1
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
2
|
Hui C, Huang H. A study on chitosan-coated liposomes as a carrier of bovine serum albumin as oral protein drug. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1773849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chen Hui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Design and manufacturing of monodisperse and malleable phytantriol-based cubosomes for drug delivery applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 2020; 10:163. [PMID: 32206497 PMCID: PMC7062946 DOI: 10.1007/s13205-020-2144-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/16/2020] [Indexed: 01/02/2023] Open
Abstract
Liposomes are very useful biocompatible tools used in diverse scientific disciplines, employed for the vehiculation and delivery of lipophilic, ampiphilic or hydrophilic compounds. Liposomes have gained the importance as drug carriers, as the drugs alone have limited targets, higher toxicity and develop resistance when used in higher doses. Conventional liposomes suffer from several drawbacks like encapsulation inefficiencies and partially controlled particle size. The surface chemistry of liposome technology started from simple conventional vesicles to second generation liposomes by modulating their lipid composition and surface with different ligands. Introduction of polyethylene glycol to lipid anchor was the first innovative strategy which increased circulation time, delayed clearance and opsonin resistance. PEGylated liposomes have been found to possess higher drug loading capacity up to 90% or more and some drugs like CPX-1 encapsuled in such liposomes have increased the disease control up to 73% patients suffering from colorectal cancer. The surface of liposomes have been further liganded with small molecules, vitamins, carbohydrates, peptides, proteins, antibodies, aptamers and enzymes. These advanced liposomes exhibit greater solubility, higher stability, long-circulating time and specific drug targeting properties. The immense utility and demand of surface modified liposomes in different areas have led their way to the modern market. In addition to this, the multi-drug carrier approach of targeted liposomes is an innovative method to overcome drug resistance while treating ceratin tumors. Presently, several second-generation liposomal formulations of different anticancer drugs are at various stages of clinical trials. This review article summarizes briefly the preparation of liposomes, strategies of disease targeting and exclusively the surface modifications with different entities and their clinical applications especially as drug delivery system.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Khaled S. Allemailem
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Ahmed Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| |
Collapse
|
5
|
Tian L, Wang Y, Kang XF. Target-controlled liposome amplification for versatile nanopore analysis. Chem Commun (Camb) 2019; 55:5159-5162. [PMID: 30984931 DOI: 10.1039/c9cc00285e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have reported a versatile nanopore method based on the combination of analyte-controlled liposome signal amplification and the nanopore detection of a reporter molecule, which largely extends the nanopore application range, and easily elevates the nanopore sensitivity to the fM level from the μM level.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | | | | |
Collapse
|
6
|
Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles - In vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci 2017; 249:192-212. [PMID: 28499604 DOI: 10.1016/j.cis.2017.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
The review presents a broad overview of the biomedical applications of surface functionalized iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) agents for sensitive and precise diagnosis tool and synergistic combination with other imaging modalities. Then, the recent progress in therapeutic applications, such as hyperthermia is discussed and the available toxicity data of magnetic nanoparticles concerning in vitro and in vivo biomedical applications are addressed. This review also presents the available computer models using molecular dynamics (MD), Monte Carlo (MC) and density functional theory (DFT), as a basis for a complete understanding of the behaviour and morphology of functionalized IONPs, for improving NPs surface design and expanding the potential applications in nanomedicine.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria.
| | - Borjana Donkova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - Julia Romanova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - George Tzvetkov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), C/Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| |
Collapse
|
7
|
Malinge J, Géraudie B, Savel P, Nataf V, Prignon A, Provost C, Zhang Y, Ou P, Kerrou K, Talbot JN, Siaugue JM, Sollogoub M, Ménager C. Liposomes for PET and MR Imaging and for Dual Targeting (Magnetic Field/Glucose Moiety): Synthesis, Properties, and in Vivo Studies. Mol Pharm 2017; 14:406-414. [PMID: 28029258 DOI: 10.1021/acs.molpharmaceut.6b00794] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe the potentiality of a new liposomal formulation enabling positron emission tomography (PET) and magnetic resonance MR() imaging. The bimodality is achieved by coupling a 68Ga-based radiotracer on the bilayer of magnetic liposomes. In order to enhance the targeting properties obtained under a permanent magnetic field, a sugar moiety was added in the lipid formulation. Two new phospholipids were synthesized, one with a specific chelator of 68Ga (DSPE-PEG-NODAGA) and one with a glucose moiety (DSPE-PEG-glucose). The liposomes were produced according to a fast and safe process, with a high radiolabeling yield. MR and PET imaging were performed on mice bearing human glioblastoma tumors (U87MG) after iv injection. The accumulation of the liposomes in solid tumor is evidenced by MR imaging and the amount is evaluated in vivo and ex vivo according to PET imaging. An efficient magnetic targeting is achieved with these new magnetic liposomes.
Collapse
Affiliation(s)
- Jérémy Malinge
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX , F-75005 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8232, IPCM , F-75005 Paris, France
| | - Bastien Géraudie
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS028 Phénotypage du petit animal, UPMC Univ Paris 06, Paris, France.,Médecine nucléaire et radiopharmacie, Hôpital Tenon, AP-HP , Paris, France
| | - Paul Savel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX , F-75005 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8232, IPCM , F-75005 Paris, France
| | - Valérie Nataf
- Médecine nucléaire et radiopharmacie, Hôpital Tenon, AP-HP , Paris, France
| | - Aurélie Prignon
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS028 Phénotypage du petit animal, UPMC Univ Paris 06, Paris, France
| | - Claire Provost
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS028 Phénotypage du petit animal, UPMC Univ Paris 06, Paris, France
| | - Yongmin Zhang
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8232, IPCM , F-75005 Paris, France
| | - Phalla Ou
- Université Paris Diderot, Plateforme de recherche préclinique FRIM , 46 rue Henri Huchard, 75018 Paris, France
| | - Khaldoun Kerrou
- Médecine nucléaire et radiopharmacie, Hôpital Tenon, AP-HP , Paris, France
| | - Jean-Noël Talbot
- Laboratoire d'Imagerie Moléculaire Positonique (LIMP), UMS028 Phénotypage du petit animal, UPMC Univ Paris 06, Paris, France.,Médecine nucléaire et radiopharmacie, Hôpital Tenon, AP-HP , Paris, France
| | - Jean-Michel Siaugue
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX , F-75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8232, IPCM , F-75005 Paris, France
| | - Christine Ménager
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX , F-75005 Paris, France
| |
Collapse
|
8
|
Svane S, Kuntsche J, Steiniger F, Eich A, Duelund L, McKee V, McKenzie C. Dimetallic functionalities in liposome bilayers. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1067316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- S. Svane
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - J. Kuntsche
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - F. Steiniger
- Center for Electron Microscopy of the Medical Faculty, Friedrich Schiller University, Jena 07740, Germany
| | - A. Eich
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
- Department of Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53012 Bonn, Germany
| | - L. Duelund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - V. McKee
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - C.J. McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
9
|
Miller DM, Gulbis JM. Engineering protocells: prospects for self-assembly and nanoscale production-lines. Life (Basel) 2015; 5:1019-53. [PMID: 25815781 PMCID: PMC4500129 DOI: 10.3390/life5021019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
The increasing ease of producing nucleic acids and proteins to specification offers potential for design and fabrication of artificial synthetic "organisms" with a myriad of possible capabilities. The prospects for these synthetic organisms are significant, with potential applications in diverse fields including synthesis of pharmaceuticals, sources of renewable fuel and environmental cleanup. Until now, artificial cell technology has been largely restricted to the modification and metabolic engineering of living unicellular organisms. This review discusses emerging possibilities for developing synthetic protocell "machines" assembled entirely from individual biological components. We describe a host of recent technological advances that could potentially be harnessed in design and construction of synthetic protocells, some of which have already been utilized toward these ends. More elaborate designs include options for building self-assembling machines by incorporating cellular transport and assembly machinery. We also discuss production in miniature, using microfluidic production lines. While there are still many unknowns in the design, engineering and optimization of protocells, current technologies are now tantalizingly close to the capabilities required to build the first prototype protocells with potential real-world applications.
Collapse
Affiliation(s)
- David M Miller
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| | - Jacqueline M Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia.
| |
Collapse
|
10
|
Micheletto YMS, da Silveira NP, Barboza DM, dos Santos MC, de Lima VR, Giacomelli FC, Martinez JCV, Frizon TEA, Bó AGD. Investigation of self-association between new glycosurfactant N -acetyl-β- d -glucosaminyl-PEG-docosanate and soybean phosphatidylcholine into vesicles. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 2013; 3:13. [PMID: 23532930 PMCID: PMC3607064 DOI: 10.3389/fcimb.2013.00013] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/05/2013] [Indexed: 12/16/2022] Open
Abstract
Vaccination has had a major impact on the control of infectious diseases. However, there are still many infectious diseases for which the development of an effective vaccine has been elusive. In many cases the failure to devise vaccines is a consequence of the inability of vaccine candidates to evoke appropriate immune responses. This is especially true where cellular immunity is required for protective immunity and this problem is compounded by the move toward devising sub-unit vaccines. Over the past decade nanoscale size (<1000 nm) materials such as virus-like particles, liposomes, ISCOMs, polymeric, and non-degradable nanospheres have received attention as potential delivery vehicles for vaccine antigens which can both stabilize vaccine antigens and act as adjuvants. Importantly, some of these nanoparticles (NPs) are able to enter antigen-presenting cells by different pathways, thereby modulating the immune response to the antigen. This may be critical for the induction of protective Th1-type immune responses to intracellular pathogens. Their properties also make them suitable for the delivery of antigens at mucosal surfaces and for intradermal administration. In this review we compare the utilities of different NP systems for the delivery of sub-unit vaccines and evaluate the potential of these delivery systems for the development of new vaccines against a range of pathogens.
Collapse
Affiliation(s)
- Anthony E Gregory
- College of Life and Environmental Sciences, University of Exeter Exeter, UK.
| | | | | |
Collapse
|
12
|
Abstract
Vaccination has had a major impact on the control of infectious diseases. However, there are still many infectious diseases for which the development of an effective vaccine has been elusive. In many cases the failure to devise vaccines is a consequence of the inability of vaccine candidates to evoke appropriate immune responses. This is especially true where cellular immunity is required for protective immunity and this problem is compounded by the move toward devising sub-unit vaccines. Over the past decade nanoscale size (<1000 nm) materials such as virus-like particles, liposomes, ISCOMs, polymeric, and non-degradable nanospheres have received attention as potential delivery vehicles for vaccine antigens which can both stabilize vaccine antigens and act as adjuvants. Importantly, some of these nanoparticles (NPs) are able to enter antigen-presenting cells by different pathways, thereby modulating the immune response to the antigen. This may be critical for the induction of protective Th1-type immune responses to intracellular pathogens. Their properties also make them suitable for the delivery of antigens at mucosal surfaces and for intradermal administration. In this review we compare the utilities of different NP systems for the delivery of sub-unit vaccines and evaluate the potential of these delivery systems for the development of new vaccines against a range of pathogens.
Collapse
Affiliation(s)
- Anthony E Gregory
- College of Life and Environmental Sciences, University of Exeter Exeter, UK.
| | | | | |
Collapse
|
13
|
|
14
|
Dal Bó AG, Soldi V, Giacomelli FC, Travelet C, Jean B, Pignot-Paintrand I, Borsali R, Fort S. Self-assembly of amphiphilic glycoconjugates into lectin-adhesive nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1418-1426. [PMID: 22171924 DOI: 10.1021/la204388h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This work describes the synthesis and self-assembly of carbohydrate-clicked rod-coil amphiphilic systems. Copper-catalyzed Huisgen cycloaddition was efficiently employed to functionalize the hydrophilic extremity of PEG-b-tetra(p-phenylene) conjugates by lactose and N-acetyl-glucosamine ligands. The resulting amphiphilic systems spontaneously self-assembled into nanoparticles when dissolved in aqueous media, as evidenced by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The formation of highly monodisperse micelles having a mean diameter of 10 nm was observed for systems containing a PEG 900 core, and a decrease in the hydrophilic moiety (PEG 600) led to the formation of vesicles with a broader size distribution. The presence of carbohydrate residues on the surfaces of the micelles and their ability to establish specific interactions with wheat germ agglutinin (WGA) and peanut agglutinin (PNA) were further highlighted by light-scattering measurements, thus confirming the attractive applications of such sugar micelles in biosensor devices.
Collapse
Affiliation(s)
- Alexandre G Dal Bó
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP 53, F-38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen T, Shukoor MI, Chen Y, Yuan Q, Zhu Z, Zhao Z, Gulbakan B, Tan W. Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. NANOSCALE 2011; 3:546-556. [PMID: 21109879 DOI: 10.1039/c0nr00646g] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In recent years, nanomaterials have captured the attention of scientists from a wide spectrum of domains. With their unique properties, nanomaterials offer great promise for numerous applications, ranging from catalysis to energy harvesting and information technology. Functionalized with the desired biomolecules, nanomaterials can also be utilized for many biomedical applications. This paper summarizes recent achievements in the use of aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. First, we discuss the features and properties of aptamers and then illustrate the use of aptamer-conjugated nanomaterials as sensing platforms and delivery vehicles, emphasizing how such integration can result in enhanced sensitivity and selectivity.
Collapse
Affiliation(s)
- Tao Chen
- Department of Chemistry, Shands Cancer Center, University of Florida Genetics Institute, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
17
|
Okutani Y, Egusa S, Ogawa Y, Kitaoka T, Goto M, Wariishi H. One-Step Lactosylation of Hydrophobic Alcohols by Nonaqueous Biocatalysis. ChemCatChem 2010. [DOI: 10.1002/cctc.201000051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Loomis K, Smith B, Feng Y, Garg H, Yavlovich A, Campbell-Massa R, Dimitrov DS, Blumenthal R, Xiao X, Puri A. Specific targeting to B cells by lipid-based nanoparticles conjugated with a novel CD22-ScFv. Exp Mol Pathol 2010; 88:238-49. [PMID: 20122924 DOI: 10.1016/j.yexmp.2010.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
The CD22 antigen is a viable target for therapeutic intervention for B-cell lymphomas. Several therapeutic anti-CD22 antibodies as well as an anti-CD22-based immunotoxin (HA22) are currently under investigation in clinical settings. Coupling of anti-CD22 reagents with a nano-drug delivery vehicle is projected to significantly improve treatment efficacies. Therefore, we generated a mutant of the targeting segment of HA22 (a CD22 scFv) to increase its soluble expression (mut-HA22), and conjugated it to the surface of sonicated liposomes to generate immunoliposomes (mut-HA22-liposomes). We examined liposome binding and uptake by CD22(+) B-lymphocytes (BJAB) by using calcein and/or rhodamine PE-labeled liposomes. We also tested the effect of targeting on cellular toxicity with doxorubicin-loaded liposomes. We report that: (i) Binding of mut-HA22-liposomes to BJAB cells was significantly greater than liposomes not conjugated with mut-HA22 (control liposomes), and mut-HA22-liposomes bind to and are taken in by BJAB cells in a dose and temperature-dependent manner, respectively; (ii) This binding occurred via the interaction with the cellular CD22 as pre-incubation of the cells with mut-HA22 blocked subsequent liposome binding; (iii) Intracellular localization of mut-HA22-liposomes at 37 degrees C but not at 4 degrees C indicated that our targeted liposomes were taken up through an energy dependent process via receptor-mediated endocytosis; and (iv) Mut-HA22-liposomes loaded with doxorubicin exhibited at least 2-3 fold more accumulation of doxorubicin in BJAB cells as compared to control liposomes. Moreover, these liposomes showed at least a 2-4 fold enhanced killing of BJAB or Raji cells (CD22(+)), but not SUP-T1 cells (CD22(-)). Taken together these data suggest that these 2nd-generation liposomes may serve as promising carriers for targeted drug delivery to treat patients suffering from B-cell lymphoma.
Collapse
Affiliation(s)
- Kristin Loomis
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Soussan E, Mille C, Blanzat M, Bordat P, Rico-Lattes I. Sugar-derived tricatenar catanionic surfactant: synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:2326-2330. [PMID: 18269294 DOI: 10.1021/la702171s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new sugar-derived tricatenar catanionic surfactant (TriCat) was developed to obtain stable vesicles that could be exploited for drug encapsulation. The presence of the sugar moiety led to the formation of highly hydrophilic stoichiometric catanionic surfactant systems. The three hydrophobic chains permitted vesicles to form spontaneously. The self-assembly properties (morphology, size, and stability) of TriCat were examined in water and in buffer solution. Encapsulation studies of a hydrophilic probe, arbutin, commonly used in cosmetics for its whitening properties, were performed to check the impermeability of the vesicle bilayer. The enhancement of hydrophobic forces by the three chains of TriCat prevented surfactant equilibrium between the bilayer and the solution and enabled the probe to be retained in the aqueous cavity of the vesicles for at least 30 h. Thus, the present study suggests that this tricatenar catanionic surfactant could be a promising delivery system for hydrophilic drugs.
Collapse
Affiliation(s)
- Elodie Soussan
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR CNRS 5623, Université Paul Sabatier, 31062 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
20
|
Suzuki H, Hamamura JY, Katsuda T, Komoda Y, Katoh S, Usui H. Size Characteristics of Liposomes Formed in a Micro-Tube. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2008. [DOI: 10.1252/jcej.07we307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroshi Suzuki
- Department of Chemical Science and Engineering, Kobe University
| | - Jun-ya Hamamura
- Department of Chemical Science and Engineering, Kobe University
| | | | | | - Sigeo Katoh
- Department of Chemical Science and Engineering, Kobe University
| | - Hiromoto Usui
- Department of Chemical Science and Engineering, Kobe University
| |
Collapse
|
21
|
Puri A, Kramer-Marek G, Campbell-Massa R, Yavlovich A, Tele SC, Lee SB, Clogston JD, Patri AK, Blumenthal R, Capala J. HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res 2008; 18:293-307. [PMID: 18937120 PMCID: PMC3398707 DOI: 10.1080/08982100802457377] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (Z(HER2:342)-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as "Affisomes" were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80-100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41 degrees C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16-20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4-12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were approximately 70% at a protein-lipid ratio of 20 microg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, lambdaex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90-100%) at 41 degrees C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm approximately 0 degrees C) under similar conditions released only 5-10% calcein at 41 degrees C. Affisomes, when stored at room temperature, retained > 90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.
Collapse
Affiliation(s)
- Anu Puri
- CCR Nanobiology Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Solanki AB, Parikh JR, Parikh RH. Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level Box-Behnken design. AAPS PharmSciTech 2007; 8:E86. [PMID: 18181547 PMCID: PMC2750377 DOI: 10.1208/pt0804086] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Accepted: 12/14/2006] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the combined influence of 3 independent variables in the preparation of piroxicam proniosomes by the slurry method. A 3-factor, 3-level Box-Behnken design was used to derive a second-order polynomial equation and construct contour plots to predict responses. The independent variables selected were molar ratio of Span 60:cholesterol (X(1)), surfactant loading (X(2)), and amount of drug (X(3)). Fifteen batches were prepared by the slurry method and evaluated for percentage drug entrapment (PDE) and vesicle size. The transformed values of the independent variables and the PDE (dependent variable) were subjected to multiple regression to establish a full-model second-order polynomial equation. F was calculated to confirm the omission of insignificant terms from the full-model equation to derive a reduced-model polynomial equation to predict the PDE of proniosome-derived niosomes. Contour plots were constructed to show the effects of X(1), X(2) and X(3) on the PDE. A model was validated for accurate prediction of the PDE by performing checkpoint analysis. The computer optimization process and contour plots predicted the levels of independent variables X(1), X(2), and X(3) (0, -0.158 and -0.158 respectively), for maximized response of PDE with constraints on vesicle size. The Box-Behnken design demonstrated the role of the derived equation and contour plots in predicting the values of dependent variables for the preparation and optimization of piroxicam proniosomes.
Collapse
Affiliation(s)
- Ajay B Solanki
- Department of Pharmaceutics and Pharmaceutical Technology, A. R. College of Pharmacy & G. H. Patel Institute of Pharmacy, Vallabh Vidyanagar 388 120, Gujarat, India.
| | | | | |
Collapse
|
23
|
Abnormal behaviors of 3-nonylphenoxy-2-hydroxyl-propyl-trimethyl-ammonium bromide surfactant at the interface of air–alkaline aqueous solution. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2007.04.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Zhu J, Xue J, Guo Z, Marchant RE. Vesicle size and stability of biomimetic liposomes from 3'-sulfo-Lewis a (SuLea) containing glycolipids. Colloids Surf B Biointerfaces 2007; 58:242-9. [PMID: 17499486 PMCID: PMC2041829 DOI: 10.1016/j.colsurfb.2007.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/14/2007] [Accepted: 03/19/2007] [Indexed: 02/08/2023]
Abstract
We report on the use of a natural Lewis type saccharide ligand, 3'-sulfo-Lewis a (SuLe(a)) for glycocalyx-mimetic surface modification of liposomes. Two SuLe(a)-containing glycolipids, monovalent SuLe(a)-lipid and trivalent SuLe(a) (TSuLe(a))-lipid, were synthesized, and used with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol to prepare unilaminar vesicles (ULVs) by a freeze-thaw and extrusion method. The effects of the glycolipid concentrations and the pore sizes of extrusion membranes on vesicle size and stability were investigated by photon correlation spectroscopy (PCS). Glycoliposomes, with 5% SuLe(a)- or TSuLe(a)-lipids obtained by 50 nm extrusion, had 25-30% more vesicles less than 100 nm in diameter compared with the 100 nm extrusion. TSuLe(a)-liposomes always produced larger vesicle size than SuLe(a)-liposomes, which we attribute to the larger TSuLe(a) headgroup. Both SuLe(a)- and TSuLe(a)-liposomes increased their vesicle size with increasing glycolipid concentration from 5% to 15%, and demonstrated good stability at room temperature for over 1 month. Further increasing the glycolipid concentration to 20% resulted in large vesicle aggregation after 5 days for TSuLe(a)-liposomes, while the SuLe(a)-liposomes remained stable for 10 days. SuLe(a)- and TSuLe(a)-liposomes with 15% glycolipids demonstrated better stability due to the electrostatic effect from the negatively charged SuLe(a) and TSuLe(a) headgroups. The results indicate that the biomimetic liposomes with SuLe(a)- and TSuLe(a)-lipids with 5 to 15% incorporation are sufficiently stable for the potential applications in targeted drug delivery.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Jie Xue
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Roger E. Marchant
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
25
|
Garg M, Dutta T, Jain NK. Stability study of stavudine-loaded O-palmitoyl-anchored carbohydrate-coated liposomes. AAPS PharmSciTech 2007; 8:Article 38. [PMID: 17622116 DOI: 10.1208/pt0802038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to evaluate the physicochemical stability of carbohydrate-anchored liposomes. In the present study, carbohydrate (galactose, fucose, and mannose) was palmitoylated and anchored on the surface of positively charged liposomes (PL). The stabilities of plain neutral liposomes (NL), PL, and O-palmitoyl carbohydrate-anchored liposomes were determined. The effects of storage conditions (4 degrees C +/- 2 degrees C, 25 degrees C +/- 2 degrees C/60% +/- 5% relative humidity [RH], or 40 degrees C +/- 2 degrees C/75% +/- 5% RH for a period of 10, 20, and 30 days) were observed on the vesicle size, shape, zeta potential, drug content, and in vitro ligand agglutination assay by keeping the liposomal formulations in sealed amber-colored vials (10-mL capacity) after flushing with nitrogen. The stability of liposomal formulations was found to be temperature dependent. All the liposomal formulations were found to be stable at 4 degrees C +/- 2 degrees C up to 1 month. Storage at 25 degrees C +/- 2 degrees C/60% +/- 5% RH and 40 degrees C +/- 2 degrees C/75% +/- 5% RH adversely affected uncoated liposomal formulations. Carbohydrate coating of the liposomes could enhance the stability of liposomes at 25 degrees C +/- 2 degrees C/60% +/- 5% RH and 40 degrees C +/- 2 degrees C/75% +/- 5% RH.
Collapse
Affiliation(s)
- Minakshi Garg
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr Hari Singh Gour University, Sagar, MP, India.
| | | | | |
Collapse
|
26
|
Segota S, Tezak D. Spontaneous formation of vesicles. Adv Colloid Interface Sci 2006; 121:51-75. [PMID: 16769012 DOI: 10.1016/j.cis.2006.01.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
his review highlights the relevant issues of spontaneous formation of vesicles. Both the common characteristics and the differences between liposomes and vesicles are given. The basic concept of the molecular packing parameter as a precondition of vesicles formation is discussed in terms of geometrical factors, including the volume and critical length of the amphiphile hydrocarbon chain. According to theoretical considerations, the formation of vesicles occurs in the systems with packing parameters between 1/2 and 1. Using common as well as new methods of vesicle preparation, a variety of structures is described, and their nomenclature is given. With respect to sizes, shapes and inner structures, vesicles structures can be formed as a result of self-organisation of curved bilayers into unilamellar and multilamellar closed soft particles. Small, large and giant uni-, oligo-, or multilamellar vesicles can be distinguished. Techniques for determination of the structure and properties of vesicles are described as visual observations by optical and electron microscopy as well as the scattering techniques, notably dynamic light scattering, small angle X-ray and neutron scattering. Some theoretical aspects are described in short, viz., the scattering and the inverse scattering problem, angular and time dependence of the scattering intensity, the principles of indirect Fourier transformation, and the determination of electron density of the system by deconvolution of p(r) function. Spontaneous formation of vesicles was mainly investigated in catanionic mixtures. A number of references are given in the review.
Collapse
Affiliation(s)
- Suzana Segota
- Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, P.O. Box 163, 10001 Zagreb, Croatia
| | | |
Collapse
|