reliable assay to analyze the chemical differences between its root and rhizome is important. Although previous studies showed that the chemical and biological differences between the root and rhizome of P. notoginseng seem to be small, efforts should be taken to investigate such differences to ensure the safety and efficacy of the products. This work describes a holistic approach that combines characteristic fingerprinting using ultra-high performance liquid chromatography-tandem mass spectrometry parent ion scanning with charged aerosol detection and targeted separation by online heart-cutting two-dimensional liquid chromatography, to identify and evaluate characteristic markers allowing differentiation of the root and rhizome. A total of five potential markers chikusetsusaponin L5 , ginsenoside Rb2 , stipuleanoside R2, malonyl-ginsenoside Rb1 , and malonyl-ginsenoside Rd, were identified and confirmed by comparing chromatographic retention time, the accurate mass of molecular weight, and the fragments of secondary MS with the available reference materials. The results showed that all five markers were 2.8-7 times higher in content in the rhizome than in the root.
Collapse
Affiliation(s)
- Yuangui Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Yan Jin
- Thermo Fisher Scientific Corporation, Shanghai, P. R. China
| | - Yanhai Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,Thermo Fisher Scientific Corporation, Shanghai, P. R. China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Traditional Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
8
|
Obradović D, Pešić I, Čarapić M, Lazović S, Agbaba D. Analysis of scopolamine and its related substances by means of high-performance liquid chromatography. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe retention behaviour of scopolamine (hyoscine) and its related compounds (norhyoscine, atropine, homatropine, and noratropine) was investigated on the silica-based HPLC stationary phase. The retention of investigated tropane alkaloids was interpreted by using the Soczewiński-Wachtmeister equation. A high correlation between the retention parameter (log k) and lipophilicity (log P) (R = 0.9923) confirms the significant influence of hydrophobic interactions on the retention behaviour of the aforementioned compounds. It was found that by increasing the acetonitrile fraction, a decrease in retention of the more polar epoxide derivatives (scopolamine, norhyoscine) and an increase in retention of the more lipophilic derivatives (atropine, noratropine, homatropine) is obtained. The best separation of the tropane alkaloids was achieved by a simple procedure that involved a mobile phase composed of acetonitrile and 40 mM ammonium acetate/0.05% TEA, pH 6.5; 50:50 v/v. Selected conditions were assumed for the determination of scopolamine hydrochloride in the eye drops (Scopolamini hydrobromidum 0.25%). The method was validated and it was found as selective, sensitive, precise, accurate, and robust for the further qualitative analysis of the scopolamine-related compounds.
Collapse
Affiliation(s)
- Darija Obradović
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Ivana Pešić
- Service for the Pharmaceutical Business and Supply, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Marija Čarapić
- Medicines and Medical Devices Agency of Serbia, Vojvode Stepe 458, 11000 Belgrade, Serbia
| | - Saša Lazović
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Jia L, Wang H, Xu X, Wang H, Li X, Hu Y, Chen B, Liu M, Gao X, Li H, Guo D, Yang W. An off-line three-dimensional liquid chromatography/Q-Orbitrap mass spectrometry approach enabling the discovery of 1561 potentially unknown ginsenosides from the flower buds of Panax ginseng, Panax quinquefolius and Panax notoginseng. J Chromatogr A 2022; 1675:463177. [PMID: 35660315 DOI: 10.1016/j.chroma.2022.463177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
To comprehensively elucidate the herbal metabolites is crucial in natural products research to discover new lead compounds. Ginsenosides are an important class of bioactive components from the Panax plants exerting the significant tonifying effects. However, to identify new ginsenosides by the conventional strategies trends to be more and more difficult because of the large spans of acid-base property (the neutral and acidic saponins), molecular mass (400-1400 Da), and rather low content. Herein, an off-line multidimensional chromatography/high-resolution mass spectrometry approach was presented: ion exchange chromatography (IEC) as the first dimension of separation, hydrophilic interaction chromatography (HILIC) in the second dimension, and reversed-phase chromatography (RPC) for the third dimension which was hyphenated to a Q Exactive Q-Orbitrap mass spectrometer. By applying to the flower buds of P. ginseng (PGF), P. quinquefolius (PQF), and P. notoginseng (PNF), IEC using a PhenoSphereTM SAX column could fractionate the total extracts into the neutral (unretained) and acidic (retained) fractions, while HILIC (an XBridge Amide column) and RPC (BEH Shield RP18 column) achieved the hydrophilic interaction and hydrophobic interaction separations, respectively. Q-Orbitrap mass spectrometry offered rich structural information and complementary resolution to the co-eluting components, particular to those minor ones by including precursor ion lists in data-dependent acquisition. We could characterize 803 ginsenosides from PGF, 795 from PQF, and 833 from PNF, and 1561 thereof are potentially unknown. These results can indicate the great potential of this multidimensional approach in the ultra-deep characterization of complex herbal samples supporting the efficient discovery of potentially novel natural compounds.
Collapse
Affiliation(s)
- Li Jia
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Huimin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Boxue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Meiyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Huifang Li
- Thermo Fisher Scientific, Building #6, 27 Xinjinqiao Road, Pudong, Shanghai, 201206, China
| | - Dean Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China.
| |
Collapse
|
10
|
Yang Y, Zhang Y, Zhang X, Yang L, Wang Z. Ginsenoside Contents in Ginseng: Quality by Design-Coupled Two-Dimensional Liquid Chromatography Technique. J Chromatogr Sci 2021; 60:164-172. [PMID: 34013323 DOI: 10.1093/chromsci/bmab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/12/2022]
Abstract
Red ginseng and white ginseng, with different chemical constituents, exhibit different antioxidative, anticancer, antiasthmatic and immunomodulatory properties. The aim of this study was to determine the amount of ginsenoside contents (Rg1, Re, Rb1, Rb2, Rc, Rd and Ro) in red and white ginseng. A rapid and comprehensive method was developed using the quality-by-design (QbD) and heart-cutting two-dimensional liquid chromatography (2D-LC) techniques. The temperature (25°C), mobile phase constituent (0.1%H3PO4), flow rate (0.35 mL/min) and concentrations of the final (45%) and initial (19.5%) organic solvents were optimized to efficient chromatography-based isolation method. The gradient program was optimized by QbD Fusion AE system. A selective column (Thermo Acclaim RSLC Polar Advantage II 2.2 μm, 100 × 2.1 mm) was used for the studies. The ginsenoside Rb1, Rc and Ro exhibiting poor separation resolution were separated using the heart-cutting 2D-LC technique. The average Rb1, Rb2 and Rc contents in red ginseng were significantly higher than the average Rb1, Rb2 and Rc contents in white ginseng. Ginsenoside Ro can be potentially used as a marker to evaluate the qualities of white and red ginseng. This comprehensive and rapid method can be potentially used to screen the quality of the markers in the future.
Collapse
Affiliation(s)
- Yuangui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanhai Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoqun Zhang
- Department of Pharmacy, Shaanxi Traditional Chinese Medicine Hospital, Xi'an 710003, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China
| |
Collapse
|
11
|
Du X, Wang C, Wu L, Li Z, Sadiq FA, Jiang Z, Chen F, Ni H, Li Q. Two-dimensional liquid chromatography analysis of all-trans-, 9-cis-, and 13-cis-astaxanthin in raw extracts from Phaffia rhodozyma. J Sep Sci 2020; 43:3206-3215. [PMID: 32506706 DOI: 10.1002/jssc.202000257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 11/09/2022]
Abstract
An effective two-dimensional liquid chromatography method has been established for the analysis of all-trans-astaxanthin and its geometric isomers from Phaffia rhodozyma employing a C18 column at the first dimension and a C30 column in the second dimension, connected by a 10-port valve using the photo-diode array detector. The regression equation of astaxanthin calibration curve was established, and the precision and accuracy values were found to be in the range of 0.32-1.14% and 98.21-106.13%, respectively. By using two-dimensional liquid chromatography, it was found that day light, ultrasonic treatment, and heat treatment have significant influence on the content of all-trans-astaxanthin in the extract from P. rhodozyma due to the transformation of all-trans-astaxanthin to cis-astaxanthin. The day light and ultrasonic treatments more likely transform all-trans-astaxanthin to 9-cis-astaxanthin, and the thermal treatment transforms all-trans-astaxanthin to 13-cis-astaxanthin. These results indicate that the two-dimensional liquid chromatography method can facilitate monitoring astaxanthin isomerization in the raw extract from P. rhodozyma. In addition, the study will provide a general reference for monitoring other medicals and bioactive chemicals with geometric isomers.
Collapse
Affiliation(s)
- Xiping Du
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Chun Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| | - Ling Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| |
Collapse
|
12
|
Bogdanova E, Pugajeva I, Reinholds I, Bartkevics V. Two-dimensional liquid chromatography - high resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in Pu-erh tea. J Chromatogr A 2020; 1622:461145. [PMID: 32381303 DOI: 10.1016/j.chroma.2020.461145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Affiliation(s)
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia
| | - Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia; University of Latvia, Riga, Latvia
| |
Collapse
|
13
|
Hyung SW, Kim B. Bias reduction in the quantitative analysis of a target analyte present in a limited quantity in human plasma using dual-mode heart-cutting two-dimensional liquid chromatography coupled with isotope dilution mass spectrometry. Biomed Chromatogr 2020; 34:e4831. [PMID: 32181511 DOI: 10.1002/bmc.4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 11/07/2022]
Abstract
Dual-mode heart-cutting two-dimensional liquid chromatography (DMHC 2D-LC) was applied to isotope dilution mass spectrometry (IDMS) to reduce the bias in the quantitative analysis of a target analyte present in a limited quantity in human plasma. Based on a Waters I-Class LC system, the DMHC 2D-LC system was operated in one- and two-dimensional modes to facilitate the determination of heart-cutting time and the efficient trapping of the target LC eluate. Experiments to determine the feasibility of coupling with IDMS were performed with triple quadrupole mass spectrometry using folic acid standards and/or 13 C5 -folic acid. To validate the performance of the DMHC 2D-LC/IDMS system on a complex sample, human plasma was analyzed for folic acid and the result was compared with that obtained using conventional single-column LC. The total run time of the DMHC 2D-LC system was 20 min, the same as that of the single-column LC system. The peak profile of the spiked 13 C5 -folic acid obtained with single-column LC/MS was affected by matrix effects, but resolved with DMHC 2D-LC/MS, thus improving the accuracy of the analysis. The DMHC 2D-LC/IDMS system showed reliable performance in analyzing the target analyte in human plasma, eliminating matrix effects and saving analysis time.
Collapse
Affiliation(s)
- Seok-Won Hyung
- Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Byungjoo Kim
- Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
| |
Collapse
|
14
|
Zhao WJ, Chen XY, Liu YQ, Li P, Li HJ. Liquid chromatographic separation of alkaloids in herbal medicines: Current status and perspectives. J Sep Sci 2020; 43:1755-1772. [PMID: 32160388 DOI: 10.1002/jssc.202000081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Alkaloids are a widespread group of basic compounds in herbal medicines and have attracted great interest due to various pharmaceutical activities and desirable druggability. Their distinctive structures make chromatographic separation fairly difficult. Peak tailing, poor resolution, and inferior column-to-column reproducibility are common obstacles to overcome. In order to provide a valuable reference, the methodologies and/or strategies on liquid chromatographic separation of alkaloids in herbal medicines proposed from 2012 to 2019 are thoroughly summarized.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Xu-Yan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Yu-Qian Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
15
|
Beyramysoltan S, Abdul-Rahman NH, Musah RA. Call it a “nightshade”—A hierarchical classification approach to identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures. Talanta 2019; 204:739-746. [DOI: 10.1016/j.talanta.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
16
|
Pirok BWJ, Stoll DR, Schoenmakers PJ. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal Chem 2019; 91:240-263. [PMID: 30380827 PMCID: PMC6322149 DOI: 10.1021/acs.analchem.8b04841] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bob W. J. Pirok
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Peter J. Schoenmakers
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
17
|
Yohannes A, Yao S. Preconcentration of tropane alkaloids by a metal organic framework (MOF)-immobilized ionic liquid with the same nucleus for their quantitation in Huashanshen tablets. Analyst 2019; 144:6989-7000. [DOI: 10.1039/c9an01362h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of ionic liquids (ILs) for the separation of bioactive compounds from various sample matrices is a burgeoning area.
Collapse
Affiliation(s)
- Alula Yohannes
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shun Yao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
18
|
Analytical methods, occurrence and trends of tropane alkaloids and calystegines: An update. J Chromatogr A 2018; 1564:1-15. [DOI: 10.1016/j.chroma.2018.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 11/19/2022]
|
19
|
Takla SS, Shawky E, Hammoda HM, Darwish FA. Green techniques in comparison to conventional ones in the extraction of Amaryllidaceae alkaloids: Best solvents selection and parameters optimization. J Chromatogr A 2018; 1567:99-110. [PMID: 30033169 DOI: 10.1016/j.chroma.2018.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
An undisputed trend in sample preparation at present is to meet the requirements of green chemistry especially in the field of natural products. Green technology continuously pursues new solvents to replace common organic solvents that possess inherent toxicity. Over the past two decades, non-ionic surfactants have gained enormous attention from the scientific community. The micelle-mediated extraction and cloud-point preconcentration (CPE) methods offer a convenient alternative to the conventional extraction systems. Recently, natural deep eutectic solvents (NDESs) have emerged as green and sustainable solvents for efficient extraction of bioactive compounds or drugs. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. The presented work aimed to comprehensively compare and evaluate the potential and effectiveness of NDES as well as non-ionic surfactants (Genapol X-080, Triton X-100 and Triton X-114) for extraction of Amaryllidaceae alkaloids from Crinum powellii bulbs as representative example of plant material, in comparison to the conventional solvents (methanol, ethanol and water).A new validated high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous quantitation of three alkaloids markers, lycorine, crinine and crinamine, in the bulbs of C. powellii. Extraction efficiency of the targeted alkaloids from the bulb matrix with organic and ecofriendly (green) solvents were studied. Results revealed that NDES and surfactants were significantly more efficient in alkaloid extraction than previous methods requiring the consumption of organic solvents and water. Genapol X-80 demonstrated 138%, 149% and 145%, while choline chloride: fructose (5:2): H2O (35%) NDES mixture demonstrated 243%, 225% and 238% of the total alkaloidal extraction capacity of ethanol, methanol and water, respectively at 50 °C for extraction time 1 h using ultrasonication for all experiments. Furthermore, Box-Behnken response surface design combined with the overall desirability value were successfully employed to optimize and study the individual and interactive effect of process variables such as extraction temperature, time and surfactant %, for Genapol X-80, and sonication extraction temperature, time and water concentration, for choline chloride: fructose: H2O NDES mixture, on the alkaloidal yield from C. powellii. It was evident that parameters interacting together can act in synergism if adjusted properly according to the optimized conditions to obtain maximum alkaloids extractability. It is for the first time that the efficiency of micelle-mediated extraction has been compared to that of natural deep eutectic solvents for the extraction of alkaloids and the results thoroughly discussed.
Collapse
Affiliation(s)
- Sarah S Takla
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eman Shawky
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Hala M Hammoda
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fikria A Darwish
- Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|