1
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Campbell S, Preciado Rivera N, Said S, Lam A, Weir L, Gour J, Smeets NMB, Hoare T. Injectable On-Demand Pulsatile Drug Delivery Hydrogels Using Alternating Magnetic Field-Triggered Polymer Glass Transitions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48892-48902. [PMID: 37816152 DOI: 10.1021/acsami.3c09299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Remote-controlled pulsatile or staged release has significant potential in a wide range of therapeutic treatments. However, most current approaches are hindered by the low resolution between the on- and off-states of drug release and the need for surgical implantation of larger controlled-release devices. Herein, we describe a method that addresses these limitations by combining injectable hydrogels, superparamagnetic iron oxide nanoparticles (SPIONs) that heat when exposed to an alternating magnetic field (AMF), and polymeric nanoparticles with a glass transition temperature (Tg) just above physiological temperature. Miniemulsion polymerization was used to fabricate poly(methyl methacrylate-co-butyl methacrylate) (p(MMA-co-BMA)) nanoparticles loaded with a model hydrophobic drug and tuned to have a Tg value just above physiological temperature (∼43 °C). Co-encapsulation of these drug-loaded nanoparticles with SPIONs inside a carbohydrate-based injectable hydrogel matrix (formed by rapid hydrazone cross-linking chemistry) enables injection and immobilization of the nanoparticles at the target site. Temperature cycling facilitated a 2.5:1 to 6:1 on/off rhodamine release ratio when the nanocomposites were switched between 37 and 45 °C; release was similarly enhanced by exposing the nanocomposite hydrogel to an AMF to drive heating, with enhanced release upon pulsing observed even 1 week after injection. Coupled with the apparent cytocompatibility of all of the nanocomposite components, these injectable nanocomposite hydrogels are promising as minimally invasive but remotely actuated release delivery vehicles capable of complex release kinetics with high on-off resolution.
Collapse
Affiliation(s)
- Scott Campbell
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Nahieli Preciado Rivera
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Somiraa Said
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
- Department of Pharmaceutics, Alexandria University, Alexandria 21521, Egypt
| | - Angus Lam
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Lauren Weir
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Jared Gour
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Niels M B Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| |
Collapse
|
3
|
Dual-targeting magnetic fluorescent mesoporous organosilicon hollow nanospheres for gambogic acid loading, sustained release and anti-tumor properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Novel Gels: An Emerging Approach for Delivering of Therapeutic Molecules and Recent Trends. Gels 2022; 8:gels8050316. [PMID: 35621614 PMCID: PMC9140900 DOI: 10.3390/gels8050316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Gels are semisolid, homogeneous systems with continuous or discrete therapeutic molecules in a suitable lipophilic or hydrophilic three-dimensional network base. Innovative gel systems possess multipurpose applications in cosmetics, food, pharmaceuticals, biotechnology, and so forth. Formulating a gel-based delivery system is simple and the delivery system enables the release of loaded therapeutic molecules. Furthermore, it facilitates the delivery of molecules via various routes as these gel-based systems offer proximal surface contact between a loaded therapeutic molecule and an absorption site. In the past decade, researchers have potentially explored and established a significant understanding of gel-based delivery systems for drug delivery. Subsequently, they have enabled the prospects of developing novel gel-based systems that illicit drug release by specific biological or external stimuli, such as temperature, pH, enzymes, ultrasound, antigens, etc. These systems are considered smart gels for their broad applications. This review reflects the significant role of advanced gel-based delivery systems for various therapeutic benefits. This detailed discussion is focused on strategies for the formulation of different novel gel-based systems, as well as it highlights the current research trends of these systems and patented technologies.
Collapse
|
5
|
Can M, Sahiner N. A facile one-pot synthesis of microgels and nanogels of laminarin for biomedical applications. J Colloid Interface Sci 2021; 588:40-49. [PMID: 33387824 DOI: 10.1016/j.jcis.2020.12.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS Laminarin (LAM) as a nontoxic, biodegradable, and biocompatible marine polysaccharide, has been reported for its ingenious bioactivities such as antioxidant, antitumor antiapoptotic anti-inflammatory, immunomodulatory and dietary fiber activities, and distinct physicochemical structure possess a remarkably promising potential in biomaterial science. Synthesis of LAM-based microgels and bulk hydrogels have been reported in two stages: modification of LAM polysaccharide with polymerizable functional groups and subsequent crosslinking reaction. Therefore, here an easier and more effortless methods to prepare poly(laminarin) (p(LAM)) particles were tackled. EXPERIMENTAL A direct and facile single step fabrication of micro/nanogels of p(LAM) for the first time by means of reverse micelle microemulsion system were illustrated. Preparation of p(LAM) particles were achieved by the well-known Oxa-Michael addition reaction mechanism using divinyl sulfone as the crosslinker. FINDINGS P(LAM) particles in 0.3-10 µm size range in spherical morphologies were prepared with 93 ± 7% yield and functionalized with chlorosulfonic acid (CSA) demonstrating their chemical modifiability for variety of agents e.g., targeting ligands. The bare and modified p(LAM) particles showed excellent blood compatibility with hemolytic indices of <1% and blood clotting indices higher than 90%. The reported p(LAM) particles hold great promise as natural alternative surrogates in biomedical applications including drug delivery.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Chemistry & Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100 Canakkale, Turkey
| | - Nurettin Sahiner
- Department of Chemistry & Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, 17100 Canakkale, Turkey; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Dirksen M, Brändel T, Großkopf S, Knust S, Bookhold J, Anselmetti D, Hellweg T. UV cross-linked smart microgel membranes as free-standing diffusion barriers and nanoparticle bearing catalytic films. RSC Adv 2021; 11:22014-22024. [PMID: 35480797 PMCID: PMC9036384 DOI: 10.1039/d1ra03528b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
In this study we use poly(N-isopropylacrylamide) (PNIPAM) based copolymer microgels to create free-standing, transferable, thermoresponsive membranes. The microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)–benzophenone (HMABP) and spin-coated on Si wafers. After subsequent cross-linking by UV-irradiation, the formed layers easily detach from the supporting material. We obtain free standing microgel membranes with lateral extensions of several millimetres and an average layer thickness of a few hundred nanometres. They can be transferred to other substrates. As one example for potential applications we investigate the temperature dependent ion transport through the membranes via resistance measurements revealing a sharp reversible increase in resistance when the lower critical solution temperature of the copolymer microgels is reached. In addition, prior to cross-linking, the microgels can be decorated with silver nanoparticles and cross-linked afterwards. Such free-standing nanoparticle hybrid membranes are then used as catalytic systems for the reduction of 4-nitrophenol, which is monitored by UV/Vis spectroscopy. Cross-linkable microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)–benzophenone (HMABP) and are subsequently UV-cross-linked to obtain smart membranes exhibiting switchable resistance.![]()
Collapse
Affiliation(s)
- Maxim Dirksen
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Timo Brändel
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Sören Großkopf
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Sebastian Knust
- Department of Physics, Experimental Biophysics
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Johannes Bookhold
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Dario Anselmetti
- Department of Physics, Experimental Biophysics
- University Bielefeld
- D-33615 Bielefeld
- Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry
- University Bielefeld
- D-33615 Bielefeld
- Germany
| |
Collapse
|
7
|
Sung B, Kim M, Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioeng Transl Med 2021; 6:e10190. [PMID: 33532590 PMCID: PMC7823133 DOI: 10.1002/btm2.10190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Soft micro- and nanostructures have been extensively developed for biomedical applications. The main focus has been on multifunctional composite materials that combine the advantages of hydrogels and colloidal particles. Magnetic microgels and nanogels can be realized by hybridizing stimuli-sensitive gels and magnetic nanoparticles. They are of particular interest since they can be controlled in a wide range of biological environments by using magnetic fields. In this review, we elucidate physical principles underlying the design of magnetic microgels and nanogels for biomedical applications. Particularly, this article provides a comprehensive and conceptual overview on the correlative structural design and physical functionality of the magnetic gel systems under the concept of colloidal biodevices. To this end, we begin with an overview of physicochemical mechanisms related to stimuli-responsive hydrogels and transport phenomena and summarize the magnetic properties of inorganic nanoparticles. On the basis of the engineering principles, we categorize and summarize recent advances in magnetic hybrid microgels and nanogels, with emphasis on the biomedical applications of these materials. Potential applications of these hybrid microgels and nanogels in anticancer treatment, protein therapeutics, gene therapy, bioseparation, biocatalysis, and regenerative medicine are highlighted. Finally, current challenges and future opportunities in the design of smart colloidal biodevices are discussed.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- Department of Biological SciencesKent State UniversityKentOhioUSA
- Division of Energy and Environment TechnologyUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Min‐Ho Kim
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | - Leon Abelmann
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- MESA+ Institute for Nanotechnology, University of TwenteEnschedeThe Netherlands
| |
Collapse
|
8
|
Martinez-Moro M, Jenczyk J, Giussi JM, Jurga S, Moya SE. Kinetics of the thermal response of poly(N-isopropylacrylamide co methacrylic acid) hydrogel microparticles under different environmental stimuli: A time-lapse NMR study. J Colloid Interface Sci 2020; 580:439-448. [PMID: 32711195 DOI: 10.1016/j.jcis.2020.07.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Hydrogels of N-isopropylacrylamide and methacrylic acid (P(NIPAm-co-MAA)) display pH sensitivity and complex positively charged molecules through carboxylate groups, while having a critical solution temperature at which they reduce in volume and dehydrate. We aimed to elucidate how the responsiveness of MAA to environmental changes alters PNIPAm hydrogels at the molecular level using nuclear magnetic resonance (NMR). Time-lapse NMR allows us to follow the evolution of NMR signal under a temperature stimulus, providing unique information on conformational freedom of the hydrogel polymers. EXPERIMENTS We used time-lapse NMR to follow the evolution of the NMR signal with time over a temperature change from 25 to 40°C and to study the swelling/deswelling kinetics of P(NIPAm-co-MAA) microgels at different pH values and ionic strengths, and in the presence of positively charged molecules complexing carboxylate groups. FINDINGS At acid pH, hydrogel collapse is favored over neutral pH, and at basic pH the carboxylates remain steadily hydrated during temperature increase. Increasing ionic strength results in a faster, more effective collapse than decreasing pH. Complexation of medium-sized molecules with several charges (spermine, spermidine) causes a faster collapse than complexation with large molecular weight poly(allylamine) hydrochloride, but similar to the collapse effected by large poly(diallyldimethylammonium) chloride. This work opens new perspectives to using time-lapse NMR to study thermoresponsive systems that respond to multiple stimuli, with particular relevance in designing hydrogels for drug delivery.
Collapse
Affiliation(s)
- Marta Martinez-Moro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182 C, 20014 Donostia-San Sebastian, Spain.
| |
Collapse
|
9
|
Caldwell AS, Aguado BA, Anseth KS. Designing Microgels for Cell Culture and Controlled Assembly of Tissue Microenvironments. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907670. [PMID: 33841061 PMCID: PMC8026140 DOI: 10.1002/adfm.201907670] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Micron-sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multi-cell co-culture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user-defined control of the microenvironments, from the order of singly encapsulated cells to entire three-dimensional cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.
Collapse
Affiliation(s)
- Alexander S. Caldwell
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Brian A. Aguado
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| |
Collapse
|
10
|
Goudoulas TB, Germann N. Nonlinear rheological behavior of gelatin gels: In situ gels and individual gel layers filled with hard particles. J Colloid Interface Sci 2019; 556:1-11. [PMID: 31415921 DOI: 10.1016/j.jcis.2019.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS Previously, we examined the impact of two preparation procedures on the mechanical properties of native gelatin gels. In this work, we extend our research by considering hard spherical particles as fillers. We expect that the presence of these fillers significantly affects the viscoelastic response. EXPERIMENTS We prepared fresh in situ gels and individual gel layers filled with glass micro-beads up to 1% w/w and aged for 24 and 48 h. The hydrogels were made of 3 and 5% w/w gelatin at 5 °C, and we performed large amplitude oscillatory shear (LAOS) tests. We analyzed the intracycle linear and nonlinear response using normalized Lissajous-Bowditch curves. Utilizing the MITlaos software, we decomposed the total intracycle stress into elastic and viscous contributions and calculated the Chebyshev harmonics coefficients. FINDINGS The fresh in situ gels exhibit severe progressive stiffening during the strain sweeps and a subsequent sharp decrease of both moduli. The filled layers show smoother yielding than the in situ gels. The fillers increase the dynamic moduli, affect the terminal LAOS regime, and enhance the intracycle nonlinearities at higher concentrations. The Lissajous-Bowditch curves of the aged layers indicate elastoplastic behavior, which is more pronounced for the 48 h filled gel layer than the native counterpart.
Collapse
Affiliation(s)
- Thomas B Goudoulas
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
11
|
Goudoulas TB, Germann N. Nonlinear rheological behavior of gelatin gels: In situ gels and individual layers. J Colloid Interface Sci 2019; 553:746-757. [DOI: 10.1016/j.jcis.2019.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
12
|
Wiehemeier L, Brändel T, Hannappel Y, Kottke T, Hellweg T. Synthesis of smart dual-responsive microgels: correlation between applied surfactants and obtained particle morphology. SOFT MATTER 2019; 15:5673-5684. [PMID: 31246214 DOI: 10.1039/c9sm00690g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermo- and pH-responsive copolymer microgels were obtained by surfactant-assisted precipitation polymerization of N-isopropylacrylamide (NIPAM) and acrylic acid (AAc). The surfactants used were sodium dodecylsulfate (SDS), dodecyltrimethylammonium bromide (DTAB) and the nonionic n-octyl-β-d-glucopyranoside (C8G1). We investigate the influence of the surfactants on the acrylic acid incorporation rate, the particle size, particle morphology, and the swelling behaviour at pH 4 and pH 7, at which AAc is neutral or charged, respectively. It is shown that each surfactant has a specific influence, which is connected to its role in the polymerization mechanism and its charge. A combined FTIR and PCS study reveals that the particles undergo a temperature-induced change in microstructure, even if the particle hydrodynamic radius does not change significantly.
Collapse
Affiliation(s)
- Lars Wiehemeier
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| | - Timo Brändel
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| | - Yvonne Hannappel
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| | - Tilman Kottke
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| | - Thomas Hellweg
- Bielefeld University, Universitätsstrasse 25, Bielefeld, Germany.
| |
Collapse
|
13
|
Etchenausia L, Villar-Alvarez E, Forcada J, Save M, Taboada P. Evaluation of cationic core-shell thermoresponsive poly(N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109871. [PMID: 31499979 DOI: 10.1016/j.msec.2019.109871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
Abstract
The present work investigates the potentiality of poly(N-vinyl caprolactam) (PVCL)-based thermoresponsive microgels decorated with cationic polymer brushes as drug delivery carriers. The effect of physico-chemical features of the colloids on cell viability response have to be carefully investigated to establish the range of suitable hydrodynamic diameters, crosslinking densities, lengths and ratios of the cationic polyelectrolyte shell which allow their efficient and effective use for cargo loading, transport and delivery. The colloidal stability of all cationic thermoresponsive microgels is maintained over several days of incubation at 37 °C in biological mimicking medium (Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum). The thin cationic polymer shell covalently anchored does not hinder the all range of microgels to be biocompatible while the higher cytotoxicity of the doxorubicin-loaded microgels on HeLa cells proves their anti-tumor activity. The core-shell PVCL drug delivery nanocarriers allow a sustained release of doxorubicin with a slightly higher viability of HeLa cells incubated in the presence of DOXO-loaded microgels compared to the free DOXO. The nature of the endocytosis pathway is investigated through a quantification of the extent of the cellular survival rate in the presence of various cellular uptake inhibitors. A clathrin-dependent internalization was observed.
Collapse
Affiliation(s)
- Laura Etchenausia
- CNRS, University Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, IPREM, UMR5254, 64000 Pau, France; Bionanoparticles Group, Department of Applied Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Eva Villar-Alvarez
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jacqueline Forcada
- Bionanoparticles Group, Department of Applied Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Maud Save
- CNRS, University Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, IPREM, UMR5254, 64000 Pau, France.
| | - Pablo Taboada
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
15
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
16
|
Begum R, Farooqi ZH, Ahmed E, Sharif A, Wu W, Irfan A. Fundamentals and applications of acrylamide based microgels and their hybrids: a review. RSC Adv 2019; 9:13838-13854. [PMID: 35519604 PMCID: PMC9064016 DOI: 10.1039/c9ra00699k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Recent advances in synthesis, characterization and applications of acrylamide based polymer microgels and their hybrids are discussed for further development in this area.
Collapse
Affiliation(s)
- Robina Begum
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
- Centre for Undergraduate Studies
| | | | - Ejaz Ahmed
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
| | - Ahsan Sharif
- Institute of Chemistry
- University of the Punjab
- Lahore 54590
- Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Ahmad Irfan
- Research Center for Advance Materials Science
- King Khalid University
- Abha 61413
- Saudi Arabia
- Department of Chemistry
| |
Collapse
|
17
|
Joseph CA, McCarthy CW, Tyo AG, Hubbard KR, Fisher HC, Altscheffel JA, He W, Pinnaratip R, Liu Y, Lee BP, Rajachar RM. Development of an Injectable Nitric Oxide Releasing Poly(ethylene) Glycol-Fibrin Adhesive Hydrogel. ACS Biomater Sci Eng 2018; 5:959-969. [PMID: 31650030 DOI: 10.1021/acsbiomaterials.8b01331] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrin microparticles were incorporated into poly(ethylene) glycol (PEG)-fibrinogen hydrogels to create an injectable, composite that could serve as a wound healing support and vehicle to deliver therapeutic factors for tissue engineering. Nitric oxide (NO), a therapeutic agent in wound healing, was loaded into fibrin microparticles by blending S-Nitroso-N-acetyl penicillamine (SNAP) with a fibrinogen solution. The incorporation of microparticles affected swelling behavior and improved tissue adhesivity of composite hydrogels. Controlled NO release was induced via photolytic and thermal activation, and modulated by weight percent of particles incorporated. These NO-releasing composites were non-cytotoxic in culture. Cells maintained morphology, viability, and proliferative character. Fibrin microparticles loaded with SNAP and incorporated into a PEG-fibrinogen matrix, creates a novel injectable composite hydrogel that offers improved tissue adhesivity and inducible NO-release for use as a regenerative support for wound healing and tissue engineering applications.
Collapse
Affiliation(s)
- Carly A Joseph
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Connor W McCarthy
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Ariana G Tyo
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Kenneth R Hubbard
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Hannah C Fisher
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jacob A Altscheffel
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Yuan Liu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Rupak M Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
18
|
Embedded of Nanogel into Multi-responsive Hydrogel Nanocomposite for Anticancer Drug Delivery. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0914-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
A thermo/pH/magnetic-responsive nanogel based on sodium alginate by modifying magnetic graphene oxide: Preparation, characterization, and drug delivery. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-017-0592-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
de la Torre C, Domínguez-Berrocal L, Murguía JR, Marcos MD, Martínez-Máñez R, Bravo J, Sancenón F. ϵ
-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C
9h
Peptide to Induce Apoptosis in Cancer Cells. Chemistry 2018; 24:1890-1897. [DOI: 10.1002/chem.201704161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Leticia Domínguez-Berrocal
- Departamento de Genómica y Proteómica; Instituto de, Biomedicina de Valencia; c/ Jaime Roig 11 46010 Valencia Spain
| | - José R. Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
| | - M. Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Jerónimo Bravo
- Departamento de Genómica y Proteómica; Instituto de, Biomedicina de Valencia; c/ Jaime Roig 11 46010 Valencia Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| |
Collapse
|
21
|
Zajforoushan Moghaddam S, Zhu K, Nyström B, Thormann E. Thermo-responsive diblock and triblock cationic copolymers at the silica/aqueous interface: A QCM-D and AFM study. J Colloid Interface Sci 2017. [PMID: 28646758 DOI: 10.1016/j.jcis.2017.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Deswelling and deformation of microgels in concentrated packings. Sci Rep 2017; 7:10223. [PMID: 28860537 PMCID: PMC5579048 DOI: 10.1038/s41598-017-10788-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022] Open
Abstract
Increasing the particle density of a suspension of microgel colloids above the point of random-close packing, must involve deformations of the particle to accommodate the increase in volume fraction. By contrast to the isotropic osmotic deswelling of soft particles, the particle-particle contacts give rise to a non-homogeneous pressure, raising the question if these deformations occur through homogeneous deswelling or by the formation of facets. Here we aim to answer this question through a combination of imaging of individual microgels in dense packings and a simple model to describe the balance between shape versus volume changes. We find a transition from shape changes at low pressures to volume changes at high pressures, which can be explained qualitatively with our model. Whereas contact mechanics govern at low pressures giving rise to facets, osmotic effects govern at higher pressures, which leads to a more homogeneous deswelling. Our results show that both types of deformation play a large role in highly concentrated microgel suspensions and thus must be taken into account to arrive at an accurate description of the structure, dynamics and mechanics of concentrated suspensions of soft spheres.
Collapse
|
23
|
Wang Y, Dong M, Guo M, Wang X, Zhou J, Lei J, Guo C, Qin C. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:293-299. [PMID: 28532032 DOI: 10.1016/j.msec.2017.03.254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 01/08/2023]
|
24
|
Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J Control Release 2017; 253:122-136. [PMID: 28322977 DOI: 10.1016/j.jconrel.2017.03.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
Abstract
Penetration enhancers coated biodegradable polymeric nanogels loaded with cytotoxic drugs applied via the topical route, can be a promising strategy for improving the chemotherapeutic efficiency of skin cancers. The major objective of proposed research was to investigate the in vitro and ex vivo chemotherapeutic potential of double walled PLGA-chitosan biodegradable nanogel entrapped with 5-fluororuacil (5-FU) coated with eucalyptus oil, topically applied onto the skin. 5-FU was first entrapped in PLGA core by solvent evaporation technique followed by coating with cationic chitosan for ionic interaction with anionic skin cancer cell membrane. A surface coating of eucalyptus oil (1%) was employed to improve the penetration efficacy of the nanogel into stratum corneum. The surface modified biodegradable double walled nanogel was characterized for particle size, charge and thermal properties followed by pH dependent in vitro analysis. Human keratinocyte (HaCaT) cell line was employed for the bio- and cyto-compatibility testing prior to the hemolysis assay and coagulation assessment. A porcine skin ex vivo screening was performed for assessing the penetration potential of the nanogels. DLS and TEM revealed a particle size about 170nm for the double walled nanogels. The nanogels also exhibited high thermal stability as analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). The drug entrapment efficacy was about ~40%. The drug release showed sustained release pattern noted up to 24h. The low hemolysis of 2.39% with short prothrombin time (PT) and activated partial thromboplastin time (APTT) of 14.2 and 35.5s respectively, revealed high biocompatibility of the nanogels. The cellular uptake and localization was assessed by confocal microscopy. The cytotoxicity (MTT assay) on HaCaT cell line demonstrated high cytocompatibilty of the nanogels. An ex vivo evaluation using porcine skin displayed efficient and steady state flux of 5-FU from the biodegradable nanogles into the skin, while the histology of the porcine skin revealed enhanced penetration potential of eucalyptus oil coated PLGA-chitosan double walled nanogels. Taken together the in vivo and ex vivo results portend promising potential for the utility of the biodegradable nanogels for treating skin cancers.
Collapse
|
25
|
Wedel B, Brändel T, Bookhold J, Hellweg T. Role of Anionic Surfactants in the Synthesis of Smart Microgels Based on Different Acrylamides. ACS OMEGA 2017; 2:84-90. [PMID: 31457211 PMCID: PMC6641024 DOI: 10.1021/acsomega.6b00424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 05/20/2023]
Abstract
We investigated the influence of two anionic surfactants, namely, sodium dodecyl sulfate and sodium decyl sulfate, on acrylamide-based microgels consisting of N-n-propylacrylamide. In this context, the main focus was on the influence of surfactant addition on the size of the microgels. The surfactant was added to the reaction mixture before or during the polymerization at different points in time. Microgels were characterized via photon correlation spectroscopy and atomic force microscopy. All results were compared to those for other more common acrylamide-based microgels consisting of N-isopropylacrylamide and N-isopropylmethacrylamide. A significant difference between the three microgels and a strong dependence on the surface activity of the surfactant was found.
Collapse
Affiliation(s)
| | | | - Johannes Bookhold
- Physical and Biophysical
Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Thomas Hellweg
- Physical and Biophysical
Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
26
|
Lu D, Zhang Y, Li Y, Luo C, Wang X, Guan X, Ma H, Zhao X, Wei Q, Lei Z. Preparation and properties of reversible hydrogels based on triblock poly(amino acid)s with tunable pH‐responsivity across a broad range. JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2017; 55:207-212. [DOI: 10.1002/pola.28375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yongyong Zhang
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yunfei Li
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Chen Luo
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiangya Wang
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiaolin Guan
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Hengchang Ma
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiaolong Zhao
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Qiangbing Wei
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Ziqiang Lei
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| |
Collapse
|
27
|
Mauri E, Moroni I, Magagnin L, Masi M, Sacchetti A, Rossi F. Comparison between two different click strategies to synthesize fluorescent nanogels for therapeutic applications. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Uskoković V, Ghosh S. Carriers for the tunable release of therapeutics: etymological classification and examples. Expert Opin Drug Deliv 2016; 13:1729-1741. [PMID: 27322661 DOI: 10.1080/17425247.2016.1200558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction Physiological processes at the molecular level take place at precise spatiotemporal scales, which vary from tissue to tissue and from one patient to another, implying the need for carriers that enable tunable release of therapeutics. Areas covered Classification of all drug release to intrinsic and extrinsic is proposed, followed by the etymological clarification of the term 'tunable' and its distinction from the term 'tailorable'. Tunability is defined as analogous to tuning a guitar string or a radio receiver to the right frequency using a single knob. It implies changing a structural parameter along a continuous quantitative scale and correlating it numerically with the release kinetics. Examples of tunable, tailorable and environmentally responsive carriers are given, along with the parameters used to achieve these levels of control. Expert opinion Interdependence of multiple variables defining the carrier microstructure obstructs the attempts to elucidate parameters that allow for the independent tuning of release kinetics. Learning from the tunability of nanostructured materials and superstructured metamaterials can be a fruitful source of inspiration in the quest for the new generation of tunable release carriers. The greater intersection of traditional materials sciences and pharmacokinetic perspectives could foster the development of more sophisticated mechanisms for tunable release.
Collapse
Affiliation(s)
- Vuk Uskoković
- a Department of Bioengineering , University of Illinois , Chicago , IL , USA.,b Department of Biomedical and Pharmaceutical Sciences , Chapman University , Irvine , CA , USA
| | - Shreya Ghosh
- a Department of Bioengineering , University of Illinois , Chicago , IL , USA
| |
Collapse
|
29
|
Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:308-16. [DOI: 10.1016/j.msec.2016.02.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/06/2016] [Accepted: 02/29/2016] [Indexed: 11/21/2022]
|
30
|
Methods for Generating Hydrogel Particles for Protein Delivery. Ann Biomed Eng 2016; 44:1946-58. [PMID: 27160672 DOI: 10.1007/s10439-016-1637-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Proteins represent a major class of therapeutic molecules with vast potential for the treatment of acute and chronic diseases and regenerative medicine applications. Hydrogels have long been investigated for their potential in carrying and delivering proteins. As compared to bulk hydrogels, hydrogel microparticles (microgels) hold promise in improving aspects of delivery owing to their less traumatic route of entry into the body and improved versatility. This review discusses common methods of fabricating microgels, including emulsion polymerization, microfluidic techniques, and lithographic techniques. Microgels synthesized from both natural and synthetic polymers are discussed, as are a series of microgels fashioned from environment-responsive materials.
Collapse
|
31
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 953] [Impact Index Per Article: 105.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Sung B, Shaffer S, Sittek M, Alboslemy T, Kim C, Kim MH. Alternating Magnetic Field-Responsive Hybrid Gelatin Microgels for Controlled Drug Release. J Vis Exp 2016:53680. [PMID: 26966888 DOI: 10.3791/53680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Magnetically-responsive nano/micro-engineered biomaterials that enable a tightly controlled, on-demand drug delivery have been developed as new types of smart soft devices for biomedical applications. Although a number of magnetically-responsive drug delivery systems have demonstrated efficacies through either in vitro proof of concept studies or in vivo preclinical applications, their use in clinical settings is still limited by their insufficient biocompatibility or biodegradability. Additionally, many of the existing platforms rely on sophisticated techniques for their fabrications. We recently demonstrated the fabrication of biodegradable, gelatin-based thermo-responsive microgel by physically entrapping poly(N-isopropylacrylamide-co-acrylamide) chains as a minor component within a three-dimensional gelatin network. In this study, we present a facile method to fabricate a biodegradable drug release platform that enables a magneto-thermally triggered drug release. This was achieved by incorporating superparamagnetic iron oxide nanoparticles and thermo-responsive polymers within gelatin-based colloidal microgels, in conjunction with an alternating magnetic field application system.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- Department of Biological Sciences, Kent State University; Liquid Crystal Institute, Kent State University
| | - Steven Shaffer
- Department of Biological Sciences, Kent State University
| | - Michal Sittek
- Department of Biological Sciences, Kent State University
| | | | - Chanjoong Kim
- Liquid Crystal Institute, Kent State University; Chemical Physics Interdisciplinary Program, Kent State University
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University;
| |
Collapse
|
33
|
Polymeric nanostructures with pH-labile core for controlled drug release. J Colloid Interface Sci 2016; 462:176-82. [DOI: 10.1016/j.jcis.2015.09.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
|
34
|
Grijalvo S, Mayr J, Eritja R, Díaz DD. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience. Biomater Sci 2016; 4:555-74. [DOI: 10.1039/c5bm00481k] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Liposome-encapsulated hydrogels have emerged as an attractive strategy for medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Biomedical Research Networking Center in Bioengineering
- Biomaterials and Nanomedicine (CIBER BBN)
- Spain
| | - Judith Mayr
- Institute of Organic Chemistry
- University of Regensburg
- D-93040 Regensburg
- Germany
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Biomedical Research Networking Center in Bioengineering
- Biomaterials and Nanomedicine (CIBER BBN)
- Spain
| | - David Díaz Díaz
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Institute of Organic Chemistry
- University of Regensburg
- D-93040 Regensburg
| |
Collapse
|
35
|
Dickinson E. Exploring the frontiers of colloidal behaviour where polymers and particles meet. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.07.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Xu S, Chen J, Wang B, Yang Y. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix. J Colloid Interface Sci 2015. [PMID: 26197108 DOI: 10.1016/j.jcis.2015.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems.
Collapse
Affiliation(s)
- Suxin Xu
- Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, Donghua University, Shanghai 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jiangang Chen
- Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, Donghua University, Shanghai 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Bijia Wang
- Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, Donghua University, Shanghai 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Yiqi Yang
- Department of Textiles, Merchandising & Fashion Design, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|