1
|
Núñez MDP, López Loveira EG, Domínguez SE, Calfayan LM, Itria RF, Butler M. Assessment of nicotine and degradation products in cigarette butts leachates after detoxification by white rot fungi. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138059. [PMID: 40163991 DOI: 10.1016/j.jhazmat.2025.138059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Cigarette butts (CBs) are widespread hazardous waste contaminating the environment due to the recalcitrance of the filter and the toxicity of the contaminants leached. This paper evaluated through analysis of contaminants and toxicity bioassays on Raphanus sativus seeds, the ability of four fungal strains of white rot fungi to treat cigarette butts, including 2 native strains of Trametes sp. (strains BAFC 4765 and BAFC 4767), one of Irpex lacteus (strain BAFC 4766) and one commercial strain of Pleurotus ostreatus (strain BAFC 2034). Each strain was grown in a medium of water-soaked CBs in axenic conditions at Erlenmeyer-scale during six weeks, analyzing leachate samples periodically by HPLC-MSn. Temporal evolution of nicotine as well as the transformations of tobacco alkaloids and other contaminants generated by the different fungal treatments were characterized. Nicotine was degraded significantly by the end of the treatments although variations were found among the fungal strains, proposing a degradation mechanism based on the 12 tobacco alkaloid transformation products identified. Leachates from CBs showed a total inhibition of germination on Raphanus sativus seeds whereas those obtained after 6 weeks of treatment displayed a significant decrease of phytotoxicity (7-20 % inhibition of germination) exhibiting sublethal effects. The results obtained in this work support the development of CBs fungal treatment for waste detoxification on a larger scale.
Collapse
Affiliation(s)
- María Del Pilar Núñez
- Laboratorio de Micología Experimental y Liquenología, InMiBo UBA-CONICET, Departamento de Biodiversidad y Biología, Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
| | - Elsa Gabriela López Loveira
- Instituto de Investigación e Ingeniería Ambiental (3iA), Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Sofía Eugenia Domínguez
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Laura Mariel Calfayan
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Raúl Fabio Itria
- Laboratorio de Micología Experimental y Liquenología, InMiBo UBA-CONICET, Departamento de Biodiversidad y Biología, Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina; Instituto Nacional de Tecnología Industrial (INTI), Avenida General Paz 5445, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina.
| |
Collapse
|
2
|
Gray B, Lubbock K, Love C, Ryder E, Hudson S, Scarth J. Analytical advances in horseracing medication and doping control from 2018 to 2023. Drug Test Anal 2025; 17:663-684. [PMID: 39010718 DOI: 10.1002/dta.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.
Collapse
|
3
|
Ishii H, Shigematsu R, Takemoto S, Ishikawa Y, Mizobe F, Nomura M, Arima D, Kunii H, Yuasa R, Yamanaka T, Tanabe S, Nagata SI, Yamada M, Leung GNW. Quantification of osilodrostat in horse urine using LC/ESI-HRMS to establish an elimination profile for doping control. Bioanalysis 2024; 16:947-958. [PMID: 39235065 PMCID: PMC11486175 DOI: 10.1080/17576180.2024.2385848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: The use of osilodrostat, developed as a medication for Cushing's disease but categorized as an anabolic agent, is banned in horses by both the International Federation of Horseracing Authorities and the Fédération Equestre Internationale. For doping control purposes, elimination profiles of hydrolyzed osilodrostat in horse urine were established and the detectability of free forms of osilodrostat and its major metabolite, mono-hydroxylated osilodrostat (M1c), was investigated.Materials & methods: Post-administration urine samples obtained from a gelding and three mares were analyzed to establish the elimination profiles of osilodrostat using a validated method involving efficient enzymatic hydrolysis followed by LC/ESI-HRMS analysis.Results: Applying the validated quantification method with an LLOQ of 0.05 ng/ml, hydrolyzed osilodrostat could be quantified in post-administration urine samples from 48 to 72 h post-administration; by contrast, both hydrolyzed osilodrostat and M1c were detected up to 2 weeks. In addition, confirmatory analysis identified the presence of hydrolyzed osilodrostat for up to 72 h post-administration.Conclusion: For doping control purposes, we recommend monitoring both hydrolyzed M1c and osilodrostat because of the greater detectability of M1c and the availability of a reference material of osilodrostat, which is essential for confirmatory analysis.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ryo Shigematsu
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Shunsuke Takemoto
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Yuhiro Ishikawa
- Anti-Doping Section, Equine Department, Japan Racing Association, 1-1-1 Nishishimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Fumiaki Mizobe
- Anti-Doping Section, Equine Department, Japan Racing Association, 1-1-1 Nishishimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Motoi Nomura
- Anti-Doping Section, Equine Department, Japan Racing Association, 1-1-1 Nishishimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Daisuke Arima
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne Shiroi city, Chiba, Japan, 270-1431, Japan
| | - Hirokazu Kunii
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne Shiroi city, Chiba, Japan, 270-1431, Japan
| | - Reiko Yuasa
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne Shiroi city, Chiba, Japan, 270-1431, Japan
| | - Takashi Yamanaka
- Research Planning & Coordination Division, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Sohei Tanabe
- Research Planning & Coordination Division, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Shun-ichi Nagata
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| |
Collapse
|
4
|
Ishii H, Ishikawa Y, Mizobe F, Nomura M, Yamanaka T, Tanabe S, Nagata SI, Yamada M, Leung GNW. Pharmacokinetic study of osilodrostat and identification of mono-hydroxylated metabolite in equine plasma for the purpose of doping control. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9695. [PMID: 38355879 DOI: 10.1002/rcm.9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE Osilodrostat is an inhibitor of 11-beta-hydroxylase (CYP11B) and is used for the treatment of Cushing's disease but also categorized as an anabolic agent. The use of osilodrostat is prohibited in horseracing and equestrian sports. To the best of our knowledge, this is the first metabolic study of osilodrostat in equine plasma. METHODS Potential metabolites of osilodrostat were identified by differential analysis using data acquired from pre- and post-administration plasma samples after protein precipitation with liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI-HRMS). [Correction added on 27 January 2023, after first online publication: In the preceding sentence, "C-HRMS" was changed to "LC/ESI-HRMS" in this version.] For quantification of osilodrostat, a strong cation exchange solid-phase extraction was employed, and the extracts were analyzed using LC/ESI-triple quadrupole tandem mass spectrometry (LC/ESI-QqQ-MS/MS) to establish its elimination profile. Such extracts were further analyzed using LC/ESI-HRMS to investigate the detectability of osilodrostat and its identified mono-hydroxylated metabolite over a 2-week sampling period. RESULTS Mono-hydroxylated osilodrostat was identified based on the differential analysis and mass spectrometric interpretations, and it was found to be the most abundant metabolite in plasma. Elimination profile of osilodrostat in plasma was successfully established over the 24-h post-administration period. Both osilodrostat and its mono-hydroxylated metabolite were detected up to the last sampling point at 2 weeks using HRMS, and osilodrostat could be confirmed up to 8-day post-administration with its reference material using HRMS as well. CONCLUSIONS For doping control, screening of both the parent drug osilodrostat and its mono-hydroxylated metabolite in equine plasma would be recommended due to their extended detection windows of up to 2 weeks. Given the availability of reference material for potential confirmation in forensic samples, osilodrostat is considered the most appropriate monitoring target.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Yuhiro Ishikawa
- Anti-Doping Section, Equine Department, Japan Racing Association, Tokyo, Japan
| | - Fumiaki Mizobe
- Anti-Doping Section, Equine Department, Japan Racing Association, Tokyo, Japan
| | - Motoi Nomura
- Anti-Doping Section, Equine Department, Japan Racing Association, Tokyo, Japan
| | - Takashi Yamanaka
- Clinical Veterinary Medicine Division, Equine Research Institute, Shimotsuke, Japan
| | - Sohei Tanabe
- Clinical Veterinary Medicine Division, Equine Research Institute, Shimotsuke, Japan
| | - Shun-Ichi Nagata
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | | |
Collapse
|
5
|
Fu Q, Qiu Y, Zhao J, Li J, Xie S, Liao Q, Fu X, Huang Y, Yao Z, Dai Z, Qiu Y, Yang Y, Li F, Chen H. Monotonic trends of soil microbiomes, metagenomic and metabolomic functioning across ecosystems along water gradients in the Altai region, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169351. [PMID: 38123079 DOI: 10.1016/j.scitotenv.2023.169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
To investigate microbial communities and their contributions to carbon and nutrient cycling along water gradients can enhance our comprehension of climate change impacts on ecosystem services. Thus, we conducted an assessment of microbial communities, metagenomic functions, and metabolomic profiles within four ecosystems, i.e., desert grassland (DG), shrub-steppe (SS), forest (FO), and marsh (MA) in the Altai region of Xinjiang, China. Our results showed that soil total carbon (TC), total nitrogen, NH4+, and NO3- increased, but pH decreased with soil water gradients. Microbial abundances and richness also increased with soil moisture except the abundances of fungi and protists being lowest in MA. A shift in microbial community composition is evident along the soil moisture gradient, with Proteobacteria, Basidiomycota, and Evosea proliferating but a decline in Actinobacteria and Cercozoa. The β-diversity of microbiomes, metagenomic, and metabolomic functioning were correlated with soil moisture gradients and have significant associations with specific soil factors of TC, NH4+, and pH. Metagenomic functions associated with carbohydrate and DNA metabolisms, as well as phages, prophages, TE, plasmids functions diminished with moisture, whereas the genes involved in nitrogen and potassium metabolism, along with certain biological interactions and environmental information processing functions, demonstrated an augmentation. Additionally, MA harbored the most abundant metabolomics dominated by lipids and lipid-like molecules and organic oxygen compounds, except certain metabolites showing decline trends along water gradients, such as N'-Hydroxymethylnorcotinine and 5-Hydroxyenterolactone. Thus, our study suggests that future ecosystem succession facilitated by changes in rainfall patterns will significantly alter soil microbial taxa, functional potential, and metabolite fractions.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiuchang Liao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Furong Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
6
|
Gurrani S, Prakasham K, Zii Ying JL, Shiea J, Ku YJ, Lin YC, Huang PC, Andaluri G, Lee KC, Ponnusamy VK. A low-cost eco-friendly fast drug extraction (FaDEx) technique for environmental and bio-monitoring of psychoactive drug in urban water and sports-persons' urine samples. ENVIRONMENTAL RESEARCH 2023; 217:114787. [PMID: 36410459 DOI: 10.1016/j.envres.2022.114787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Nicotine is the most prominent psychoactive/addictive chemical substance consumed worldwide among young players in team sports. Moreover, urinary nicotine discharge and nicotine-based products disposal in environmental waters has been unavoidable in recent years. Therefore, sensitive monitoring of nicotine content in environmental waters and human urine samples is essential. In this study, we developed a miniaturized novel green, low-cost, sensitive, in-syringe-based semi-automated fast drug extraction (FaDEx) protocol coupled with gas chromatography-flame ionization detection (GC-FID) for the efficient environmental and bio-monitoring of nicotine in aqueous samples. The FaDEx method consists of two steps; firstly, the target analyte was extracted using dimethyl carbonate (a green solvent) and extraction salts. After that, the extraction solvent was passed automatically through the solid-phase extraction cartridge at a constant flow rate for the cleanup process to achieve the sensitive nicotine analysis by GC-FID. Under optimized experimental conditions, the developed method showed excellent linearity over the concentration ranges between 20-2000 ng mL-1 with a correlation coefficient >0.99. The detection and quantification limits were 4 and 20 ng mL-1, respectively. The presented method was applied to monitor and assess nicotine exposure in sports-persons' urine and environmental water samples. The method accuracy and precision in terms of relative recovery and relative standard deviation (for triplicate analysis) were 85.4-110.2% and ≤8%, respectively. Finally, the impact of our procedure on the environment from a green analytical chemistry view was assessed using a novel metric system called AGREE, and obtained the greenness score of 0.87, indicating its an efficient alternative green analytical protocol for routine environmental and bio-monitoring of nicotine in environmental and biological samples.
Collapse
Affiliation(s)
- Swapnil Gurrani
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Karthikeyan Prakasham
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Jess Lim Zii Ying
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Jentaie Shiea
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Yi-Jia Ku
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Yu-Chia Lin
- Research and Development Division, Great Engineering Technology (GETECH) Corporation, No.392, Yucheng Rd., Zuoying District., Kaohsiung City, 813, Taiwan
| | - Po-Chin Huang
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County, 35053, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Kung-Che Lee
- Department of Athletic Performace, National University of Kaohsiung, Kaohsiung City, 811, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, and Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
7
|
Ishii H, Shibuya M, Leung GNW, Yamashita S, Nagata SI, Kushiro A, Sakai S, Toju K, Okada J, Kawasaki K, Kusano K, Kijima-Suda I. Additional studies on nicotine exposure in horses: Accurate quantification and elimination profiles of potential biomarkers in plasma and urine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9396. [PMID: 36098053 DOI: 10.1002/rcm.9396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE For the purpose of doping control, this is the first report of accurate quantification of four critical structural isomers of nicotine metabolites (trans-3'-hydroxycotinine, cis-3'-hydroxycotinine, 5'-hydroxycotinine, and N'-hydroxymethylnorcotinine) in equine plasma and urine for the establishment of their elimination profiles. Besides, the pharmacokinetic studies of trans-3'-hydroxycotinine and N'-hydroxymethylnorcotinine in equine plasma and urine are also presented for the first time. METHODS The accurate quantification methods of the aforementioned four structural isomers in horse plasma and urine were successfully developed and validated using the solid-phase extractions followed by liquid chromatography/tandem mass spectrometry analysis. Baseline chromatographic separation was achieved to completely differentiate these isomers, which shared the same selected reaction monitoring transition. Such methods were applied to post-administration samples obtained from the nicotine and tobacco leaf administration studies for the establishment of pharmacokinetic profiles. RESULTS N'-Hydroxymethylnorcotinine could be quantified for the longest period, ranging from 48 to 72 h in plasma and 96 h in urine after a single administration of 250 mg of nicotine and an equivalent amount of nicotine in tobacco leaves. In terms of detection, both N'-hydroxymethylnorcotinine and trans-3'-hydroxycotinine could be detected up to the last sample collection time point (96 h), indicating that they are the most appropriate biomarkers for nicotine exposure. CONCLUSIONS N'-Hydroxymethylnorcotinine and trans-3'-hydroxycotinine were detected longest in plasma and urine samples after both nicotine and tobacco leaf administrations, and N'-hydroxymethylnorcotinine was deemed most appropriate as a monitoring target due to its relatively higher abundance and slower elimination rate. These two biomarkers could also be used to differentiate sample contamination by tobacco products and genuine nicotine exposure to horse regardless of intentionality.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Shozo Yamashita
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Asuka Kushiro
- Equine Research Institute, Research Planning & Coordination Division, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Satoshi Sakai
- Race Horse Hospital, Miho Training Center, Japan Racing Association, Inashiki-gun, Ibaraki, Japan
| | - Kota Toju
- Race Horse Hospital, Miho Training Center, Japan Racing Association, Inashiki-gun, Ibaraki, Japan
| | - Jun Okada
- Veterinarian Section, Equine Department, Japan Racing Association, Minato-ku, Tokyo, Japan
| | - Kazumi Kawasaki
- Veterinarian Section, Equine Department, Japan Racing Association, Minato-ku, Tokyo, Japan
| | - Kanichi Kusano
- Race Horse Hospital, Ritto Training Center, Japan Racing Association, Ritto, Shiga, Japan
| | - Isao Kijima-Suda
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| |
Collapse
|
8
|
Ishii H, Shibuya M, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Sato F, Kuroda T, Yamada M, Leung GNW. Generic approach for the discovery of drug metabolites in horses based on data-dependent acquisition by liquid chromatography high-resolution mass spectrometry and its applications to pharmacokinetic study of daprodustat. Anal Bioanal Chem 2022; 414:8125-8142. [PMID: 36181513 DOI: 10.1007/s00216-022-04347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022]
Abstract
In drug metabolism studies in horses, non-targeted analysis by means of liquid chromatography coupled with high-resolution mass spectrometry with data-dependent acquisition (DDA) has recently become increasingly popular for rapid identification of potential biomarkers in post-administration biological samples. However, the most commonly encountered problem is the presence of highly abundant interfering components that co-elute with the target substances, especially if the concentrations of these substances are relatively low. In this study, we evaluated the possibility of expanding DDA coverage for the identification of drug metabolites by applying intelligently generated exclusion lists (ELs) consisting of a set of chemical backgrounds and endogenous substances. Daprodustat was used as a model compound because of its relatively lower administration dose (100 mg) compared to other hypoxia-inducible factor stabilizers and the high demand in the detection sensitivity of its metabolites at the anticipated lower concentrations. It was found that the entire DDA process could efficiently identify both major and minor metabolites (flagged beyond the pre-set DDA threshold) in a single run after applying the ELs to exclude 67.7-99.0% of the interfering peaks, resulting in a much higher chance of triggering DDA to cover the analytes of interest. This approach successfully identified 21 metabolites of daprodustat and then established the metabolic pathway. It was concluded that the use of this generic intelligent "DDA + EL" approach for non-targeted analysis is a powerful tool for the discovery of unknown metabolites, even in complex plasma and urine matrices in the context of doping control.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan.
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, 105-0003, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, 105-0003, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, 270-1431, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, 270-1431, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, 270-1431, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, 321-4 Tokamicho, Utsunomiya, Tochigi, 320-0856, Japan
| | - Fumio Sato
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Taisuke Kuroda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| |
Collapse
|
9
|
Ishii H, Shibuya M, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Sato F, Kuroda T, Yamada M, Leung GNW. Pharmacokinetic Study of Vadadustat and High-Resolution Mass Spectrometric Characterization of its Novel Metabolites in Equines for the Purpose of Doping Control. Curr Drug Metab 2022; 23:850-865. [PMID: 36017833 DOI: 10.2174/1389200223666220825093945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Vadadustat, a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor, is a substance which carries a lifetime ban in both horse racing and equestrian competition. A comprehensive metabolic study of vadadustat in horses has not been previously reported. OBJECTIVE Metabolism and elimination profiles of vadadustat in equine plasma and urine were studied for the purpose of doping control. METHODS A nasoesophageal administration of vadadustat (3 g/day for 3 days) was conducted on three thoroughbred mares. Potential metabolites were comprehensively detected by differential analysis of full-scan mass spectral data obtained from both in vitro studies with liver homogenates and post-administration samples using liquid chromatography high-resolution mass spectrometry. The identities of metabolites were further substantiated by product ion scans. Quantification methods were developed and validated for the establishment of the excretion profiles of the total vadadustat (free and conjugates) in plasma and urine. RESULTS A total of 23 in vivo and 14 in vitro metabolites (12 in common) were identified after comprehensive analysis. We found that vadadustat was mainly excreted into urine as the parent drug together with some minor conjugated metabolites. The elimination profiles of total vadadustat in post-administration plasma and urine were successfully established by using quantification methods equipped with alkaline hydrolysis for cleavage of conjugates such as methylated vadadustat, vadadustat glucuronide, and vadadustat glucoside. CONCLUSION Based on our study, for effective control of the misuse or abuse of vadadustat in horses, total vadadustat could successfully be detected for up to two weeks after administration in plasma and urine.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Zip 980-8574, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, Zip 105-0003, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, Zip 105-0003, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, 321-4 Tokamicho, Utsunomiya, Tochigi, Zip 320-0856, Japan
| | - Fumio Sato
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, Zip 329-0412, Japan
| | - Taisuke Kuroda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, Zip 329-0412, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| |
Collapse
|
10
|
Ishii H, Leung GNW, Yamashita S, Nagata SI, Kushiro A, Sakai S, Toju K, Okada J, Kawasaki K, Kusano K, Kijima-Suda I. Identification of potential biomarkers in urine and plasma after consumption of tobacco product in horses. Drug Test Anal 2022; 14:902-914. [PMID: 35195357 DOI: 10.1002/dta.3242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Abstract
The use of nicotine stimulants in horses is generally banned in horse racing and equestrian sports-accidental consumption of tobacco products is one of the possible causes of nicotine exposure in horses. The authors recently reported a comprehensive metabolic study of nicotine in equines, differentiating between nicotine exposure and sample contamination by means of a nicotine biomarker trans-3'-hydroxycotinine. To identify potential biomarkers for the differentiation of genuine nicotine administration and consumption of tobacco products, tobacco leaves (equivalent to 250 mg of nicotine) were nasoesophageally administered to three thoroughbred mares. Quantification methods of anatabine in plasma and urine were newly developed and validated and successfully applied to post-administration samples. Previously reported simultaneous quantification methods of eight target analytes including nicotine and its metabolites in plasma and urine were also applied to the samples. The results demonstrate that both trans-3'-hydroxycotinine and anatabine could be used as potential biomarkers in equine urine and plasma to indicate recent exposure to tobacco products in horses. As well, trans-3'-hydroxycotinine had the longest half-life as a detectable metabolite in urine and plasma. To our knowledge, this is the first report of a comprehensive study of tobacco product detection in horses.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Shozo Yamashita
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Asuka Kushiro
- Equine Research Institute, Research Planning & Coordination Division, JRA, Tochigi, Japan
| | - Satoshi Sakai
- Race Horse Hospital, Miho Training Center, JRA, Ibaraki, Japan
| | - Kota Toju
- Race Horse Hospital, Miho Training Center, JRA, Ibaraki, Japan
| | - Jun Okada
- Veterinarian Section, Equine Department, JRA, Tokyo, Japan
| | | | - Kanichi Kusano
- Race Horse Hospital, Ritto Training Center, JRA, Ritto, Shiga, Japan
| | - Isao Kijima-Suda
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| |
Collapse
|