1
|
Inthamat P, Siripatrawan U. Influence of chitosan encapsulation on functionality and stability of astaxanthin nanoemulsion fabricated using high pressure homogenization. Int J Biol Macromol 2025; 303:140379. [PMID: 39880245 DOI: 10.1016/j.ijbiomac.2025.140379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Astaxanthin is a natural antioxidant substance, but it can be easily degraded by light, heat, and oxidation. One solution to overcome these problems is to transform astaxanthin into nanoemulsion within a protective matrix produced during an encapsulation process. In this study astaxanthin nanoemulsion (ANE) and chitosan (CS) incorporated with ANE (CS-ANE) were fabricated using high-pressure homogenizer (HPH). Experiments were carried out to establish the influence of HPH pressure (150 and 180 MPa) and number of cycles (1-4 cycles) passing through the HPH nozzle, and CS concentration (0 % (CS0-ANE), 0.55 % (CS1-ANE), 0.75 % (CS2-ANE) and 0.95 % (CS3-ANE)) on the droplet size, zeta-potential, size distribution, morphology, encapsulation efficiency (EE), thermal stability, and antioxidant activity (DPPH and FRAP assays). The zeta potential of ANE increased after incorporated with CS. The droplet size of CS-ANE decreased with increasing HPH pressure and number of cycles. The EE of CS0-ANE increased significantly from 59.61 % to 76 % for CS1-ANE, 87.04 % for CS2-ANE, and 90.28 % for CS3-ANE. CS2-ANE and CS3-ANE had thermal stability at 90 °C for 30 min and could preserve antioxidant activity of astaxanthin better than CS0-ANE and CS1-ANE. Besides antioxidant assays, the antioxidant potential of the CS-ANE was also evaluated in a real food system and found that CS2-ANE was the best for inhibition of lipid oxidation in safflower oil during storage at 45 °C. These results indicated that CS encapsulation can enhance stability and preserve antioxidant activity of astaxanthin.
Collapse
Affiliation(s)
- Patthrare Inthamat
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ubonrat Siripatrawan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Moradi Alvand Z, Rahimi M, Parseghian L, Haji F, Rafati H. Application of microfluidic technology and nanoencapsulation to amplify the antibacterial activity of clindamycin against a food born pathogen. Sci Rep 2025; 15:5334. [PMID: 39948283 PMCID: PMC11825678 DOI: 10.1038/s41598-025-89955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025] Open
Abstract
Foodborne illnesses are often caused by microbial contamination during preparation or storage. In this work, stable nanoemulsions of clindamycin were prepared using Mentha piperita essential oil (MEO) as a nanocarrier delivery system. Response Surface Methodology was used to optimize the key variables for clindamycin nanoemulsion formulation, including 4.83, 2.83, and 0.14%w/w surfactant, essential oil, and clindamycin, respectively. The stability of MEO/clindamycin nanoemulsion (MEO/C NE) with a mean droplet size of 75.46 ± 3.2 nm was monitored over 3 months. The antibacterial activity of MEO/C NE and bulk compounds against E. coli bacterium was compared using a conventional method and a microfluidic chip. A significant difference in the antibacterial activity was observed by employing a microfluidic chip as compared to the conventional technique, probably due to a high contact surface area between the nanodroplets and bacterial membrane. In the microfluidic chip, the E. coli was completely inhibited in 30 min, whereas 3 h was needed for complete inhibition using the conventional method. The results of this study highlight the significance of nanoemulsion delivery systems to improve the antimicrobial activity of clindamycin and also microfluidic technology as a fast and reliable technique for examining antibiotics and nano delivery systems against microorganisms.
Collapse
Affiliation(s)
- Zinab Moradi Alvand
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Masoud Rahimi
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
| | - Liana Parseghian
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Haji
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
| | - Hasan Rafati
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran.
| |
Collapse
|
3
|
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024; 16:1333. [PMID: 39458662 PMCID: PMC11510719 DOI: 10.3390/pharmaceutics16101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
4
|
Jitpasutham S, Sinsomsak W, Chuesiang P, Ryu V, Siripatrawan U. Green active coating from chitosan incorporated with spontaneous cinnamon oil nanoemulsion: Effects on dried shrimp quality and shelf life. Int J Biol Macromol 2024; 262:129711. [PMID: 38278379 DOI: 10.1016/j.ijbiomac.2024.129711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Green active film from chitosan (C) incorporated with spontaneous emulsified cinnamon oil nanoemulsion (CONE; droplet size of 79.27 nm and polydispersity index of 0.27) was developed. The obtained chitosan film containing CONE (C + CONE) had tensile elongation and light protective effect higher than C film due to the incorporation of bioactive compounds from cinnamon oil as proven by Fourier Transform Infrared Spectroscopy. The effect of C + CONE as active edible coating on the physical, chemical, and microbiological properties of dried shrimp was then investigated. The quality of samples coated with C + CONE (DS + C + CONE) was compared to those coated with C (DS + C) and without coating (DS). In this study, C + CONE could enhance astaxanthin content and reduce lipid oxidation in dried shrimp. During 6 weeks of storage, C + CONE was found to be an effective antimicrobial coating that significantly inhibited growth of bacteria, delayed lipid oxidation and retarded the production of volatile amines in dried shrimp. DS + C + CONE had lower malonaldehyde equivalents (0.52 mg/kg oil), trimethylamine (11.74 mg/100 g), total volatile base nitrogen (84.33 mg/100 g) and total viable count (4.80 Log CFU/g), but had higher astaxanthin content (12.53 ± 0.12 μg/g) than DS and DS + C. The results suggested that the developed C + CONE coating has potential to be used as active coating for preserving food quality.
Collapse
Affiliation(s)
- Supisara Jitpasutham
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watcharin Sinsomsak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyanan Chuesiang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Victor Ryu
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ubonrat Siripatrawan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
6
|
Panwar A, Kumar V, Dhiman A, Thakur P, Sharma V, Sharma A, Kumar S. Nanoemulsion based edible coatings for quality retention of fruits and vegetables-decoding the basics and advancements in last decade. ENVIRONMENTAL RESEARCH 2024; 240:117450. [PMID: 37875173 DOI: 10.1016/j.envres.2023.117450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Fruits and vegetables (F&V) are highly perishable and have important contributions to nutritional and economic sustainability. Although the developing nations have shown an immense increase in the production of horticultural commodities, the post-harvest losses are significant and have an adverse impact on the resources, economy, and environment as well. Nanoemulsion-based carriers are recognized for their diversity, natural origin, and immense potential to restrict losses while boosting the functional attributes of produce. The recent findings attest to nanoemulsions potential for extending the shelf life, managing quality, and reducing the losses of the perishables for sustainable livelihood of the farmers. However, further studies are required to evaluate the biological fate, safety, or potential toxicity of the nanoemulsion-based edible coatings. This review precisely focuses on various matrices used in the production of nanoemulsions, fabrication methods, characterization techniques, and the use of natural emulsifiers instead of chemicals. The future research focus stresses on developing low-cost fabrication techniques for nanoemulsion, improvement of the transmission properties i. e gas transmission rate (GTR), water vapor transmission rate (WVTR), and enhancing the performance of monolayer, bilayer, and other composite nanoemulsion base films. This beyond reducing the postharvest losses shall also restrict burden of the food waste management and related environmental issues at the same time.
Collapse
Affiliation(s)
- Anika Panwar
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India
| | - Vikas Kumar
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana. Punjab, 141027, India
| | - Atul Dhiman
- Department of Food Science & Technology, Punjab Agricultural University, Ludhiana. Punjab, 141027, India
| | - Priyanka Thakur
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India
| | - Vishal Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan (HP), 173229, India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur, Hamirpur, HP, 176041, India
| | - Satish Kumar
- Department of Food Science & Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan HP, 173230, India.
| |
Collapse
|
7
|
Santamaría E, Maestro A, González C. Use of Double Gelled Microspheres to Improve Release Control of Cinnamon-Loaded Nanoemulsions. Molecules 2023; 29:158. [PMID: 38202745 PMCID: PMC10780570 DOI: 10.3390/molecules29010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The use of nanoemulsions as encapsulation systems for active ingredients, such as cinnamon oil, has been studied. A surfactant based on polyoxyethylene glycerol esters from coconut/palm kernel oil has been used. The nanoemulsions were obtained by the two most commonly low-energy emulsification methods, the composition inversion phase (PIC) and the temperature inversion phase (PIT) methods. Nanoemulsions were successfully obtained by both methods, with very small droplet sizes (5-14 nm) in both cases, but a greater stability was observed when the PIT method was used. Nanoemulsions were encapsulated by external gelation using two different polysaccharides, alginate or chitosan, dissolved in the continuous phase of the nanoemulsion. Then, the nanoemulsion was dropped into a bath with a gelling agent. To improve the release control of cinnamon oil and avoid the burst effect, beads prepared with one of the polysaccharides were coated with the second polysaccharide and then gelled again. Double gelled beads were successfully obtained, the core with chitosan and the outer layer (shell) with alginate. SEM images showed the morphology of the single beads presenting high porosity. When the beads were coated, the porosity decreased because the second polysaccharide molecules covered the pre-existing pores. The smoother surface was obtained when this second layer was, in turn, gelled. The release patterns at pH = 2 and pH = 7 were studied. It was observed that the double gelled bead provided a more gradual release, but maintained approximately the same amount of final released oil. The release patterns were fitted to the Korsmeyer-Peppas model. The fitting parameters reflected the effect of the different coating layers, correlating with different diffusion mechanisms according to the bead core and shell materials.
Collapse
Affiliation(s)
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain; (E.S.); (C.G.)
| | | |
Collapse
|
8
|
Ashfaq R, Rasul A, Asghar S, Kovács A, Berkó S, Budai-Szűcs M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int J Mol Sci 2023; 24:15764. [PMID: 37958750 PMCID: PMC10648376 DOI: 10.3390/ijms242115764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Akhtar Rasul
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| |
Collapse
|
9
|
Vo TP, Tran HKL, Ta TMN, Nguyen HTV, Phan TH, Nguyen THP, Nguyen VK, Dang TCT, Nguyen LGK, Chung TQ, Nguyen DQ. Extraction and Emulsification of Carotenoids from Carrot Pomaces Using Oleic Acid. ACS OMEGA 2023; 8:39523-39534. [PMID: 37901568 PMCID: PMC10601056 DOI: 10.1021/acsomega.3c05301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
This study aimed to use oleic acid-based ultrasonic-assisted extraction (UAE) to recover carotenoids from carrot pomace and emulsify the enriched-carotenoid oleic acid using spontaneous and ultrasonic-assisted emulsification. The extraction performance of oleic acid was compared with traditional organic solvents, including hexane, acetone, and ethyl acetate. The one-factor experiments were employed to examine the impact of UAE conditions, including liquid-to-solid ratios, temperature, ultrasonic power, and time, on the extraction yield of carotenoids and to find the conditional ranges for the optimization process. The response surface methodology was employed to optimize the UAE process. The second-order extraction kinetic model was used to find the mechanism of oleic acid-based UAE. After that, the enriched-carotenoid oleic acid obtained at the optimal conditions of UAE was used to fabricate nanoemulsions using spontaneous emulsification (SE), ultrasonic-assisted emulsification (UE), and SE-UE. The effect of SE and UE conditions on the turbidity of nanoemulsion was determined. Then, the physiochemical attributes of the nanoemulsion from SE, UE, and spontaneous ultrasonic-assisted emulsification (SE-UE) were determined using the dynamic light scattering method. The extraction yield of carotenoids from carrot pomace by using sonication was the highest. The adjusted optimal conditions were 39 mL/g of LSR, 50 °C, 12.5 min, and 350 W of ultrasonic power. Under optimal conditions, the carotenoid content attained was approximately 163.43 ± 1.83 μg/g, with the anticipated value (166 μg/g). The particle sizes of nanoemulsion fabricated at the proper conditions of SE, UE, and SE-UE were 31.2 ± 0.83, 33.8 ± 0.52, and 109.7 ± 8.24 nm, respectively. The results showed that SE and UE are suitable methods for fabricating nanoemulsions. The research provided a green approach for extracting and emulsifying carotenoids from carrot pomace.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Hoang Khanh Linh Tran
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thi Minh Ngoc Ta
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Hoang Trieu Vy Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thuy Han Phan
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Tran Ha Phuong Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Vy Khang Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thi Cam Tu Dang
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Le Gia Kiet Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thanh Quynh Chung
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Dinh Quan Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
10
|
Santamaría E, Maestro A, Vilchez S, González C. Study of nanoemulsions using carvacrol/MCT-(Oleic acid-potassium oleate)/ Tween 80 ®- water system by low energy method. Heliyon 2023; 9:e16967. [PMID: 37332948 PMCID: PMC10276228 DOI: 10.1016/j.heliyon.2023.e16967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Carvacrol is studied in different fields due to its microbial and antioxidant properties. Its use is limited because of the water insolubility and its strong taste. To overcome these problems, carvacrol has been successfully loaded into nanoemulsions. The low-energy emulsification method Phase Inversion Composition (PIC) is used to prepare oil-in-water nanoemulsions in the carvacrol/medium chain triglycerides (MCT)-(oleic acid-potassium oleate/Tween 80 ®)-water system. Oleic acid acts as a co-surfactant when it is neutralized with KOH along the emulsification path changing the spontaneous curvature of the interface when increasing the HLB number from 1 for the oleic acid to 20 for the potassium oleate and, therefore, changing the HLB number of the surfactant mixture. The phases diagrams are studied in order to understand the behaviour of the system and to establish the composition range where nanoemulsions can be obtained. Nanoemulsions are formed when the emulsification path crosses a region of direct or planar structure without excess of oil. Experimental design is performed in order to study the influence of composition variables as carvacrol/MCT ratio and (oleic-oleate)/Tween 80 ® ratio (OL-OT/T80 ratio) on the diameter of the nanoemulsions and their stability. It has been observed the importance of the HLB number of the surfactants mixture in order to obtain small-sized stable nanoemulsions. Surface response graphic shows that (OL-OT)/T80 ratio is a significant parameter in the mean diameter of the nanoemulsions. A minimum diameter is obtained for a (OL-OT)/T80 ratio 45/55 due to the fact that ratio is near the preferred HLB of the oil mixture and the emulsification path contains a wide liquid crystal monophasic region with all the oil incorporated in the structure. Diameters of 19 nm for carvacrol/MCT ratio of 30/70 or diameters of 30 nm for ratios of 45/55 with high stability values presented a good potential to be incorporated into edible films in the future. Regarding nanoemulsions stability an optimum value is also observed for a carvacrol/MCT ratio. The addition of another carrier oil as olive oil instead of MCT showed an improvement of the nanoemulsions stability against Ostwald ripening, probably due to the smaller solubility of olive oil. The use of olive oil does not significantly change the diameter of the nanoemulsion.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028, Spain
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028, Spain
| | - Susana Vilchez
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Carme González
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028, Spain
| |
Collapse
|
11
|
Santamaría E, Maestro A, González C. Encapsulation of Carvacrol-Loaded Nanoemulsion Obtained Using Phase Inversion Composition Method in Alginate Beads and Polysaccharide-Coated Alginate Beads. Foods 2023; 12:foods12091874. [PMID: 37174412 PMCID: PMC10178087 DOI: 10.3390/foods12091874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Nanoemulsions have been widely studied as lipophilic compound loading systems. A low-energy emulsification method, phase inversion composition (PIC), was used to prepare oil-in-water nanoemulsions in a carvacrol-coconut oil/Tween 80®-(linoleic acid-potassium linoleate)/water system. The phase behaviour of several emulsification paths was studied and related to the composition range in which small-sized stable nanoemulsions could be obtained. An experimental design was carried out to determine the best formulation in terms of size and stability. Nanoemulsions with a very small mean droplet diameter (16-20 nm) were obtained and successfully encapsulated to add carvacrol to foods as a natural antimicrobial and antioxidant agent. They were encapsulated into alginate beads by external gelation. In order to improve the carvacrol kinetics release, the beads were coated with two different biopolymers: chitosan and pullulan. All formulations were analysed with scanning electron microscopy to investigate the surface morphology. The release patterns at different pHs were evaluated. Different kinetics release models were fitted in order to study the release mechanisms affecting each formulation. Chitosan-coated beads avoided the initial release burst effect, improving the beads' structure and producing a Fickian release. At basic pH, the chitosan-coated beads collapsed and the pullulan-coated beads moderately improved the release pattern of the alginate beads. For acid and neutral pHs, the chitosan-coated beads presented more sustained release patterns.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Carmen González
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Fernandes SS, Egea MB, Salas-Mellado MDLM, Segura-Campos MR. Chia Oil and Mucilage Nanoemulsion: Potential Strategy to Protect a Functional Ingredient. Int J Mol Sci 2023; 24:7384. [PMID: 37108546 PMCID: PMC10139160 DOI: 10.3390/ijms24087384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanoencapsulation can increase the stability of bioactive compounds, ensuring protection against physical, chemical, or biological degradations, and allows to control of the release of these biocompounds. Chia oil is rich in polyunsaturated fatty acids-8% corresponds to omega 3 and 19% to omega 6-resulting in high susceptibility to oxidation. Encapsulation techniques allow the addition of chia oil to food to maintain its functionality. In this sense, one strategy is to use the nanoemulsion technique to protect chia oil from degradation. Therefore, this review aims to present the state-of-the-art use of nanoemulsion as a new encapsulation approach to chia oil. Furthermore, the chia mucilage-another chia seed product-is an excellent material for encapsulation due to its good emulsification properties (capacity and stability), solubility, and water and oil retention capacities. Currently, most studies of chia oil focus on microencapsulation, with few studies involving nanoencapsulation. Chia oil nanoemulsion using chia mucilage presents itself as a strategy for adding chia oil to foods, guaranteeing the functionality and oxidative stability of this oil.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros 96203-900, Brazil;
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Sul Goiana, Km 01, Rio Verde 75901-970, Brazil
| | | | - Maira Rubi Segura-Campos
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Periférico Norte km 33.5, Tablaje Catastral 13615, Mexico;
| |
Collapse
|
13
|
Advances and trends in encapsulation of essential oils. Int J Pharm 2023; 635:122668. [PMID: 36754179 DOI: 10.1016/j.ijpharm.2023.122668] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
There is a huge concern regarding the potential carcinogenic and mutagenic risks associated with the usage of synthetic chemicals as preservatives in various consumer products such as food and pharmaceutical formulations. In this aspect, there is a need for the development of alternative natural preservatives to replace these synthetic chemicals. More recently, naturally occurring essential oils have emerged as popular ingredients owing to their unique characteristics like antioxidant and antimicrobial activity, to enrich and enhance the functional properties of consumer products. However, due to their high volatility and hydrophobicity, their functionality is lost and their incorporation in aqueous products is challenging. One of the promising strategies to overcome this challenge is encapsulation which involves the entrapment of the essential oil inside a biocompatible material for its controlled release and increased bioavailability. Also, the choice of encapsulation method depends on the component to be encapsulated and the shell material. In this review, encapsulation in various colloidal systems that facilitate the potential delivery of essential oils is discussed. The focus is on encapsulation techniques along with their advantages and disadvantages, encapsulation efficiency, and in vitro release studies.
Collapse
|
14
|
Alvand ZM, Rahimi M, Rafati H. Chitosan decorated essential oil nanoemulsions for enhanced antibacterial activity using a microfluidic device and response surface methodology. Int J Biol Macromol 2023; 239:124257. [PMID: 36996964 DOI: 10.1016/j.ijbiomac.2023.124257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
In this work, the antibacterial activity of Satureja Khuzestanica essential oil nanoemulsions improved by employing chitosan (ch/SKEO NE) against E. coli bacterium. The optimum ch/SKEO NE with mean droplet size of 68 nm was attained at 1.97, 1.23, and 0.10%w/w of surfactant, essential oil and chitosan, using Response Surface Methodology (RSM). Applying microfluidic platform, the ch/SKEO NE resulted in improved antibacterial activity owing to the modification of surface properties. The nanoemulsion samples showed a significant rupturing effect on the E. coli bacterial cell membrane which resulted in a rapid release of cellular contents. This action was remarkably intensified by executing microfluidic chip in parallel to the conventional method. Having treated the bacteria in the microfluidic chip for 5 min with a 8 μg/mL concentration of ch/SKEO NE, the bacterial integrity disrupted quickly, and the activity was totally lost in a 10-min period at 37 μg/mL, while it took 5 h for a complete inhibition in the conventional method using the same concentration of ch/SKEO NE. It can be concluded that nanoemulsification of EOs using chitosan coating can intensify the interaction of nanodroplets with the bacterial membrane, especially within the microfluidic chips which provides high contact surface area.
Collapse
|
15
|
Foam-mat freeze-drying approach for preserving stability and antimicrobial activity of clove essential oil nanoemulsion. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Albuquerque PM, Azevedo SG, de Andrade CP, D’Ambros NCDS, Pérez MTM, Manzato L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers (Basel) 2022; 14:polym14245495. [PMID: 36559861 PMCID: PMC9782583 DOI: 10.3390/polym14245495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Essential oils (EOs) are complex mixtures of volatile and semi-volatile organic compounds that originate from different plant tissues, including flowers, buds, leaves and bark. According to their chemical composition, EOs have a characteristic aroma and present a wide spectrum of applications, namely in the food, agricultural, environmental, cosmetic and pharmaceutical sectors. These applications are mainly due to their biological properties. However, EOs are unstable and easily degradable if not protected from external factors such as oxidation, heat and light. Therefore, there is growing interest in the encapsulation of EOs, since polymeric nanocarriers serve as a barrier between the oil and the environment. In this context, nanoencapsulation seems to be an interesting approach as it not only prevents the exposure and degradation of EOs and their bioactive constituents by creating a physical barrier, but it also facilitates their controlled release, thus resulting in greater bioavailability and efficiency. In this review, we focused on selecting recent articles whose objective concerned the nanoencapsulation of essential oils from different plant species and highlighted their chemical constituents and their potential biotechnological applications. We also present the fundamentals of the most commonly used encapsulation methods, and the biopolymer carriers that are suitable for encapsulating EOs.
Collapse
Affiliation(s)
- Patrícia Melchionna Albuquerque
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
- Correspondence:
| | - Sidney Gomes Azevedo
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| | - Cleudiane Pereira de Andrade
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
| | - Natália Corrêa de Souza D’Ambros
- Research Group on Chemistry Applied to Technology (QAT), School of Technology, Amazonas State University, Manaus 69050-020, Brazil
| | - Maria Tereza Martins Pérez
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| | - Lizandro Manzato
- Laboratory of Synthesis and Characterization of Nanomaterials (LSCN), Federal Institute of Education, Science and Technology of Amazonas, Manaus 69075-351, Brazil
| |
Collapse
|
17
|
Al-Otaibi WA, AlMotwaa SM. Oxaliplatin-loaded nanoemulsion containing Teucrium polium L. essential oil induces apoptosis in Colon cancer cell lines through ROS-mediated pathway. Drug Deliv 2022; 29:2190-2205. [PMID: 35815706 PMCID: PMC9278420 DOI: 10.1080/10717544.2022.2096711] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Oxaliplatin (Oxa)-associated adverse side effects have considerably limited the clinical use of the drug in colon cancer therapy. Mutant p53 has diverse mutational profiles in colon cancer, and it influences the potencies of various chemotherapeutic drugs, including Oxa. Thus, it would be highly beneficial to identify an alternative therapeutic strategy that not only reduces the toxicity of Oxa, but also exerts a synergistic effect against colon cancers, regardless of their p53 profiles. The present study was aimed at preparing and optimizing Teucrium polium L. essential oil nanoemulsion (TPO-NANO) and investigating its effect on the sensitivity of colon cancer cells with differences in p53 status (HCT116 wild-type and HT-29 mutant-type) to Oxa. The viability of treated cells was determined and the combination index (CI) was calculated. Morphological changes were determined under inverted microscopy, while percentage apoptosis was assayed using flow cytometry. Intracellular ROS and the protein levels of p53 and Bax were measured. The colony-forming potential of treated cells was determined using colony assay. The size of TPO-NANO was markedly increased from 12.90 ± 0.04 nm to 14.47 ± 0.53 nm after loading Oxa (p ≤ 0.05). The combination (Oxa + TPO-NANO) produced a synergetic effect in HCT116 and HT-29, with CI of 0.94 and 0.88, respectively. Microscopic examination and flow cytometric analysis revealed that cells treated with Oxa + TPO-NANO had a higher percentage of apoptosis than cells exposed to monotherapy. Cumulatively, Oxa exerted an apoptotic effect on wild or mutant p53 colon cancer cells when combined with TPO-NANO, through a mechanism involving ROS-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Waad A Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Sahar M AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
18
|
De A, Ko YT. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics. Drug Deliv 2022; 29:2644-2657. [PMID: 35949146 PMCID: PMC9377237 DOI: 10.1080/10717544.2022.2108523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ionizable LNPs are the latest trend in nucleic acid delivery. Microfluidics technology has recently gained interest owing to its rapid mixing, production of nucleic acid-ionizable LNPs, and stability of nucleic acid inside the body. Industrial scale-up, nucleic acid-lipid long-term storage instability, and high production costs prompted scientists to seek alternate solutions to replace microfluidic technology. We proposed a single-pot, organic solvent-free thermocycling technology to efficiently and economically overcome most of the limitations of microfluidic technology. New thermocycling technology needs optimization of process parameters such as sonication duration, cooling–heating cycle, number of thermal cycles, and lipid:aqueous phase ratio to formulate precisely sized particles, effective nucleic acid encapsulation, and better shelf-life stability. Our research led to the formulation of siRNA-ionizable LNPs with particle sizes of 104.2 ± 34.7 nm and PDI 0.111 ± 0.109, with 83.3 ± 4.1% siRNA encapsulation. Thermocycling siRNA-ionizable LNPs had comparable morphological structures with commercialized microfluidics ionizable LNPs imaged by TEM and cryo-TEM. When compared to microfluidics ionizable LNPs, thermocycling siRNA-ionizable LNPs had a longer shelf life at 4°C. Our thermocycling technology showed an effective alternative to microfluidics technology in the production of nucleic acid–ionizable LNPs to meet global demand. Thermocycling technology is a low-energy, low-temperature, self-assembling cooling–heating process in which lipid droplets spontaneously break apart into much smaller droplets to form siRNA-ionizable LNPs. The new technology is an alternative to multistep, costly, and complex microfluidics technology for the formulation and bulk up of siRNA-ionizable LNPs economically. Thermocycling siRNA-ionizable LNPs formulation focused on optimizing process parameters such as thermal cycle rate, number of thermal cycles, and lipid:aqueous phase ratio. The thermocycling technology is able to overcome the limitations of the storage stability limitations of commercialized ionizable LNPs.
Collapse
Affiliation(s)
- Anindita De
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| |
Collapse
|
19
|
Huang C, Wang C, Zhang W, Yang T, Xia M, Lei X, Peng Y, Wu Y, Feng J, Li D, Zhang G. Preparation, In Vitro and In Vivo Evaluation of Nanoemulsion In Situ Gel for Transnasal Delivery of Traditional Chinese Medicine Volatile Oil from Ligusticum sinense Oliv.cv. Chaxiong. Molecules 2022; 27:7644. [PMID: 36364473 PMCID: PMC9655233 DOI: 10.3390/molecules27217644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/15/2023] Open
Abstract
Ischemic stroke is a difficult-to-treat brain disease that may be attributed to a limited therapeutic time window and lack of effective clinical drugs. Nasal-brain administration is characterized by low systemic toxicity and is a direct and non-invasive brain targeting route. Preliminary studies have shown that the volatile oil of Chaxiong (VOC) has an obvious anti-ischemic stroke effect. In this work, we designed a nanoemulsion thermosensitive in situ gel (VOC-NE-ISG) loaded with volatile oil of Chaxiong for ischemia via intranasal delivery to rat brain treatment of cerebral ischemic stroke. The developed VOC-NE-ISG formulation has a suitable particle size of 21.02 ± 0.25 nm and a zeta potential of -20.4 ± 1.47 mV, with good gelling ability and prolonged release of the five components of VOC. The results of in vivo pharmacokinetic studies and brain targeting studies showed that intranasal administration of VOC-NE-ISG could significantly improve the bioavailability and had excellent brain-targeting efficacy of nasal-to-brain delivery. In addition, the results of pharmacodynamics experiments showed that both VOC-NE and VOC-NE-ISG could reduce the neurological deficit score of model rats, reducing the size of cerebral infarction, with a significant effect on improving ischemic stroke. Overall, VOC-NE-ISG may be a promising intranasal nanomedicine for the effective treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chunhui Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Wuzhou Traditional Chinese Medicine Hospital, Wuzhou 543001, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Canjian Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang 330006, China
| | - Wenliu Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang 330006, China
| | - Tao Yang
- College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mingyan Xia
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang 330006, China
| | - Xiaomeng Lei
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang 330006, China
| | - Ying Peng
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang 330006, China
| | - Yuhuan Wu
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang 330006, China
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Dongxun Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang 330006, China
| | - Guosong Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Nanchang 330006, China
| |
Collapse
|
20
|
AlMotwaa SM, Al-Otaibi WA. Formulation design, statistical optimization and in vitro biological activities of nano-emulsion containing essential oil from cotton-lavender (Santolina chamaecyparissus L.). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
21
|
Algahtani MS, Ahmad MZ, Ahmad J. Investigation of Factors Influencing Formation of Nanoemulsion by Spontaneous Emulsification: Impact on Droplet Size, Polydispersity Index, and Stability. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080384. [PMID: 36004909 PMCID: PMC9404776 DOI: 10.3390/bioengineering9080384] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Interest in nanoemulsion technology has increased steadily in recent years for its widespread applications in the delivery of pharmaceuticals, nutraceuticals, and cosmeceuticals. Rational selection of the composition and the preparation method is crucial for developing a stable nanoemulsion system with desired physicochemical characteristics. In the present study, we investigate the influence of intricate factors including composition and preparation conditions that affect characteristic parameters and the stability of the nanoemulsion formation prepared by the spontaneous emulsification method. Octanoic acid, capryol 90, and ethyl oleate were selected to represent oil phases of different carbon–chain lengths. We explored the impact of the addition mode of the oil–Smix phase and aqueous phase, vortexing time, Km (surfactant/cosurfactant) ratio, and the replacement of water by buffers of different pH as an aqueous system. The phase behavior study showed that the Smix phase had a significant impact on the nanoemulsifying ability of the nanoemulsions composed of oil phases of varying carbon-chain lengths. The mode of mixing of the oil–Smix phase to the aqueous phase markedly influenced the mean droplet size and size distribution of the nanoemulsions composed of oil phases as capryol 90. Vortexing time also impacted the mean droplet size and the stability of the generated nanoemulsion system depending on the varying carbon-chain length of the oil phase. The replacement of the water phase by aqueous buffers of pH 1.2, 5.5, 6.8, and 7.4 has altered the mean droplet size and size distribution of the nanoemulsion system. Further, the Km ratio also had a significant influence on the formation of the nanoemulsion system. The findings of this investigation are useful in understanding how the formulation composition and process parameters of the spontaneous emulsification technique are responsible for affecting the physicochemical characteristics and stability of the nanoemulsion system composed of oil of varying carbon-chain (C8-C18) length.
Collapse
|
22
|
Ximango PB, da Rocha EBD, de Sousa AMF, Scofield CF, Paredes MLL, Lima ERDA. Preparation and characterization of patauá and pracaxi Brazilian vegetable oil emulsions. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2095284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Patricia Braz Ximango
- Programa de Pós-Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| | | | - Ana Maria Furtado de Sousa
- Programa de Pós-Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| | - Cynthia Fraga Scofield
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| | - Márcio Luis Lyra Paredes
- Programa de Pós-Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| | - Eduardo Rocha de Almeida Lima
- Programa de Pós-Graduação em Engenharia Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Cep 20550-013
| |
Collapse
|
23
|
Pilong P, Chuesiang P, Mishra DK, Siripatrawan U. Characteristics and antimicrobial activity of microfludized clove essential oil nanoemulsion optimized using response surface methodology. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Puncharat Pilong
- Department of Biotechnology, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Piyanan Chuesiang
- Department of Food technology, Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Dharmendra K. Mishra
- Department of Food Science, College of Agriculture Purdue University West Lafayette IN USA
| | - Ubonrat Siripatrawan
- Department of Food technology, Faculty of Science Chulalongkorn University Bangkok Thailand
| |
Collapse
|
24
|
Chuesiang P, Zhang J, Choi E, Yoon IS, Kim JT, Shin GH. Observation of curcumin-loaded hydroxypropyl methylcellulose (HPMC) oleogels under in vitro lipid digestion and in situ intestinal absorption in rats. Int J Biol Macromol 2022; 208:520-529. [PMID: 35337911 DOI: 10.1016/j.ijbiomac.2022.03.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Curcumin-loaded nanostructured lipid carriers (Cur-NLCs)-based hydroxypropyl methylcellulose (HPMC) oleogels (Cur-NLCs-HPMC-OGs) were fabricated using a cryogel template. The effect of the HPMC viscosity grade on the oleogel characteristics and in situ intestinal absorption were examined. Highly stable Cur-NLCs were prepared with a mean particle size of 314 nm and polydispersity index of 0.275. Cur-NLCs affected the creamy texture of self-standing Cur-NLCs-HPMC-OGs. The Cur-NLCs were tightly packed as oil droplets in the network of HPMC. However, a high viscosity of HPMC-4000 led to a greater ability to entrap and prevent droplet coalescence compared to a low viscosity of HPMC-400. NLCs promoted the release of free fatty acids during in vitro lipid digestion, whereas HPMC-4000 maintained the strength and durability of oleogels against mechanical and enzymatic breakdown. The in situ loop results revealed higher curcumin absorption by Cur-NLCs-HPMC-OGs than by Cur-HPMC-OGs. HMPC-4000 showed slightly higher curcumin absorption compared to HPMC-400.
Collapse
Affiliation(s)
- Piyanan Chuesiang
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jing Zhang
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Eugene Choi
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| |
Collapse
|
25
|
Weerapol Y, Manmuan S, Chaothanaphat N, Okonogi S, Limmatvapirat C, Limmatvapirat S, Tubtimsri S. Impact of Fixed Oil on Ostwald Ripening of Anti-Oral Cancer Nanoemulsions Loaded with Amomum kravanh Essential Oil. Pharmaceutics 2022; 14:938. [PMID: 35631524 PMCID: PMC9146979 DOI: 10.3390/pharmaceutics14050938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, essential oil from Amomum kravanh (AMO) was reported to exert anti-oral cancer effects. Although it was more effective after being loaded into nanoemulsions, AMO without an Ostwald ripening inhibitor was unable to form stable nanoemulsions because of the Ostwald ripening phenomenon. In this study, we examined the influence of Ostwald ripening inhibitors, such as fixed oils and polyethylene glycol 4000 (PEG 4000), on nanoemulsion properties prepared by a phase inversion temperature method. Several fixed oils, including virgin coconut oil (VCO), palm oil (PMO), olive oil (OLO), and PEG 4000, were evaluated, and their Ostwald ripening inhibitory effects were compared. The results suggest that the type and ratio of AMO:fixed oils influence the formation and characteristics of nanoemulsions. PEG 4000 was unable to produce nanoemulsions; however, stable nanoemulsions with small droplet sizes were observed in preparations containing OLO and VCO at an AMO:fixed oil ratio of 80:20, which may be the result of specific molecular interactions among the components. Using an MTT assay, we demonstrated that the AMO:OLO (80:20) nanoemulsion produced the most significant cytotoxic effect on oral cancer cells with a percentage of 99.68 ± 0.56%. Furthermore, the AMO:OLO 80:20 nanoemulsion inhibits metastasis and induces oral cancer cell death through the intrinsic apoptosis pathway. In conclusion, AMO nanoemulsion with anti-oral cancer activity was successfully produced by varying the amount and type of fixed oils. In the future, this discovery may lead to the development of stable nanoemulsions employing additional volatile oils.
Collapse
Affiliation(s)
- Yotsanan Weerapol
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (N.C.)
| | - Suwisit Manmuan
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (N.C.)
| | - Nattaya Chaothanaphat
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (N.C.)
| | - Siriporn Okonogi
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutima Limmatvapirat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Sontaya Limmatvapirat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Sukannika Tubtimsri
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (N.C.)
| |
Collapse
|
26
|
da Silva BD, do Rosário DKA, Weitz DA, Conte-Junior CA. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Singh SK, Mukerjee A, Gupta P, Kumar Tripathi A. Evaluation of Antigenotoxic Effect of Cinnamon Oil and Usnic Acid Blended Nanoemulsion on Swiss Albino Mice. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00902-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Fu X, Gao Y, Yan W, Zhang Z, Sarker S, Yin Y, Liu Q, Feng J, Chen J. Preparation of eugenol nanoemulsions for antibacterial activities. RSC Adv 2022; 12:3180-3190. [PMID: 35425353 PMCID: PMC8979276 DOI: 10.1039/d1ra08184e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Eugenol is a versatile plant essential oil, but its high volatility and low water solubility greatly limit its application. Accordingly, this study prepared eugenol nanoemulsions by a high-speed shearing technique. Through visual inspection and a series of characterizations, including dynamic light scattering, and confocal laser scanning microscopy, the optimized formula was determined to be 5% (w/w) oil phase (eugenol) and 8% (w/w) surfactant (Tween-80), and the optimized shearing time was 5 min. The optimized nanoemulsion had good stability, small droplets (85 nm), and uniform distribution. At a concentration of 0.02 mg μL-1, the nanoemulsion showed strong inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Scanning electron microscopy (SEM) images showed severe deformation and membrane rupture of both bacteria treated by the nanoemulsion. This result was further confirmed by the leakage of proteins in both bacteria after treatment. The results of reactive oxygen species (ROS) and malondialdehyde (MDA) measurements indicated that the increased levels of ROS in both bacteria treated by the nanoemulsion triggered lipid peroxidation, thus increasing the MDA levels, ultimately causing changes in cell membrane permeability and disruption of the membrane structure. In addition, the nanoemulsion had a small effect on the proliferation and apoptosis of hepatocytes (L02) and lung cells (BEAS-2B), indicating its good biocompatibility. In this study, we developed a novel eugenol nanoemulsion with high stability and good biological activity, which may provide a promising and effective method for wound treatment in the healthcare area.
Collapse
Affiliation(s)
- Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Weiyao Yan
- College of Horticulture and Plant Protection, Yangzhou University Yangzhou 225009 China +86-514-87979395
| | - Ziluo Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Shovra Sarker
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Yinyan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University Yangzhou 225009 China +86-514-87979395
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| |
Collapse
|
29
|
Sampaio CI, Bourbon AI, Gonçalves C, Pastrana LM, Dias AM, Cerqueira MA. Low energy nanoemulsions as carriers of thyme and lemon balm essential oils. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Hien LTM, Khoa TD, Dao DTA. Characterization of black pepper essential oil nanoemulsion fabricated by emulsion phase inversion method. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ly Thi Minh Hien
- Division of Food Technology Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
- Faculty of Biotechnology Ho Chi Minh City Open University Ho Chi Minh City Vietnam
| | - Ta Dang Khoa
- Faculty of Biotechnology Ho Chi Minh City Open University Ho Chi Minh City Vietnam
| | - Dong Thi Anh Dao
- Division of Food Technology Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
31
|
Morphological and metabolomics impact of sublethal doses of natural compounds and its nanoemulsions in Bacillus cereus. Food Res Int 2021; 149:110658. [PMID: 34600660 DOI: 10.1016/j.foodres.2021.110658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Microbiological safety in food industry are always a concern regarding sublethal tolerance in bacteria for common and natural sanitizers. Natural bacteriocins, such as nisin (NIS), may negatively interfere in the efficiency of major compounds of essential oils against foodborne pathogenic bacteria. However, nanoemulsioned forms increase the bactericidal potential of natural compounds acting synergistically. In this study, cinnamaldehyde (CIN), citral (CIT), and linalool (LIN) were evaluated independently, associated with NIS, and in nanoemulsions (NEs) against Bacillus cereus using untargeted-metabolomics. Results revealed morphological changes in the structure of B. cereus treated with NEs of CIN and CIT, both NIS-associated. In addition, sensibility tests and UHPLC-QTOF-MS analyses indicated that NIS might react together with CIT reducing the bactericidal efficiency, while the nanoemulsion of CIT effect was enhanced by NIS in nanoemulsioned forms. This study highlights the importance of prudent administration of natural compounds as antimicrobial agents to prevent sublethal tolerance in pathogenic bacteria.
Collapse
|
32
|
Badr MM, Badawy ME, Taktak NE. Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
The Improved Properties of Zein Encapsulating and Stabilizing Sacha Inchi Oil by Surfactant Combination of Lecithin and Tween 80. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02706-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Encapsulation of Baicalein in Cinnamon Essential Oil Nanoemulsion for Enhanced Anticancer Efficacy Against MDA-MB-231 Cells. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00900-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Muhoza B, Qi B, Harindintwali JD, Koko MYF, Zhang S, Li Y. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Crit Rev Food Sci Nutr 2021; 63:2521-2543. [PMID: 34515594 DOI: 10.1080/10408398.2021.1977236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Collapse
Affiliation(s)
- Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
36
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
37
|
Kumar M, Bishnoi RS, Shukla AK, Jain CP. Development and optimization of drug-loaded nanoemulsion system by phase inversion temperature (PIT) method using Box-Behnken design. Drug Dev Ind Pharm 2021; 47:977-989. [PMID: 34278910 DOI: 10.1080/03639045.2021.1957920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of the present investigation was to develop a stable and optimized drug-loaded nanoemulsion system using the phase inversion temperature (PIT) method. SIGNIFICANCE The PIT method has been widely used for the development of food-grade nanoemulsion systems. For the first time, a simple and cost-effective, PIT method was used for the development of a stable drug-loaded nanoemulsion system. METHODS Box-Behnken experimental design was used for the development of an optimized drug-loaded nanoemulsion system by the PIT method. The independent variables were optimized for responses by using the desirability function. The hydrophobic drug, benidipine was used as a modal drug. Optimized oil phase (blend of long-chain triglycerides oil, medium-chain triglycerides oil and essential oil) was used for the development of oil in water (O/W) nanoemulsion system. RESULTS Optimum nanoemulsion formulation was stable, transparent and contained 50% of oil to surfactant percentage with a droplet size of 96.57 ± 1.61 nm. The optimum formulation also showed higher in-vitro drug diffusion from dialysis membrane as compared to the marketed formulation. Nanoemulsion droplets were observed as spherical in the transmission electron microscopy (TEM) images. Box-Behnken statistical analysis revealed that all the independent variables had a significant impact on characteristics of nanoemulsion and the predicated value of independent variables was found to be valid. CONCLUSION It was concluded that the PIT method produces a stable and efficient drug-loaded nanoemulsion system. Further, the optimized oil phase can be used as an alternative to costly, commercial medium-chain triglycerides (MCT) oils, for the development of a stable nanoemulsion system.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | - Ram Singh Bishnoi
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | - Ajay Kumar Shukla
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | | |
Collapse
|
38
|
Dinshaw IJ, Ahmad N, Salim N, Leo BF. Nanoemulsions: A Review on the Conceptualization of Treatment for Psoriasis Using a 'Green' Surfactant with Low-Energy Emulsification Method. Pharmaceutics 2021; 13:1024. [PMID: 34371716 PMCID: PMC8309190 DOI: 10.3390/pharmaceutics13071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a skin disease that is not lethal and does not spread through bodily contact. However, this seemingly harmless condition can lead to a loss of confidence and social stigmatization due to a persons' flawed appearance. The conventional methods of psoriasis treatment include taking in systemic drugs to inhibit immunoresponses within the body or applying topical drugs onto the surface of the skin to inhibit cell proliferation. Topical methods are favored as they pose lesser side effects compared to the systemic methods. However, the side effects from systemic drugs and low bioavailability of topical drugs are the limitations to the treatment. The use of nanotechnology in this field has enhanced drug loading capacity and reduced dosage size. In this review, biosurfactants were introduced as a 'greener' alternative to their synthetic counterparts. Glycolipid biosurfactants are specifically suited for anti-psoriatic application due to their characteristic skin-enhancing qualities. The selection of a suitable oil phase can also contribute to the anti-psoriatic effect as some oils have skin-healing properties. The review covers the pathogenic pathway of psoriasis, conventional treatments, and prospective ingredients to be used as components in the nanoemulsion formulation. Furthermore, an insight into the state-of-the-art methods used in formulating nanoemulsions and their progression to low-energy methods are also elaborated in detail.
Collapse
Affiliation(s)
- Ignatius Julian Dinshaw
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
39
|
Tubtimsri S, Limmatvapirat C, Limsirichaikul S, Akkaramongkolporn P, Piriyaprasarth S, Patomchaiviwat V, Limmatvapirat S. Incorporation of fixed oils into spearmint oil-loaded nanoemulsions and their influence on characteristic and cytotoxic properties against human oral cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Katsouli M, Giannou V, Tzia C. Enhancement of physicochemical and encapsulation stability of O 1/W/O 2 multiple nanoemulsions loaded with coenzyme Q 10 or conjugated linoleic acid by incorporating polyphenolic extract. Food Funct 2021; 11:8878-8892. [PMID: 32986051 DOI: 10.1039/d0fo01707h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple O1/W/O2 nanoemulsions and O1/W nanoemulsions fortified with CLA or CoQ10 were produced using extra virgin olive or olive pomace oil and were also incorporated with polyphenols extracted from olive kernel to enhance their kinetic and chemical stability. They were prepared using a high-speed ultrasonic homogenizer. Specifically, nanoemulsions with 6 wt% lipid phase and 6 wt% non-ionic emulsifier (Tween 40) were produced and they demonstrated a droplet diameter >200 nm and high encapsulation stability during 30 days of storage at 4 °C or 25 °C. The incorporation of CLA or CoQ10 and polyphenolic compounds facilitated the homogenization of emulsions, reducing the droplet size and enhancing their chemical stability, and their bioactive retention values were >79%. O1/W/O2 nanoemulsions were produced using a mixture of non-ionic emulsifiers (Span 20 and Tween 40) and the O1/W enriched nanoemulsion as the dispersed phase. All multiple emulsions showed a bimodal droplet size distribution and Newtonian behavior while polyphenols facilitated their homogenization. Both vegetable oils resulted in samples with high kinetic and chemical stability; the bioactive retention values were found to be >80% at the end of 30 days of storage at 4 °C or 25 °C. Extra virgin olive oil resulted in more stable nanoemulsions in regards to kinetic and chemical stability at 4 °C, showing limited creaming and sedimentation boundary. Multiple nanoemulsions with the lowest initial droplet size presented the lowest droplet diameter growth and phase separation and the highest retention values. By comparing O1/W nanoemulsions and O1/W/O2 nanoemulsions, we noted that the reduction in the total phenolic content and antioxidant activity during storage was higher in the O1/W type. However, both delivery systems protected CLA and CoQ10 presenting high retention during storage. FTIR spectra before and after ultrasonic homogenization indicated that the sonication process did not significantly affect the lipid phase of O1/W/O2 nanoemulsions.
Collapse
Affiliation(s)
- M Katsouli
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780, Zografou, Greece.
| | - V Giannou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780, Zografou, Greece.
| | - C Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780, Zografou, Greece.
| |
Collapse
|
41
|
Fabrication of Alginate-Based O/W Nanoemulsions for Transdermal Drug Delivery of Lidocaine: Influence of the Oil Phase and Surfactant. Molecules 2021; 26:molecules26092556. [PMID: 33925764 PMCID: PMC8125457 DOI: 10.3390/molecules26092556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Transdermal drug delivery of lidocaine is a good choice for local anesthetic delivery. Microemulsions have shown great effectiveness for the transdermal transport of lidocaine. Oil-in-water nanoemulsions are particularly suitable for encapsulation of lipophilic molecules because of their ability to form stable and transparent delivery systems with good skin permeation. However, fabrication of nanoemulsions containing lidocaine to provide an extended local anesthetic effect is challenging. Hence, the aim of this study was to address this issue by employing alginate-based o/w nanocarriers using nanoemulsion template that is prepared by combined approaches of ultrasound and phase inversion temperature (PIT). In this study, the influence of system composition such as oil type, oil and surfactant concentration on the particle size, in vitro release and skin permeation of lidocaine nanoemulsions was investigated. Structural characterization of lidocaine nanoemulsions as a function of water dilution was done using DSC. Nanoemulsions with small droplet diameters (d < 150 nm) were obtained as demonstrated by dynamic light scattering (DLS) and cryo-TEM. These nanoemulsions were also able to release 90% of their content within 24-h through PDMS and pig skin and able to the drug release over a 48-h. This extended-release profile is highly favorable in transdermal drug delivery and shows the great potential of this nanoemulsion as delivery system.
Collapse
|
42
|
Chuesiang P, Sanguandeekul R, Siripatrawan U. Enhancing effect of nanoemulsion on antimicrobial activity of cinnamon essential oil against foodborne pathogens in refrigerated Asian seabass (Lates calcarifer) fillets. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107782] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Al-otaibi W. Rosemary oil nano-emulsion potentiates the apoptotic effect of mitomycin C on cancer cells in vitro. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e60685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: To formulate nano-emulsified rosemary oil (REO/NE) and determine its effect on the anticancer agent, mitomycin C (MC) when used as a carrier for the drug.
Methods: The droplet size of REO/NE was markedly enlarged when mixed with MC. The cytotoxicity of the formulations on HeLa and MCF-7 cells was determined using MTT assay. The combination index (CI) values were estimated with CompuSyn software, while apoptosis was determined using DAPI fluorescent dye.
Results: Treatment of MCF-7 cells and HeLa cells with REO/NE (1% v:v and 1.33% v:v, respectively) reduced the IC50 of MC 33 and 15 folds, respectively. Under fluorescent microscopy, cells treated with REO/NE+MC had more marked reduction of the nuclear area than MC-treated cells.
Conclusion: These results indicate that REO/NE is an efficient carrier for MC since it enhanced MC delivery and increased its effect on the cells through the induction of apoptosis at low concentrations of MC.
Collapse
|
44
|
Hien LTM, Dao DTA. Black pepper essential oil nanoemulsions formulation using EPI and PIT methods. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ly Thi Minh Hien
- Division of Food Technology Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
- Faculty of Biotechnology, Ho Chi Minh City Open University Ho Chi Minh City Vietnam
| | - Dong Thi Anh Dao
- Division of Food Technology Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
45
|
Chaudhari AK, Singh VK, Das S, Dubey NK. Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem Toxicol 2021; 149:112019. [PMID: 33508419 DOI: 10.1016/j.fct.2021.112019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Spoilage of food by mycotoxigenic fungi poses a serious risk to food security throughout the world. In view of the negative effects of synthetic preservatives, essential oils (EOs) and their bioactive constituents are gaining momentum as suitable substitute to ensure food safety by controlling mycotoxins. However, despite their proven preservative potential against mycotoxins, the use of EOs/bioactive constituents in real food system is still restricted due to instability caused by abiotic factors and negative impact on organoleptic attributes after direct application. Nanoencapsulation in this regard could be a promising approach to address these problems, since the process can increase the stability of EOs/bioactive constituents, barricades their loss and considerably prevent their interaction with food matrices, thus preserving their original organoleptic qualities. The aim of this review is to provide wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system. Further, the information on polymer characteristics, nanoencapsulation techniques, factors affecting the nanoencapsulation, applications of nanoencapsulated formulations, and characterization along with the study on their release kinetics and impacts on organoleptic attributes of food are discussed. Finally, the safety aspects of nanoencapsulated formulations for their safe utilization are also explored.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
46
|
Fernandes SS, Bernardino JCC, Owen PQ, Prentice C, Salas‐Mellado MDLM, Segura‐Campos MR. Effect of the use of ethanol and chia mucilage on the obtainment and techno‐functional properties of chia oil nanoemulsions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | | | - Carlos Prentice
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | - Maira Rubi Segura‐Campos
- Laboratory of Food Science, Faculty of Chemical Engineering Autonomous University of Yucatán Mérida Mexico
| |
Collapse
|
47
|
Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Sedaghat Doost A, Devlieghere F, Stevens CV, Claeys M, Van der Meeren P. Self-assembly of Tween 80 micelles as nanocargos for oregano and trans-cinnamaldehyde plant-derived compounds. Food Chem 2020; 327:126970. [PMID: 32473414 DOI: 10.1016/j.foodchem.2020.126970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/04/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
The self-assembly of Tween 80 (T80) micelles loaded with plant-based oregano essential oil (OR) and trans-cinnamaldehyde (TCA) was studied. The effect of different factors, including the surfactant to oil ratio, the presence of sodium chloride, thermal treatment, and dilution on their formation and physicochemical stability was evaluated. The creation of nano-cargos was confirmed by TEM. The self-associated structures had z-average droplet diameters of 92 to 337 nm without any energy input. Whereas addition of 10% (w/v) NaCl prevented the formation of oregano essential oil nano-assemblies of T80, swollen micelles containing TCA were successfully produced. Moreover, the OR or TCA loaded-micelles had only a slight droplet size variation upon thermal treatment. Ultimately, their antibacterial activity analysis against some food pathogens revealed that the encapsulation of OR and TCA within micelles crucially improved their antibacterial activity. These straightforward and cost-effective designed systems can be applicable in different products, including foods and agrochemicals.
Collapse
Affiliation(s)
- Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium.
| | - Frank Devlieghere
- Research Unit of Food Microbiology and Food Preservation, part of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Gent 9000, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| |
Collapse
|
49
|
Maffi JM, Estenoz DA. Predicting phase inversion in agitated dispersions with machine learning algorithms. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1815715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- J. M. Maffi
- Departamento de Ingeniería Química, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - D. A. Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral – CONICET), Santa Fe, Argentina
- Facultad de Ingeniería Química, FIQ (Universidad Nacional del Litoral – CONICET), Santa Fe, Argentina
| |
Collapse
|
50
|
Preparation and cytotoxicity of lipid nanocarriers containing a hydrophobic flavanone. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|