1
|
Dar AI, Randhawa S, Verma M, Saini TC, Acharya A. Debugging the dynamics of protein corona: Formation, composition, challenges, and applications at the nano-bio interface. Adv Colloid Interface Sci 2025; 342:103535. [PMID: 40319752 DOI: 10.1016/j.cis.2025.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The intricate interplay between nanomaterials and the biological molecules has garnered considerable interest in understanding the dynamics of protein corona formation at the nano-bio interface. This review provides an in-depth exploration of protein-nanoparticle interactions, elucidating their structural dynamics and thermodynamics at the nano-Bio interface and further on emphasizing its formation, composition, challenges, and applications in the biomedical and nanotechnological domains, such as drug delivery, theranostics, and the translational medicine. We delve the nuanced mechanisms governing protein corona formation on nanoparticle surfaces, highlighting the influence of nanoparticle and biological factors, and review the impact of corona formation on the biological identity and functionality of nanoparticles. Notably, emerging applications of artificial intelligence and machine learning have begun to revolutionize this field, enabling accurate prediction of corona composition and related biological outcomes. These tools not only enhance efficiency over traditional experimental methods but also help decode complex protein-nanoparticle interaction patterns, offering new insights into corona-driven cellular responses and disease diagnostics. Additionally, it discusses recent advancements in the field of protein corona, particularly in translational nanomedicine and associated applications entailing current and future strategies which are aimed at mitigating the adverse effects of protein-nanoparticle interactions at the biological interface, for tailoring the protein coronas by engineering of the nanomaterials. This comprehensive assessment from chemical, technological, and biological aspects serves as a guiding beacon for the development of future nanomedicine, enabling the more effective emulation of the biological milieu and the design of protein-NP systems for enhanced biomedical applications.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Bhandarkar SV, Agrawal S, Salunkhe RB, Putta A, Tiwari S. Comparative Analysis of Bare and Quercetin-Loaded Nonionic Block Copolymer Micelles in an Artificial Gastrointestinal Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39564952 DOI: 10.1021/acs.langmuir.4c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Block copolymer micelles have been increasingly used for the solubilization and delivery of hydrophobic drugs. There exists a possibility of dissociation of micelles and formation of other association structures in contact with the gastrointestinal fluid. In this study, we demonstrated the effect of the fed-state intestinal fluid (FeSSIF) upon characteristics of bare and quercetin (QCT)-loaded pluronic 123 (P123) micelles. Characterizations were performed using dynamic light scattering (DLS), 1H NMR, heteronuclear single-quantum coherence (HSQC), two-dimensional 1H-1H nuclear Overhauser effect spectroscopy (2D-NOESY), and diffusion-ordered spectroscopy (DOSY). In the case of bare micelles, we found copolymer-bile salt mixed aggregates without any noticeable change in size. DOSY data revealed that lecithin formed a separate aggregate in the FeSSIF. Complete micellar solubilization of QCT could be verified by the disappearance of its proton signals. At higher dose levels, the diffusion coefficient of micelles increased in the FeSSIF. We speculate that QCT-induced hydrophobicity and availability of FeSSIF components would have driven the formation of small-sized mixed assemblies. On the contrary, the diffusion coefficient of micelles decreased with an increase in the QCT load in the medium devoid of FeSSIF components. We deduce that lack of lecithin and bile salts precluded the formation of mixed assemblies in this case, and therefore, micelles turned heavier at higher QCT loads. Such insights on self-assembled formulations can be valuable in improving their biological performance.
Collapse
Affiliation(s)
- Sagar V Bhandarkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow 226002, India
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow 226002, India
| | - Rohit B Salunkhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow 226002, India
| | - Anjaneyulu Putta
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow 226002, India
| |
Collapse
|
3
|
Kihara S, Aljabbari A, Bērziņš K, Krog LS, Mota-Santiago P, Terry A, Kirby N, Whitten AE, Boyd BJ. The "gut" corona at the surface of nanoparticles is dependent on exposure to bile salts and phospholipids. J Colloid Interface Sci 2024; 680:797-807. [PMID: 39591792 DOI: 10.1016/j.jcis.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
HYPOTHESIS The formation of a biomolecular corona on nanoparticle surfaces significantly influences their biological behaviour, particularly in drug delivery applications. Despite the prevalence of ingestion of particles (e.g, during oral drug delivery), our understanding of corona formation within the gastrointestinal (GI) tract remains limited, especially for non-protein components. The hypothesis of this work is that the exposure of nanoparticles to bile components will form a "corona" structure and protein corona will represent proteomes different from the original bile fluid. Two major aspects of biomolecular corona formed in GI fluid (hereby termed "gut corona), which ultimately dictate the fate of particle-based carriers, include the composition and the surface structure of nanoparticle-corona complex. EXPERIMENTS The structure and composition of the biomolecular corona formed on model SiO2 nanoparticles within simulated and extracted bile fluids were determined using small-angle scattering, quantification assays, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques. FINDINGS The formation of raspberry-like structures was identified, with bile micelles adopting ellipsoidal shapes around the nanoparticles, as opposed to a surface covered with a uniform corona (i.e., core-shell structure). Assay quantification and proteomics experiments revealed a notable increase in the ratio of protein to bile salt within the corona compared to the original bile fluid. The composition of the proteome differed between the bovine bile and the protein corona with only 34 proteins associated with the nanoparticles from the top 100 identified in bovine bile. Despite the differences in protein types identified between bovine bile and gut corona, the proportions of protein between different functional classes, such as enzymes and structural proteins, show little variation. This work elucidates the intricate interactions between nanoparticles and gut molecules, offering insights crucial for designing nanoparticle formulations for optimized oral drug delivery and understanding nanoparticle behaviour within the GI tract.
Collapse
Affiliation(s)
- Shinji Kihara
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Kārlis Bērziņš
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Lasse S Krog
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | | | - Ann Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Nigel Kirby
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Chen C, Alfredo YY, Lee YY, Tan CP, Wang Y, Qiu C. Physicochemical and biological characterization of the lipid particles with bovine serum albumin corona. Int J Biol Macromol 2024; 281:136223. [PMID: 39366617 DOI: 10.1016/j.ijbiomac.2024.136223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Diacylglycerol-based nanoparticles are promising bioactive delivery systems. However, limited understanding of their interaction with biological entities restricts their clinical use. This study investigated the protein corona formed on medium and long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (NPs) modified by Polyoxethylene stearate (PEG) and compared to glyceryl tristearate (TG) and cetyl palmitate (CP) nanoparticles. Bovine serum albumin (BSA) formed corona with MLCD NPs through hydrophobic interactions and hydrogen bonding, contributing to a decrease in α-helix, an increase in β-sheet and a change in the microenvironment of Tyr residues. Owing to higher lipid hydrophilicity, MLCD NPs showed a much lower affinity for BSA than TG and CP NPs, and the binding constant with BSA was increased for larger NPs. PEG modification and the protein corona reduced the uptake of NPs by macrophages but exerted little influence on B16 cell. Among the NPs with different lipid core, the MLCD NPs showed a lower macrophages cell uptake but higher B16 cell uptake, suggesting a longer circulation time in blood but higher cancer cell internalization. This work shed light on the interactions between MLCD NPs and proteins, which is significant for application as nanocarriers with improved biological efficacy.
Collapse
Affiliation(s)
- Canfeng Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Ye Alfredo
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Wu H, Li CS, Tang XR, Guo Y, Tang H, Cao A, Wang H. Impact of calcium ions at physiological concentrations on the adsorption behavior of proteins on silica nanoparticles. J Colloid Interface Sci 2024; 656:35-46. [PMID: 37984169 DOI: 10.1016/j.jcis.2023.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
The adsorption of proteins on nanoparticles (NPs) largely decides the fate and bioeffects of NPs in vivo. However, bio-fluids are too complicated to directly study in them to reveal related mechanisms, and current studies on model systems often ignore some important biological factors, such as metal ions. Herein, we evaluate the effect of Ca2+ at physiological concentrations on the protein adsorption on negatively-charged silica NP (SNP50). It is found that Ca2+, as well as Mg2+ and several transition metal ions, significantly enhances the adsorption of negatively-charged proteins on SNP50. Moreover, the Ca2+-induced enhancement of protein adsorption leads to the reduced uptake of SNP50 by HeLa cells. A double-chelating mechanism is proposed for the enhanced adsorption of negatively-charged proteins by multivalent metal ions that can form 6 (or more) coordinate bonds, where the metal ions are chelated by both the surface groups of NPs and the surface residues of the adsorbed proteins. This mechanism is consistent with all experimental evidences from metal ions-induced changes of physicochemical properties of NPs to protein adsorption isotherms, and is validated with several model proteins as well as complicated serum. The findings highlight the importance of investigating the influences of physiological factors on the interaction between proteins and NPs.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chen-Si Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xue-Rui Tang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan Guo
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Huan Tang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Aricov L, Precupas A, Tudose M, Baltag D, Trică B, Sandu R, Leonties AR. Trametes versicolor laccase activity modulated by the interaction with gold nanoparticles. ENVIRONMENTAL RESEARCH 2023; 237:116920. [PMID: 37597828 DOI: 10.1016/j.envres.2023.116920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
In this study, the impact of gold nanoparticles (AuNPs) on the structure and activity of laccase from Trametes versicolor (Lc) was described. Fluorescence experiments revealed that AuNPs efficiently quench Lc's tryptophan fluorescence by a static and dynamic process. By using differential scanning microcalorimetry and circular dichroism spectroscopy, it was determined how the concentration of nanoparticles and the composition of the medium affected the secondary structure of Lc. The data revealed that upon binding with AuNPs, conformational changes take place mainly in presence of high amounts of nanoparticles. The complex kinetic analysis unveiled the Lc activity enhancement at low concentrations of AuNPs as opposed to the concentrated regime, where it can be reduced by up to 55%. The Michaelis-Menten tests highlighted that the activity of the biocatalyst is closely related to the concentration of AuNPs, while the Selwyn analysis demonstrated that even in a concentrated regime of Lc it is not deactivated regardless of the amount of AuNPs added. The thermal parameters improved by twofold in the presence of low AuNPs concentration, whereas the activation energy increased with AuNPs content, implying that not all collisions are beneficial to the enzyme structure. The effect of AuNPs on the decomposition of a recalcitrant dye (naphthol green B, NG) by Lc was also evaluated, and the Michaelis-Menten model revealed that only the high AuNPs content influenced negatively the Lc activity. The isothermal titration calorimetry revealed that hydrogen bonds are the main intermolecular forces between Lc and AuNPs, while electrostatic interactions are responsible for NG adsorption to AuNPs. The results of the docking analysis show the binding of NG near the copper T1 site of Lc with hydrogen bonds, electrostatic and hydrophobic interactions. The findings of this work provide important knowledge for laccase-based bio-nanoconjugates and their use in the field of environmental remediation.
Collapse
Affiliation(s)
- Ludmila Aricov
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Aurica Precupas
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania.
| | - Madalina Tudose
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Dragos Baltag
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Elisabeta 4-12, 030018, Bucharest, Romania; National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Romica Sandu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Anca Ruxandra Leonties
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania.
| |
Collapse
|
7
|
Yan Y, Liu Y, Zeng C, Xia H. Effect of Digestion on Ursolic Acid Self-Stabilized Water-in-Oil Emulsion: Role of Bile Salts. Foods 2023; 12:3657. [PMID: 37835309 PMCID: PMC10572770 DOI: 10.3390/foods12193657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Exploring the effect of bile salts on the properties of emulsion carriers containing hydrophobic bioactive compounds is particularly critical to understanding the stability and bioavailability of these hydrophobic bioactive compounds in the digestive process. In this study, the effects of bile salts on the stability and digestive characteristics of the ursolic acid (UA) self-stabilized water-in-oil (W/O) emulsion were investigated via static and dynamic (with or without enzyme) in vitro simulated digestive systems. The results showed that under the static system, the basic conditions had less interference, while the bile salts had a significant effect on the appearance and microstructure of the emulsion. The primary mechanism of emulsion instability is hydrophobic binding and depletion flocculation. Under the dynamic condition, it was found that the low concentrations of bile salts can promote the release amount and the rate of free fatty acids via displacement, while high concentrations of bile salts inhibit the decomposition of lipid, which may be related to the secondary coverage formed at the interface by the bile salts. These findings provide a theoretical basis for understanding the digestive behavior of the UA emulsion and its interaction with bile salts, which are conducive to developing and designing new emulsions to improve the bioaccessibility of UA.
Collapse
Affiliation(s)
- Yumeng Yan
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (Y.Y.); (Y.L.); (C.Z.)
- Department of Food Science and Technology, College of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Yugang Liu
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (Y.Y.); (Y.L.); (C.Z.)
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (Y.Y.); (Y.L.); (C.Z.)
| | - Huiping Xia
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha 410128, China; (Y.Y.); (Y.L.); (C.Z.)
| |
Collapse
|
8
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Pigliacelli C, Belton P, Wilde P, Bombelli FB, Kroon PA, Winterbone MS, Qi S. Interaction of polymers with bile salts - Impact on solubilisation and absorption of poorly water-soluble drugs. Colloids Surf B Biointerfaces 2023; 222:113044. [PMID: 36436403 DOI: 10.1016/j.colsurfb.2022.113044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Formulating poorly soluble drugs with polymers in the form of solid dispersions has been widely used for improving drug dissolution. Endogenous surface-active species present in the gut, such as bile salts, lecithin and other phospholipids, have been shown to play a key role in facilitating lipids and poorly soluble drugs solubilisation in the gut. In this study, we examined the possible occurrence of interactions between a model bile salt, sodium taurocholate (NaTC), and model spray dried solid dispersions comprising piroxicam and Hydroxypropyl Methylcellulose (HPMC), a commonly used hydrophilic polymer for solid dispersion preparation. Solubility measurements revealed the good solubilisation effect of NaTC on the crystalline drug, which was enhanced by the addition of HPMC, and further boosted by the drug formulation into solid dispersion. The colloidal behaviour of the solid dispersions upon dissolution in biorelevant media, with and without NaTC, revealed the formation of NaTC-HPMC complexes and other mixed colloidal species. Cellular level drug absorption studies obtained using Caco-2 monolayers confirmed that the combination of drug being delivered by solid dispersion and the presence of bile salt and lecithin significantly contributed to the improved drug absorption. Together with the role of NaTC-HPMC complexes in assisting the drug solubilisation, our results also highlight the complex interplay between bile salts, excipients and drug absorption.
Collapse
Affiliation(s)
- Claudia Pigliacelli
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Peter Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Francesca Baldelli Bombelli
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Mark S Winterbone
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
10
|
Shao Z, Su J, Dong J, Liang M, Xiao J, Liu J, Zeng Q, Li Y, Huang W, Chen C. Aggregation kinetics of polystyrene nanoplastics in gastric environments: Effects of plastic properties, solution conditions, and gastric constituents. ENVIRONMENT INTERNATIONAL 2022; 170:107628. [PMID: 36395559 DOI: 10.1016/j.envint.2022.107628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Nanoplastics are inevitably ingested into human gastric environment, wherein their aggregation kinetics and interactions with gastric constituents remain unclear. This study investigated the early-stage (20 min) and long-term (1-6 h) aggregation kinetics of four commonly-found polystyrene nanoplastics (PSNPs) including NP100 (100-nm), A-NP100 (100-nm, amino-modified), C-NP100 (100-nm, carboxyl-modified), and NP500 (500-nm) under gastric conditions. Five simulated human gastric fluids (SGFs) including SGF1-3 (0-3.2 g/L pepsin and 34.2 mM NaCl), SGF4 (400 mM glycine), and SGF5 (nine constituents), three pH (2, fasted state; 3.5, late-fed state; and 5, early-fed state), and 1-100 mg/L PSNPs were examined. Aggregation rates ranked NP100 > A-NP100 ≈ C-NP100 > NP500, SGF5 > SGF4 > SGF3 > SGF2 > SGF1, and pH 2 > 3.5 > 5. Increasing PSNP concentration enhanced aggregation rate up to 13.82 nm/s. Aggregation behavior generally followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Pepsin, glycine, and proteose-peptone strongly influenced PSNP stability via electrostatic interaction and steric hindrance imparted by protein corona. Freundlich isotherm suggested that PSNPs adsorbed organic constituents following lysozyme > porcine bile > proteose-peptone > pepsin > glycine > D-glucose, inducing changes in constituent structure and PSNP properties. These findings provide insights on the transport of nanoplastics in the gastric environments.
Collapse
Affiliation(s)
- Zhiwei Shao
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiana Su
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiawei Dong
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Miaoting Liang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jie Xiao
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jindie Liu
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Qiaoyun Zeng
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
11
|
Gao K, Liu Y, Liu T, Song X, Ruan R, Feng S, Wang X, Cui X. OSA improved the stability and applicability of emulsions prepared with enzymatically hydrolyzed pomelo peel insoluble fiber. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li X, Guo W, Xu R, Song Z, Ni T. The interaction mechanism between gold nanoparticles and proteins: Lysozyme, trypsin, pepsin, γ-globulin, and hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120983. [PMID: 35149482 DOI: 10.1016/j.saa.2022.120983] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In this study, the interaction between gold nanoparticles (AuNPs) and proteins (including lysozyme, trypsin, pepsin, γ-globulin and hemoglobin) was investigated by UV-visible absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and protein activity assay. AuNPs was synthesized using reduction of HAuCl4 with sodium citrate. The formation of AuNPs was confirmed from the characteristic surface plasmon resonance band at 521 nm and transmission electron microscopy revealed the average particle size was about 10 nm. The results reveal that AuNPs can interact with proteins to form a "protein corona (PC)", but the protein concentration required to form a relatively stable PC is not the same. The quenching mechanism of proteins by AuNPs is arisen from static quenching. The binding constants of AuNPs with proteins are in the range from 106 to 1010 L mol-1, and the order is pepsin > γ-globulin > hemoglobin > trypsin > lysozyme at 298 K. Van der Waals forces and hydrogen bonds are the main forces for the lysozyme-AuNPs system. The interaction between trypsin/pepsin/γ-globulin/hemoglobin and AuNPs is mainly by hydrophobic interaction. The addition of AuNPs has an effect on the secondary structure of proteins as confirmed from CD spectra. The change in secondary structure of different proteins is different and seems to have little relation with the binding constant. The activity of lysozyme/trypsin/pepsin decreases with the addition of AuNPs.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Wei Guo
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhizhi Song
- Grade 2020, Clinical Medicine, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Tianjun Ni
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
13
|
Benbow NL, Rozenberga L, McQuillan AJ, Krasowska M, Beattie DA. ATR FTIR Study of the Interaction of TiO 2 Nanoparticle Films with β-Lactoglobulin and Bile Salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13278-13290. [PMID: 34731567 DOI: 10.1021/acs.langmuir.1c01830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The technique of in situ particle film attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) has been used to probe the adsorption and coadsorption (sequential) of a common food protein (β-lactoglobulin, BLG) and two representative bile salts (taurocholic acid and glycocholic acid, abbreviated as TCA and GCA) onto the surface of titanium dioxide (TiO2) nanoparticles. Evaluating of binding interactions between commonly used (historically now, in some countries) food additives and food components, as well as the body's own digestion chemicals, is a critical step in understanding the role of colloidal phenomena in digestion and bioavailability. TCA is found to adsorb onto TiO2 but without any significant ability to be retained when it is not present in the aqueous phase. GCA is also found to adsorb via two distinct binding mechanisms, with one type of adsorbed species being resistant to removal. BLG adsorbs, is irreversibly bound, and has altered conformation when adsorbed at pH 2 (stomach conditions) to the conformation when adsorbed at pH 6.5 (small intestine conditions). This altered conformation is not interface-dependent and is mirrored in the solution spectra of BLG. Sequential coadsorption studies indicate that TCA and GCA adsorb onto TiO2 nanoparticle surfaces and display similar degrees of reversibility and binding in the presence or absence of preadsorbed BLG.
Collapse
Affiliation(s)
- N L Benbow
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - L Rozenberga
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - A James McQuillan
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - M Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - D A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
14
|
Huang W, Xiao G, Zhang Y, Min W. Research progress and application opportunities of nanoparticle-protein corona complexes. Biomed Pharmacother 2021; 139:111541. [PMID: 33848776 DOI: 10.1016/j.biopha.2021.111541] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles (NPs) can be used to design for nanomedicines with different chemical surface properties owing to their size advantages and the capacity of specific delivery to targeted sites in organisms. The discovery of the presence of protein corona (PC) has changed our classical view of NPs, stimulating researchers to investigate the in vivo fate of NPs as they enter biological systems. Both NPs and PC have their specificity but complement each other, so they should be considered as a whole. The formation and characterization of NP-PC complexes provide new insights into the design, functionalization, and application of nanocarriers. Based on progress of recent researches, we reviewed the formation, characterization, and composition of the PC, and introduced those critical factors influencing PC, simultaneously expound the effect of PC on the biological function of NPs. Especially we put forward the opportunities and challenges when NP-PC as a novel nano-drug carrier for targeted applications. Furthermore, we discussed the pros versus cons of the PC, as well as how to make better PC in the future application of NPs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacy, The First People's Hospital of Jiande, Jiande 311600, China; Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Gao Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Yujuan Zhang
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China.
| | - Weiping Min
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
15
|
Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102277. [DOI: 10.1016/j.nano.2020.102277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
|
16
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Laloux L, Kastrati D, Cambier S, Gutleb AC, Schneider YJ. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907687. [PMID: 32187880 DOI: 10.1002/smll.201907687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are used in the agri-food sector, which can lead to their ingestion. Their interaction with food and their passage through the gastrointestinal tract can alter their properties and influence their fate upon ingestion. Therefore, this study aims at developing an in vitro method to follow the fate of AgNPs in the gastrointestinal tract. After incorporation of AgNPs into a standardized food matrix, a precolonic digestion is simulated and AgNPs are characterized by different techniques. The presence of food influences the AgNPs properties by forming a corona around nanoparticles. Even if the salivary step does not impact significantly the AgNPs, the pH decrease and the digestive enzymes induce the agglomeration of AgNPs during the gastric phase, while the addition of intestinal fluids disintegrates these clusters. AgNPs can thus reach the intestinal cells under nanometric form, although the presence of food and gastrointestinal fluids modifies their properties compared to pristine AgNPs. They can form a corona around the nanoparticles and act as colloidal stabilizer, which can impact the interaction of AgNPs with intestinal epithelium. This study demonstrates the importance of taking the fate of AgNPs in the gastrointestinal tract into account to perform an accurate risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Laurie Laloux
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Donika Kastrati
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Yves-Jacques Schneider
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| |
Collapse
|
18
|
Kuschnerus I, Lau M, Giri K, Bedford N, Biazik J, Ruan J, Garcia-Bennett A. Effect of a protein corona on the fibrinogen induced cellular oxidative stress of gold nanoparticles. NANOSCALE 2020; 12:5898-5905. [PMID: 32104861 DOI: 10.1039/d0nr00371a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The protein corona of nanoparticles is becoming a tool to understand the relation between intrinsic physicochemical properties and extrinsic biological behaviour. A diverse set of characterisation techniques such as transmission electron microscopy, mass spectrometry, dynamic light scattering, zeta-potential measurements and surface enhanced Raman spectroscopy are used to determine the composition and physical properties of the soft and hard corona formed around spherical gold nanoparticles. Advanced characterisation via small angle X-ray scattering and cryo-transmission electron microscopy suggests the presence of a thin hard corona of a few nm on 50 nm gold nanoparticles. The protein corona does not cause changes in cell viability, but inhibits the generation of reactive oxygen species in microglia cells. When a pre-incubated layer of fibrinogen, a protein with high affinity for the gold surface, is present around the nanoparticles before a protein corona is formed in bovine serum, the cellular uptake is significantly increased with an inhibition of ROS. The selective sequential pre-formation of protein complexes prior to incubation in cells is demonstrated as a viable method to alter the biological behaviour of nanoparticles.
Collapse
Affiliation(s)
- Inga Kuschnerus
- Dpt. Molecular Sciences, Macquarie University, Sydney, NSW, Australia. and Centre for Nanoscale and BioPhotonics, Macquarie University, Sydney, NSW, Australia
| | - Michael Lau
- Dpt. Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Kalpeshkumar Giri
- Dpt. Molecular Sciences, Macquarie University, Sydney, NSW, Australia. and Centre for Nanoscale and BioPhotonics, Macquarie University, Sydney, NSW, Australia
| | - Nicholas Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Joanna Biazik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Juanfang Ruan
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Alfonso Garcia-Bennett
- Dpt. Molecular Sciences, Macquarie University, Sydney, NSW, Australia. and Centre for Nanoscale and BioPhotonics, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
19
|
Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J. Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci 2019; 274:102045. [PMID: 31689682 DOI: 10.1016/j.cis.2019.102045] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022]
Abstract
Because of their unusual chemical structure, bile salts (BS) play a fundamental role in intestinal lipid digestion and transport. BS have a planar arrangement of hydrophobic and hydrophilic moieties, which enables the BS molecules to form peculiar self-assembled structures in aqueous solutions. This molecular arrangement also has an influence on specific interactions of BS with lipid molecules and other compounds of ingested food and digestive media. Those comprise the complex scenario in which lipolysis occurs. In this review, we discuss the BS synthesis, composition, bulk interactions and mode of action during lipid digestion and transport. We look specifically into surfactant-related functions of BS that affect lipolysis, such as interactions with dietary fibre and emulsifiers, the interfacial activity in facilitating lipase and colipase anchoring to the lipid substrate interface, and finally the role of BS in the intestinal transport of lipids. Unravelling the roles of BS in the processing of lipids in the gastrointestinal tract requires a detailed analysis of their interactions with different compounds. We provide an update on the most recent findings concerning two areas of BS involvement: lipolysis and intestinal transport. We first explore the interactions of BS with various dietary fibres and food emulsifiers in bulk and at interfaces, as these appear to be key aspects for understanding interactions with digestive media. Next, we explore the interactions of BS with components of the intestinal digestion environment, and the role of BS in displacing material from the oil-water interface and facilitating adsorption of lipase. We look into the process of desorption, solubilisation of lipolysis, products and formation of mixed micelles. Finally, the BS-driven interactions of colloidal particles with the small intestinal mucus layer are considered, providing new findings for the overall assessment of the role of BS in lipid digestion and intestinal transport. This review offers a unique compilation of well-established and most recent studies dealing with the interactions of BS with food emulsifiers, nanoparticles and dietary fibre, as well as with the luminal compounds of the gut, such as lipase-colipase, triglycerides and intestinal mucus. The combined analysis of these complex interactions may provide crucial information on the pattern and extent of lipid digestion. Such knowledge is important for controlling the uptake of dietary lipids or lipophilic pharmaceuticals in the gastrointestinal tract through the engineering of novel food structures or colloidal drug-delivery systems.
Collapse
|
20
|
Pigliacelli C, Belton P, Wilde P, Qi S. Probing the molecular interactions between pharmaceutical polymeric carriers and bile salts in simulated gastrointestinal fluids using NMR spectroscopy. J Colloid Interface Sci 2019; 551:147-154. [PMID: 31075629 DOI: 10.1016/j.jcis.2019.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/04/2023]
Abstract
The number of poorly soluble new drugs is increasing and one of the effective ways to deliver such pharmaceutically active molecules is using hydrophilic polymers to form a solid dispersion. Bile salts play an important role in the solubilisation of poorly soluble compounds in the gastrointestinal tract (gut) prior to absorption. When a poorly water-soluble drug is delivered using a hydrophilic polymer based solid dispersion oral formulation, it is still unclear whether there are any polymer-bile salt interactions, which may influence the drug dissolution and solubilisation. This study, using two widely used hydrophilic model polymers, Hydroxypropyl methylcellulose (HPMC) and polyvynilpirrolidone (PVP), and sodium taurocholate (NaTC) as the model bile salt, aims to investigate the interactions between the polymers and bile salts in simulated fed state (FeSSIF) and fasted state (FaSSIF) gut fluids. The nature of the interactions was characterised using a range of NMR techniques. The results revealed that the aggregation behaviour of NaTC in FaSSIF and FeSSIF is much more complex than in water. The addition of hydrophilic polymers led to the occurrences of NaTC-HPMC and NaTC-PVP aggregation. For both systems, pH and ionic strength strongly influenced the aggregation behavior, while the ion type played a less significant role. The outcome of this study enriched the understanding of the aggregation behaviour of bile salts and typical hydrophilic pharmaceutical polymers in bio-relevant media. Due to the high surface-activity of the bile salts and their ability to interact with polymers, such aggregation behaviour is expected to play a role in drug solubilisation in the gut when the drug is delivered by hydrophilic polymer based dispersions.
Collapse
Affiliation(s)
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Peter Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
21
|
Wang X, Fan M. Interaction behaviors and structural characteristics of zein/NaTC nanoparticles. RSC Adv 2019; 9:5748-5755. [PMID: 35515926 PMCID: PMC9060807 DOI: 10.1039/c9ra00005d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/11/2019] [Indexed: 11/21/2022] Open
Abstract
Bile salts are biosurfactants distributed in the human gastrointestinal tract, which can significantly influence the structure and functions of orally administrated components.
Collapse
Affiliation(s)
- Xiaoyong Wang
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Min Fan
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
22
|
Winuprasith T, Khomein P, Mitbumrung W, Suphantharika M, Nitithamyong A, McClements DJ. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.047] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Jain S, Reddy CSK, Swami R, Kushwah V. Amphotericin B Loaded Chitosan Nanoparticles: Implication of Bile Salt Stabilization on Gastrointestinal Stability, Permeability and Oral Bioavailability. AAPS PharmSciTech 2018; 19:3152-3164. [PMID: 30136175 DOI: 10.1208/s12249-018-1153-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022] Open
Abstract
Through current investigation, we presented a lucrative way to formulate amphotericin B loaded bile salt stabilized carbohydrate polymer i.e. chitosan nanoparticles (NPs) for enhancing gastrointestinal stability of NPs thereby increasing the oral bioavailability of the drug. NPs were prepared using ionic gelation method, and stabilized using bile salt to provide gastric pH stability to chitosan NPs. NPs were optimized on different parameters such as particle size, encapsulation efficiency and estimated for their in vitro and in vivo performance. Developed NPs presented a higher stability in gastrointestinal milieu, reduced haemolytic toxicity and significantly higher uptake in Caco-2 cell lines followed by increased bioavailability as compared to naive drug, marketed formulation i.e. Fungizone® and uncoated chitosan NPs. Biochemical parameters and histology further substantiated the lower toxicity. In nutshell, the present research explored the bioadhesive and higher uptake potential of cationic carbohydrate polymer at the same time along with bile salts for stabilization of NPs in gastric milieu.
Collapse
|
24
|
Dubas AL, Tameev AR, Zvyagina AI, Ezhov AA, Ivanov VK, König B, Arslanov VV, Gribkova OL, Kalinina MA. Ultrathin Polydiacetylene-Based Synergetic Composites with Plasmon-Enhanced Photoelectric Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43838-43845. [PMID: 29185705 DOI: 10.1021/acsami.7b12156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fabricating plasmon-enhanced organic nanomaterials with technologically relevant supporting architectures on planar solids remains a challenging task in the chemistry of thin films and interfaces. In this work, we report a bottom-up assembly of ultrathin layered composites of conductive polymers with photophysical properties enhanced by gold nanoparticles. The polydiacetylene component was formed by photopolymerization of a catanionic mixture of pentacosadiynoic surfactants on a surface of citrate-stabilized gold hydrosol monitored by a fiber optic spectrometer. Microscopic examination of the 3 nm thick solid-immobilized film showed that gold nanoparticles (AuNPs) do not aggregate within the monolayer upon polymerization. This polydiacetylene/AuNPs monolayer was coupled with 60 nm thick polyaniline-based layer deposited atop. The resulting polymer composite with an integrated 4-stripe electric cell showed nonadditive electric behavior due to the formation of electron-hole pairs with increased charge carrier mobility at the interface between the polymer layers. Under visible light irradiation of the composite film, a plasmonic effect of the gold nanoparticles was observed at the onset of photoconductivity, although neither polydiacetylene nor the polyaniline component alone are photoconductive polymers. The results indicate that our bottom-up strategy can be expanded to design other plasmon-enhanced ultrathin polymer composites with potential applications in optoelectronics and photovoltaics.
Collapse
Affiliation(s)
- Anastasiia L Dubas
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31 Leninsky prospect, Moscow 119071, Russia
| | - Alexey R Tameev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31 Leninsky prospect, Moscow 119071, Russia
| | - Alexandra I Zvyagina
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31 Leninsky prospect, Moscow 119071, Russia
| | - Alexander A Ezhov
- Faculty of Physics, M. V. Lomonosov Moscow State University , 1-2 Leninskiye Gory, GSP-1, Moscow 119991, Russia
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences , 29 Leninsky prospect, Moscow 119991, Russia
| | - Vladimir K Ivanov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , 31 Leninsky prospect, Moscow 119991, Russia
- Faculty of Materials Science, M. V. Lomonosov Moscow State University , 1-73 Leninskiye Gory, GSP-1, Moscow 119991, Russia
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg , D-93040 Regensburg, Germany
| | - Vladimir V Arslanov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31 Leninsky prospect, Moscow 119071, Russia
| | - Oxana L Gribkova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31 Leninsky prospect, Moscow 119071, Russia
| | - Maria A Kalinina
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , 31 Leninsky prospect, Moscow 119071, Russia
| |
Collapse
|
25
|
Dennison JM, Zupancic JM, Lin W, Dwyer JH, Murphy CJ. Protein Adsorption to Charged Gold Nanospheres as a Function of Protein Deformability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7751-7761. [PMID: 28704605 DOI: 10.1021/acs.langmuir.7b01909] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The corona that forms as protein adsorbs to gold nanospheres (AuNSs) is directly influenced by the surface chemistry of the AuNS. Tools to predict adsorption outcomes are needed for intelligent design of nanomaterials for biological applications. We hypothesized that the denaturation behavior of a protein might be a useful predictor of adsorption behavior to AuNSs, and used this idea to study protein adsorption to anionic citrate-capped AuNSs and to cationic poly(allylamine hydrochloride) (PAH) wrapped AuNSs. Three proteins (α-amylase (A-Amy), β-lactoglobulin (BLG), and bovine serum albumin (BSA)), representing three different classes of acid denaturation behavior, were selected with BLG being the least deformable and BSA being the most deformable. Protein adsorption to AuNSs was monitored via UV-vis spectrophotometry and dynamic light scattering. Changes to the protein structure upon AuNS interaction were monitored via circular dichroism spectroscopy. Binding constants were determined using the Langmuir adsorption isotherm, resulting in BSA > BLG ≫ A-Amy affinities for citrate-capped gold nanospheres. PAH-coated AuNSs displayed little affinity for these proteins at similar concentrations as citrate-coated AuNSs and became agglomerated at high protein concentrations. The enzymatic activity of A-Amy/citrate AuNS conjugates was measured via colorimetric assay, and found to be 11% of free A-Amy, suggesting that binding restricts access to the active site. Across both citrate AuNSs and PAH AuNSs, the changes in secondary structure were greatest for BSA > A-Amy > BLG, which does follow the trends predicted by acid denaturation characteristics.
Collapse
Affiliation(s)
- Jordan M Dennison
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jennifer M Zupancic
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wayne Lin
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan H Dwyer
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 Mathews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
McClements DJ, Xiao H, Demokritou P. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Adv Colloid Interface Sci 2017; 246:165-180. [PMID: 28552424 DOI: 10.1016/j.cis.2017.05.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Inorganic nanoparticles, such as titanium dioxide, silicon dioxide, iron oxide, zinc oxide, or silver nanoparticles, are added to some food products and food packaging materials to obtain specific functional attributes, such as lightening, powder flow, nutrition, or antimicrobial properties. These engineered nanomaterials (ENMs) all have dimensions below 100nm, but may still vary considerably in composition, morphology, charge, surface properties and aggregation state, which effects their gastrointestinal fate and potential toxicity. In addition to their intrinsic physicochemical and morphological properties, the extrinsic properties of the media they are suspended in also affects their biotransformation, gastrointestinal fate and bioactivity. For instance, inorganic nanoparticles are usually consumed as part of a food or meal that contains numerous other components, such as lipids, proteins, carbohydrates, surfactants, minerals, and water, which may alter their gastrointestinal fate. This review article provides an overview of the potential effects of food components on the behavior of ENMs in the gastrointestinal tract (GIT), and highlights some important physicochemical and colloidal mechanisms by which the food matrix may alter the properties of inorganic nanoparticles. This information is essential for developing appropriate test methods to establish the potential toxicity and biokinetics of inorganic nanoparticles in foods.
Collapse
|
27
|
Timin AS, Khashirova SY, Rumyantsev EV, Goncharenko AA. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:20-28. [DOI: 10.1016/j.msec.2016.03.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 11/25/2022]
|
28
|
Dominguez-Medina S, Kisley L, Tauzin LJ, Hoggard A, Shuang B, D. S. Indrasekara AS, Chen S, Wang LY, Derry PJ, Liopo A, Zubarev ER, Landes CF, Link S. Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation. ACS NANO 2016; 10:2103-12. [PMID: 26751094 PMCID: PMC4768289 DOI: 10.1021/acsnano.5b06439] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo.
Collapse
Affiliation(s)
| | - Lydia Kisley
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Lawrence J. Tauzin
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anneli Hoggard
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Bo Shuang
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | | | - Sishan Chen
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Lin-Yung Wang
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Paul J. Derry
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anton Liopo
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Eugene R. Zubarev
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Materials Science and NanoEngineering, Rice University, Houston, Texas 77251, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| |
Collapse
|
29
|
Chen J, Kong Y, Wang W, Fang H, Wo Y, Zhou D, Wu Z, Li Y, Chen S. Direct water-phase synthesis of lead sulfide quantum dots encapsulated by β-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chem Commun (Camb) 2016; 52:4025-8. [PMID: 26888668 DOI: 10.1039/c6cc00099a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LG capped PbS quantum dots: a highly water-dispersible and biocompatible image reporter in the second near-infrared window.
Collapse
Affiliation(s)
- Jun Chen
- Department of Orthopedic Sports Medicine
- Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| | - Yifei Kong
- School of Chemistry and Astbury Structure for Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Wei Wang
- Department of Gastric and Pancreatic Surgery
- Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China
- Guangzhou 510060
- China
| | - Hongwei Fang
- Department of Anesthesiology
- The First Affiliated Hospital of Bengbu Medical College
- Anhui 233004
- China
| | - Yan Wo
- Department of Human Anatomy
- Histology and Embryology
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Dejian Zhou
- School of Chemistry and Astbury Structure for Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Ziying Wu
- Department of Orthopedic Sports Medicine
- Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| | - Yunxia Li
- Department of Orthopedic Sports Medicine
- Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| | - Shiyi Chen
- Department of Orthopedic Sports Medicine
- Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| |
Collapse
|
30
|
Chen J, Kong Y, Wo Y, Fang H, Li Y, Zhang T, Dong Y, Ge Y, Wu Z, Zhou D, Chen S. Facile synthesis of β-lactoglobulin capped Ag2S quantum dots for in vivo imaging in the second near-infrared biological window. J Mater Chem B 2016; 4:6271-6278. [PMID: 32263639 DOI: 10.1039/c6tb01186a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effectivein vivofluorescence imaging based on β-LG-Ag2S quantum dots at the second near-infrared region.
Collapse
|
31
|
Di Silvio D, Rigby N, Bajka B, Mayes A, Mackie A, Baldelli Bombelli F. Technical tip: high-resolution isolation of nanoparticle-protein corona complexes from physiological fluids. NANOSCALE 2015; 7:11980-11990. [PMID: 26108682 DOI: 10.1039/c5nr02618k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without affecting the structure or composition of the corona. This method allows NPs to be separated from complex fluids containing biological particulates and in a form suitable for use in further experiments. The study has been performed systematically comparing the new proposed methodology to standard approaches for a wide panel of NPs. NPs were first incubated in the biological fluid and successively recovered by sucrose gradient ultracentrifugation in order to separate the NPs and their protein corona from the loosely bound proteins. The isolated NP-protein complexes were characterized by size and protein composition through Dynamic Light Scattering, Nanoparticle Tracking Analysis, SDS-PAGE and LC-MS. The protocol described is versatile and can be applied to diverse nanomaterials and complex fluids. It is shown to have higher resolution in separating the multiple protein corona complexes from a biological environment with a much lower impact on their in situ structure compared to conventional centrifugal approaches.
Collapse
Affiliation(s)
- Desirè Di Silvio
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| | | | | | | | | | | |
Collapse
|
32
|
Srivastava V, Gusain D, Sharma YC. Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01610] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Deepak Gusain
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Yogesh Chandra Sharma
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| |
Collapse
|