1
|
Alshora D, Ibrahim MA, Sherif AY, Elzayat E, Alotaibi I. Optimization and Validation of the UPLC Method for Rapid, Facile, and Simultaneous Analysis of Sitagliptin and Metformin in Quality Control Samples. ACS OMEGA 2025; 10:5829-5837. [PMID: 39989815 PMCID: PMC11840761 DOI: 10.1021/acsomega.4c09520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Many clinical trials have shown the effectiveness of combination therapy over monotherapy in diabetes management. Sitagliptin (SG) and metformin (MF) are the most common combinations for type II diabetes management. These drugs were combined into one tablet, called Janumet 50/850 (SG/MF). The pharmaceutical industry constantly demands a rapid, simple, sensitive, and valid analytical method for simultaneously determining drugs in pharmaceutical products. Therefore, this study aims to develop an ultraperformance liquid chromatography method for concurrently estimating metformin and sitagliptin in a short run time by applying the response surface methodology. A Box-Behnken design was implemented to study the influence of three independent factors: aqueous phase concentration in the mobile phase (A; 5-15%), mobile phase flow rate (B; 0.4-1 mL/min), and ammonium formate buffer strength (C; 5-20 mM). The data analysis showed a significant negative effect of the flow rate on the retention time and peak area. The optimized analytical condition was performed with 15% aqueous phase concentration, a flow rate of 0.52 mL/min, and a buffer strength of five mM. The analytical method was valid per the International Conference of Harmonization (ICH) guidelines. SG and MF were separated in a short time run of 2 min. The process was reliable in separating and extracting the drugs from the marketed Janumet tablets at a retention time of 0.73 and 1.36 min for SG and MF, respectively.
Collapse
Affiliation(s)
- Doaa Alshora
- Department of Pharmaceutics, College
of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College
of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdelrahman Y. Sherif
- Department of Pharmaceutics, College
of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ehab Elzayat
- Department of Pharmaceutics, College
of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim Alotaibi
- Department of Pharmaceutics, College
of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Kim E, Graceffa O, Broweleit R, Ladha A, Boies A, Mudakannavar SP, Rawle RJ. Lipid loss and compositional change during preparation of simple two-component liposomes. BIOPHYSICAL REPORTS 2024; 4:100174. [PMID: 39173912 PMCID: PMC11406089 DOI: 10.1016/j.bpr.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Liposomes are used as model membranes in many scientific fields. Various methods exist to prepare liposomes, but common procedures include thin-film hydration followed by extrusion, freeze-thaw, and/or sonication. These procedures can produce liposomes at specific concentrations and lipid compositions, and researchers often assume that the concentration and composition of their liposomes are similar or identical to what would be expected if no lipid loss occurred. However, lipid loss and concomitant biasing of lipid composition can in principle occur at any preparation step due to nonideal mixing, lipid-surface interactions, etc. Here, we report a straightforward HPLC-ELSD method to quantify the lipid concentration and composition of liposomes and apply that method to study the preparation of simple cholesterol/POPC liposomes. We examine common liposome preparation steps, including vortexing during resuspension, lipid film hydration, extrusion, freeze-thaw, and sonication. We found that the resuspension step can play an outsized role in determining the lipid loss (up to ∼50% under seemingly rigorous procedures). The extrusion step yielded smaller lipid losses (∼10-20%). Freeze-thaw and sonication could both be employed to improve lipid yields. Hydration times up to 60 min and increasing cholesterol concentrations up to 50 mol % had little influence on lipid recovery. Fortunately, even conditions with large lipid loss did not substantially influence the target membrane composition, as long as the lipid mixture was below the cholesterol solubility limit. From our results, we identify best practices for producing maximum levels of lipid recovery and minimal changes to lipid composition during liposome preparation for cholesterol/POPC liposomes.
Collapse
Affiliation(s)
- Eunice Kim
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Olivia Graceffa
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Rachel Broweleit
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Ali Ladha
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Andrew Boies
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | | | - Robert J Rawle
- Department of Chemistry, Williams College, Williamstown, Massachusetts.
| |
Collapse
|
3
|
Kim E, Graceffa O, Broweleit R, Ladha A, Boies A, Rawle RJ. Lipid loss and compositional change during preparation of liposomes by common biophysical methods. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596670. [PMID: 38854048 PMCID: PMC11160747 DOI: 10.1101/2024.05.30.596670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Liposomes are widely used as model lipid membrane platforms in many fields, ranging from basic biophysical studies to drug delivery and biotechnology applications. Various methods exist to prepare liposomes, but common procedures include thin-film hydration followed by extrusion, freeze-thaw, and/or sonication. These procedures have the potential to produce liposomes at specific concentrations and membrane compositions, and researchers often assume that the concentration and composition of their liposomes are similar to, if not identical, to what would be expected if no lipid loss occurred during preparation. However, lipid loss and concomitant biasing of lipid composition can in principle occur at any preparation step due to nonideal mixing, lipid-surface interactions, etc. Here, we report a straightforward method using HPLC-ELSD to quantify the lipid concentration and membrane composition of liposomes, and apply that method to study the preparation of simple POPC/cholesterol liposomes. We examine many common steps in liposome formation, including vortexing during re-suspension, hydration of the lipid film, extrusion, freeze-thaw, sonication, and the percentage of cholesterol in the starting mixture. We found that the resuspension step can play an outsized role in determining the overall lipid loss (up to ~50% under seemingly rigorous procedures). The extrusion step yielded smaller lipid losses (~10-20%). Freeze-thaw and sonication could both be employed to improve lipid yields. Hydration times up to 60 minutes and increasing cholesterol concentrations up to 50 mole% had little influence on lipid recovery. Fortunately, even conditions with large lipid loss did not substantially influence the target membrane composition more than ~5% under the conditions we tested. From our results, we identify best practices for producing maximum levels of lipid recovery and minimal changes to lipid composition during liposome preparation protocols. We expect our results can be leveraged for improved preparation of model membranes by researchers in many fields.
Collapse
Affiliation(s)
- Eunice Kim
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Olivia Graceffa
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Rachel Broweleit
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Ali Ladha
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Andrew Boies
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| | - Robert J Rawle
- Department of Chemistry, Williams College, Williamstown, MA, 01267, USA
| |
Collapse
|
4
|
Birdsall RE, Han D, DeLaney K, Kowalczyk A, Cojocaru R, Lauber M, Huray JL. Monitoring stability indicating impurities and aldehyde content in lipid nanoparticle raw material and formulated drugs. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124005. [PMID: 38246008 DOI: 10.1016/j.jchromb.2024.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Lipid nanoparticles (LNPs) are designed to protect and transport sensitive payloads or active pharmaceutical ingredients as part of new therapeutic modalities. As a multi-component particle, a high degree of quality control is necessary to ensure raw materials are free of critical impurities that could adversely impact the drug product. In this study, we demonstrate a reversed phase liquid chromatography method hyphenated with a single quadrupole mass spectrometer (RPLC-MS) as an alternative platform to methods that incorporate evaporative light scattering or charged aerosol detectors in the detection and quantitation of critical impurities associated with LNPs. The proposed RPLC-MS method offers an increase of up to 2 orders of magnitude in dynamic range and 3 orders of magnitude in sensitivity in the analysis of impurities associated with LNPs compared to conventional detectors. Access to complementary mass data enabled the detection and identification of stability indicating impurities as part of stress studies carried out on an ionizable lipid. In addition to confirmation of peak identity, complementary mass data was also used to assess residual aldehydes in raw material and formulated LNPs in accordance with regulatory guidance. Following derivatization using 2,4-dinitrophenylhydrazine, aldehyde content in the ionizable lipid raw material was determined to exceed the reporting threshold of 0.05% in 30% of the test cases. The experimental findings observed in this study demonstrate the utility of the proposed RPLC-MS method in the identification and monitoring of stability-indicating attributes associated with LNPs as part of current Good Manufacturing Practices for improved consumer safety in drug products.
Collapse
Affiliation(s)
| | - Duanduan Han
- Waters Corporation, 34 Maple St. Milford, MA 01757, USA
| | | | - Adam Kowalczyk
- Acuitas Therapeutics, 6190 Agronomy Rd. Suite 405, Vancouver, BC, V6T 1Z3, Canada
| | - Razvan Cojocaru
- Acuitas Therapeutics, 6190 Agronomy Rd. Suite 405, Vancouver, BC, V6T 1Z3, Canada
| | | | - Jon Le Huray
- Acuitas Therapeutics, 6190 Agronomy Rd. Suite 405, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|