1
|
Perinelli DR, Verboni M, Tiboni M, Doutch J, Pisani M, Domenici F, Bonacucina G, Cespi M, Lucarini S, Duranti A, Palmieri GF, Campana M, Casettari L. Unveiling the Interactions between Amino Acids-Based Surfactants and Lipid Bilayers: A Small Angle Neutron Scattering and Reflectivity Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6686-6696. [PMID: 40051256 DOI: 10.1021/acs.langmuir.4c04734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
N-Acyl amino acids are biodegradable anionic amphiphilic molecules made up of linear fatty acids as hydrophobic tails and amino acids as polar heads, which are promising for their applicability in different technological fields. In the light of widening their use, a deeper understanding of their interactions with biological membranes is required, especially to further assess their toxicological profile. We investigated the interaction between N-decanoyl amino acid surfactants and phospholipid bilayers as simple in vitro models for biological membranes in comparison to sodium dodecyl sulfate using neutron scattering techniques. The information from small angle neutron scattering (SANS, q range from 0.008 to 0.25 Å-1) focusing on liposome-to-surfactant interactions and neutron reflectivity (NR, Q range measured at three incident angles θ = 0.35, 0.65, and 1.5°) focusing on lipid bilayer-to-surfactant interactions was combined to provide a detailed characterization. All amino acid surfactants (C10-alanine, C10-glycine, C10-leucine, C10-methionine, C10-serine, and C10-proline) exhibited a similar behavior in terms of incorporation in liposomes and lipid removal as well as adsorption profiles in bilayers up to their critical micelle concentration (CMC). Notably, bilayer destabilization occurred for all surfactants (except for C10-serine and C10-alanine) at a concentration between CMC and 2× CMC. Such a result demonstrates the exceptional ability of C10-serine and C10-alanine to integrate into bilayers without disruption up to concentrations as high as ∼3-4× CMC. These findings support the lower cytotoxic effect of C10-serine and C10-alanine surfactants, observed in previous studies, and provide new insights on the mechanism of interaction of N-decanoyl amino acids with lipid membranes.
Collapse
Affiliation(s)
- Diego R Perinelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Michele Verboni
- Department of Biomolecular Sciences─DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, Province of Pesaro and Urbino, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences─DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, Province of Pesaro and Urbino, Italy
| | - James Doutch
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, OX110QX Didcot, U.K
| | - Michela Pisani
- Department of Science and Engineering of Materials, Environment, and Urban Planning SIMAU, Marche Polytechnic University, Via Brecce Bianche 12, I-60131 Ancona, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Giulia Bonacucina
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Marco Cespi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Simone Lucarini
- Department of Biomolecular Sciences─DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, Province of Pesaro and Urbino, Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences─DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, Province of Pesaro and Urbino, Italy
| | - Giovanni Filippo Palmieri
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, OX110QX Didcot, U.K
| | - Luca Casettari
- Department of Biomolecular Sciences─DISB, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, I-61029 Urbino, Province of Pesaro and Urbino, Italy
| |
Collapse
|
2
|
Bapolisi AM, Lehnen A, Machatschek R, Mangiapia G, Mark E, Moulin J, Wendler P, Hall SCL, Hartlieb M. Antimicrobial Polymers at the Membrane Interface: Impact of Macromolecular Architecture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406534. [PMID: 39737780 PMCID: PMC11855246 DOI: 10.1002/smll.202406534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/01/2024] [Indexed: 01/01/2025]
Abstract
Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly. Consequently, understanding the specific behavior of macromolecules featuring a confined conformation of linear subunits is pertinent. This study focusses on revealing fundamental differences between architectures regarding properties as well as interaction with biological membranes. Various analytical techniques (using membrane mimics and spectroscopic methods) are used to generate insights revealing the following trends: A) The reduction of degrees of freedom in bottle brushes reduces their tendencies for self-assembly and undesired protein interaction. B) When compared to linear polymers, bottlebrushes attach to membranes faster and more efficiently as well as in a unimolecular fashion. Their multivalent presentation of linear subunits also leads to aggregation between liposomes, which is not induced by linear polymers. C) Neutron reflectometry measurements show an increased tendency of bottle brushes to insert into the hydrophobic tails of phospholipid monolayers. The knowledge about these features will fuel the future development of even more efficient antimicrobial polymers.
Collapse
Affiliation(s)
- Alain M. Bapolisi
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| | - Anne‐Catherine Lehnen
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
- Fraunhofer Institute for Applied Polymer Research (IAP)Geiselbergstraße 6914476PotsdamGermany
| | - Rainhard Machatschek
- Institute of Active PolymersHelmholtz‐Zentrum HereonKantstraße 5514513TeltowGermany
| | - Gaetano Mangiapia
- German Engineering Materials Science Centre (GEMS) am Heinz Maier‐Leibnitz Zentrum (MLZ)Helmholtz‐Zentrum HereonLichtenbergstr. 185748Garching bei MünchenGermany
| | - Eric Mark
- Institute of Biochemistry and BiologyDepartment of BiochemistryUniversity of PotsdamKarl‐Liebknecht Strasse 24‐2514476PotsdamGermany
| | - Jean‐Francois Moulin
- German Engineering Materials Science Centre (GEMS) am Heinz Maier‐Leibnitz Zentrum (MLZ)Helmholtz‐Zentrum HereonLichtenbergstr. 185748Garching bei MünchenGermany
| | - Petra Wendler
- Institute of Biochemistry and BiologyDepartment of BiochemistryUniversity of PotsdamKarl‐Liebknecht Strasse 24‐2514476PotsdamGermany
| | - Stephen C. L. Hall
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryDidcotOX11 0QXUK
| | - Matthias Hartlieb
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
- Fraunhofer Institute for Applied Polymer Research (IAP)Geiselbergstraße 6914476PotsdamGermany
| |
Collapse
|
3
|
Pastuszak K, Palusińska-Szysz M, Wiącek AE, Jurak M. Thermodynamic Study on Biomimetic Legionella gormanii Bacterial Membranes. Molecules 2024; 29:4367. [PMID: 39339363 PMCID: PMC11434087 DOI: 10.3390/molecules29184367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The presented studies were aimed at determining the interactions in model membranes (Langmuir monolayers) created of phospholipids (PL) isolated from Legionella gormanii bacteria cultured with (PL + choline) or without (PL - choline) choline and to describe the impact of an antimicrobial peptide, human cathelicidin LL-37, on PL's monolayer behavior. The addition of choline to the growth medium influenced the mutual proportions of phospholipids extracted from L. gormanii. Four classes of phospholipids-phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL), and their mixtures-were used to register compression isotherms with or without the LL-37 peptide in the subphase. Based on them the excess area (Ae), excess (ΔGe), and total (ΔGm) Gibbs energy of mixing were determined. The thermodynamic analyses revealed that the PL - choline monolayer showed greater repulsive forces between molecules in comparison to the ideal system, while the PL + choline monolayer was characterized by greater attraction. The LL-37 peptide affected the strength of interactions between phospholipids' molecules and reduced the monolayers stability. Accordingly, the changes in interactions in the model membranes allowed us to determine the difference in their susceptibility to the LL-37 peptide depending on the choline supplementation of bacterial culture.
Collapse
Affiliation(s)
- Katarzyna Pastuszak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| |
Collapse
|
4
|
Alobaid AA, Skoda MWA, Harris LK, Campbell RA. Translational use of homing peptides: Tumor and placental targeting. J Colloid Interface Sci 2024; 662:1033-1043. [PMID: 38387365 DOI: 10.1016/j.jcis.2024.02.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
HYPOTHESIS Tissue-specific homing peptides have been shown to improve chemotherapeutic efficacy due to their trophism for tumor cells. Other sequences that selectively home to the placenta are providing new and safer therapeutics to treat complications in pregnancy. Our hypothesis is that the placental homing peptide RSGVAKS (RSG) may have binding affinity to cancer cells, and that insight can be gained into the binding mechanisms of RSG and the tumor homing peptide CGKRK to model membranes that mimic the primary lipid compositions of the respective cells. EXPERIMENTS Following cell culture studies on the binding efficacy of the peptides on a breast cancer cell line, a systematic translational characterization is delivered using ellipsometry, Brewster angle microscopy and neutron reflectometry of the extents, structures, and dynamics of the interactions of the peptides with the model membranes on a Langmuir trough. FINDINGS We start by revealing that RSG does indeed have binding affinity to breast cancer cells. The peptide is then shown to exhibit stronger interactions and greater penetration than CGKRK into both model membranes, combined with greater disruption to the lipid component. RSG also forms aggregates bound to the model membranes, yet both peptides bind to a greater extent to the placental than cancer model membranes. The results demonstrate the potential for varying local reservoirs of peptide within cell membranes that may influence receptor binding. The innovative nature of our findings motivates the urgent need for more studies involving multifaceted experimental platforms to explore the use of specific peptide sequences to home to different cellular targets.
Collapse
Affiliation(s)
- Abdulaziz A Alobaid
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Maximilian W A Skoda
- ISIS Neutron & Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Lynda K Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9WL, United Kingdom; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom; Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
5
|
Gerelli Y, Camerin F, Bochenek S, Schmidt MM, Maestro A, Richtering W, Zaccarelli E, Scotti A. Softness matters: effects of compression on the behavior of adsorbed microgels at interfaces. SOFT MATTER 2024; 20:3653-3665. [PMID: 38623629 DOI: 10.1039/d4sm00235k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Deformable colloids and macromolecules adsorb at interfaces as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive in situ approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain firmly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the key role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions.
Collapse
Affiliation(s)
- Yuri Gerelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC) and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - Fabrizio Camerin
- Division of Physical Chemistry, Lund University, P. O. Box 124, SE-22100 Lund, Sweden.
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Emanuela Zaccarelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC) and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - Andrea Scotti
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden.
- Biofilms - Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
6
|
Dolores Merchán M, Pawar N, Santamaria A, Sánchez-Fernández R, Konovalov O, Maestro A, Mercedes Velázquez M. Structure of graphene oxide-phospholipid monolayers: A grazing incidence X-ray diffraction and neutron and X-ray reflectivity study. J Colloid Interface Sci 2024; 655:664-675. [PMID: 37972452 DOI: 10.1016/j.jcis.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
HYPOTHESIS Graphene oxide-based nanotechnology has aroused a great interest due to its applications in the biomedical and optoelectronic fields. The wide use of these materials makes it necessary to study its potential toxicity associated with the inhalation of Graphene Oxide (GO) nanoparticles and its interaction with the lung surfactant. Langmuir monolayers have proven to be an excellent tool for studying the properties of the lung surfactant and the effect of intercalation of nanoparticles on its structure and properties. Therefore, to know the origin of the phospholipids/GO interaction and the structure of the lipid layer with GO, in this work we study the effect of the insertion of GO sheets on a Langmuir film of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC). EXPERIMENTS Surface pressure-area isotherms, Neutron (NR) and X-ray Reflectivity (XRR) and Grazing Incidence X-ray Diffraction (GIXD) measurements of hydrogenated and deuterated DPPC monolayers with and without GO have been carried out. FINDINGS The results outline a strong interaction between the GO and the zwitterionic form of DPPC and prove that GO is in three regions of the DPPC monolayer, the aliphatic chains of DPPC, the head groups and water in the subphase. Comparison between results obtained with hydrogenated and deuterated DPPC allows concluding that both, electrostatic attractions, and dispersion forces are responsible of the interaction GO/DPPC. Results also demonstrated that the insertion of GO into the DPPC aliphatic chains does not induce significant changes on unit cell of DPPC.
Collapse
Affiliation(s)
- M Dolores Merchán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Grupo de Nanotecnología, Universidad de Salamanca, E37008 Salamanca, Spain; Laboratorio de Nanoelectrónica and Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain
| | - Nisha Pawar
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, E-20018 San Sebastián, Spain
| | | | - Rosalía Sánchez-Fernández
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Institut Max von Laue and Paul Langevin, 38042 Grenoble, France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, 48009 Bilbao, Spain.
| | - M Mercedes Velázquez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Grupo de Nanotecnología, Universidad de Salamanca, E37008 Salamanca, Spain; Laboratorio de Nanoelectrónica and Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain.
| |
Collapse
|
7
|
Carrascosa-Tejedor J, Tummino A, Fehér B, Kardos A, Efstratiou M, Skoda MWA, Gutfreund P, Maestro A, Lawrence MJ, Campbell RA, Varga I. Effects of Charge Density on Spread Hyperbranched Polyelectrolyte/Surfactant Films at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14869-14879. [PMID: 37839073 PMCID: PMC10601538 DOI: 10.1021/acs.langmuir.3c01514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/01/2023] [Indexed: 10/17/2023]
Abstract
The interfacial structure and morphology of films spread from hyperbranched polyethylene imine/sodium dodecyl sulfate (PEI/SDS) aggregates at the air/water interface have been resolved for the first time with respect to polyelectrolyte charged density. A recently developed method to form efficient films from the dissociation of aggregates using a minimal quantity of materials is exploited as a step forward in enhancing understanding of the film properties with a view to their future use in technological applications. Interfacial techniques that resolve different time and length scales, namely, ellipsometry, Brewster angle microscopy, and neutron reflectometry, are used. Extended structures of both components are formed under a monolayer of the surfactant with bound polyelectrolytes upon film compression on subphases adjusted to pH 4 or 10, corresponding to high and low charge density of the polyelectrolyte, respectively. A rigid film is related to compact conformation of the PEI in the interfacial structure at pH 4, while it is observed that aggregates remain embedded in mobile films at pH 10. The ability to compact surfactants in the monolayer to the same extent as its maximum coverage in the absence of polyelectrolyte is distinct from the behavior observed for spread films involving linear polyelectrolytes, and intriguingly evidence points to the formation of extended structures over the full range of surface pressures. We conclude that the molecular architecture and charge density can be important parameters in controlling the structures and properties of spread polyelectrolyte/surfactant films, which holds relevance to a range of applications, such as those where PEI is used, including CO2 capture, electronic devices, and gene transfection.
Collapse
Affiliation(s)
- Javier Carrascosa-Tejedor
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
- Institut
Laue-Langevin, 71 Avenue des Martyrs, CS20156, Grenoble 38042, France
| | - Andrea Tummino
- Institut
Laue-Langevin, 71 Avenue des Martyrs, CS20156, Grenoble 38042, France
- CEA
Commissariat à l’Energie Atomique et aux Energies Alternatives, 17 Rue des Martyrs, Grenoble Cedex 9 38054, France
| | - Bence Fehér
- Institute
of Chemistry, Eötvös Loránd
University, 112, Budapest H-1518, Hungary
| | - Attila Kardos
- Institute
of Chemistry, Eötvös Loránd
University, 112, Budapest H-1518, Hungary
- Department
of Chemistry, Faculty of Education, J. Selye
University, Komárno 945 01, Slovakia
| | - Marina Efstratiou
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Maximilian W. A. Skoda
- ISIS
Neutron
and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Philipp Gutfreund
- Institut
Laue-Langevin, 71 Avenue des Martyrs, CS20156, Grenoble 38042, France
| | - Armando Maestro
- Basque
Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
- Centro
de Fısica de Materiales (CSIC, UPV/EHU)—Materials Physics
Center MPC, Paseo Manuel
de Lardizabal 5, San Sebastián E-20018, Spain
| | - M. Jayne Lawrence
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Richard A. Campbell
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
| | - Imre Varga
- Institute
of Chemistry, Eötvös Loránd
University, 112, Budapest H-1518, Hungary
- Department
of Chemistry, Faculty of Education, J. Selye
University, Komárno 945 01, Slovakia
| |
Collapse
|
8
|
Warias JE, Reise F, Hövelmann SC, Giri RP, Röhrl M, Kuhn J, Jacobsen M, Chatterjee K, Arnold T, Shen C, Festersen S, Sartori A, Jordt P, Magnussen OM, Lindhorst TK, Murphy BM. Photoinduced bidirectional switching in lipid membranes containing azobenzene glycolipids. Sci Rep 2023; 13:11480. [PMID: 37455299 PMCID: PMC10350456 DOI: 10.1038/s41598-023-38336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Following the reaction of biological membranes to external stimuli reveals fundamental insights into cellular function. Here, self-assembled lipid monolayers act as model membranes containing photoswitchable azobenzene glycolipids for investigating structural response during isomerization by combining Langmuir isotherms with X-ray scattering. Controlled in-situ trans/cis photoswitching of the azobenzene N = N double bond alters the DPPC monolayer structure, causing reproducible changes in surface pressure and layer thickness, indicating monolayer reorientation. Interestingly, for monolayers containing azobenzene glycolipids, along with the expected DPPC phase transitions an additional discontinuity is observed. The associated reorintation represents a crossover point, with the surface pressure and layer thickness changing in opposite directions above and below. This is evidence that the azobenzene glycolipids themselves change orientation within the monolayer. Such behaviour suggests that azobenzene glycolipids can act as a bidirectional switch in DPPC monolayers providing a tool to investigate membrane structure-function relationships in depth.
Collapse
Affiliation(s)
- Jonas E Warias
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Franziska Reise
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Svenja C Hövelmann
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Ruprecht Haensel Laboratory, Kiel University, 24118, Kiel, Germany
| | - Rajendra P Giri
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- Ruprecht Haensel Laboratory, Kiel University, 24118, Kiel, Germany
| | - Michael Röhrl
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Jule Kuhn
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Malte Jacobsen
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Kuntal Chatterjee
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Barkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Thomas Arnold
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 ODE, UK
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- European Spallation Source ERIC, P.O Box 176, 221 00, Lund, Sweden
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Sven Festersen
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Andrea Sartori
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- ESRF-The European Synchrotron, 38043, Grenoble, France
| | - Philipp Jordt
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Olaf M Magnussen
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- Ruprecht Haensel Laboratory, Kiel University, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Bridget M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany.
- Ruprecht Haensel Laboratory, Kiel University, 24118, Kiel, Germany.
| |
Collapse
|
9
|
Santamaria A, Batchu KC, Fragneto G, Laux V, Haertlein M, Darwish TA, Russell RA, Zaccai NR, Guzmán E, Maestro A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J Colloid Interface Sci 2023; 637:55-66. [PMID: 36682118 DOI: 10.1016/j.jcis.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Krishna C Batchu
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
10
|
Zaborowska M, Dobrowolski MA, Matyszewska D. Revealing the structure and mechanisms of action of a synthetic opioid with model biological membranes at the air-water interface. Colloids Surf B Biointerfaces 2023; 226:113289. [PMID: 37028230 DOI: 10.1016/j.colsurfb.2023.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Synthetic opioids such as piperazine derivative called MT-45 interact with opioid receptors in a manner similar to morphine leading to euphoria, a sense of relaxation and pain relief and are commonly used as substituents of natural opioids. In this study we show the changes in the surface properties of nasal mucosa and intestinal epithelial model cell membranes formed at the air - water interface using Langmuir technique upon the exposure to MT-45. Both membranes constitute the first barrier to absorb this substance into the human body. The presence of the piperazine derivative affects the organization of both DPPC and ternary DMPC:DMPE:DMPS monolayers treated as simple models of nasal mucosa and intestinal cell membranes, respectively. This novel psychoactive substance (NPS) leads to the fluidization of the model layers, which may indicate their increased permeability. MT-45 has a greater influence on the ternary monolayers characteristic of the intestinal epithelial cells than nasal mucosa. It might be attributed to the increased attractive interactions between the components of the ternary layer, which in turn increase the interactions with a synthetic opioid. Additionally, the crystal structures of MT-45 determined by single-crystal and powder X-ray diffraction methods allowed us to both provide useful data for facilitating the identification of synthetic opioids as well as to attribute the effect of MT-45 to the ionic interactions between protonated nitrogen atoms and negatively charged parts of the polar heads of the lipids.
Collapse
|
11
|
Martin A, Jemmett PN, Howitt T, Wood MH, Burley AW, Cox LR, Dafforn TR, Welbourn RJL, Campana M, Skoda MW, Thompson JJ, Hussain H, Rawle JL, Carlà F, Nicklin CL, Arnold T, Horswell SL. Effect of Anionic Lipids on Mammalian Plasma Cell Membrane Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2676-2691. [PMID: 36757323 PMCID: PMC9948536 DOI: 10.1021/acs.langmuir.2c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The effect of lipid composition on models of the inner leaflet of mammalian cell membranes has been investigated. Grazing incidence X-ray diffraction and X-ray and neutron reflectivity have been used to characterize lipid packing and solvation, while electrochemical and infrared spectroscopic methods have been employed to probe phase behavior in an applied electric field. Introducing a small quantity of the anionic lipid dimyristoylphosphatidylserine (DMPS) into bilayers of zwitterionic dimyristoylphosphatidylethanolamine (DMPE) results in a significant change in the bilayer response to an applied field: the tilt of the hydrocarbon chains increases before returning to the original tilt angle on detachment of the bilayer. Equimolar mixtures, with slightly closer chain packing, exhibit a similar but weaker response. The latter also tend to incorporate more solvent during this electrochemical phase transition, at levels similar to those of pure DMPS. Reflectivity measurements reveal greater solvation of lipid layers for DMPS > 30 mol %, matching the greater propensity for DMPS-rich bilayers to incorporate water. Taken together, the data indicate that the range of 10-35 mol % DMPS provides optimum bilayer properties (in flexibility and function as a barrier), which may explain why the DMPS content of cell membranes tends to be found within this range.
Collapse
Affiliation(s)
- Alexandra
L. Martin
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Philip N. Jemmett
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Thomas Howitt
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Mary H. Wood
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Andrew W. Burley
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Liam R. Cox
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Timothy R. Dafforn
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Rebecca J. L. Welbourn
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Mario Campana
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Maximilian W.
A. Skoda
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Joseph J. Thompson
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Hadeel Hussain
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Jonathan L. Rawle
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Francesco Carlà
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Christopher L. Nicklin
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Thomas Arnold
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
- European
Spallation Source ERIC PO Box 176, SE-221 00Lund, Sweden
- Department
of Chemistry, University of Bath, Claverton Down, BathBA2 7AY, U.K.
| | - Sarah L. Horswell
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| |
Collapse
|
12
|
Santamaria A, Carrascosa-Tejedor J, Guzmán E, Zaccai NR, Maestro A. Unravelling the orientation of the inositol-biphosphate ring and its dependence on phosphatidylinositol 4,5-bisphosphate cluster formation in model membranes. J Colloid Interface Sci 2023; 629:785-795. [PMID: 36195018 DOI: 10.1016/j.jcis.2022.09.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
HYPOTHESIS Inositol phospholipids are well known to form clusters in the cytoplasmic leaflet of the plasma membrane that are responsible for the interaction and recruitment of proteins involved in key biological processes like endocytosis, ion channel activation and secondary messenger production. Although their phosphorylated inositol ring headgroup plays an important role in protein binding, its orientation with respect to the plane of the membrane and its lateral packing density has not been previously described experimentally. EXPERIMENTS Here, we study phosphatidylinositol 4,5-bisphosphate (PIP2) planar model membranes in the form of Langmuir monolayers by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry to elucidate the relation between lateral (in-plane) and perpendicular (out-of-plane) molecular organization of PIP2. FINDINGS Different surface areas were explored through monolayer compression, allowing us to correlate the formation of transient PIP2 clusters with the change in orientation of the inositol-biphosphate headgroup, which was experimentally determined by neutron reflectometry.
Collapse
Affiliation(s)
- Andreas Santamaria
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Carrascosa-Tejedor
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom.
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
13
|
Jemmett P, Milan DC, Nichols RJ, Howitt T, Martin AL, Arnold T, Rawle JL, Nicklin CL, Dafforn TR, Cox LR, Horswell SL. Influence of the Lipid Backbone on Electrochemical Phase Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14290-14301. [PMID: 36354380 PMCID: PMC9686133 DOI: 10.1021/acs.langmuir.2c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Sphingolipids are an important class of lipids found in mammalian cell membranes with important structural and signaling roles. They differ from another major group of lipids, the glycerophospholipids, in the connection of their hydrocarbon chains to their headgroups. In this study, a combination of electrochemical and structural methods has been used to elucidate the effect of this difference on sphingolipid behavior in an applied electric field. N-Palmitoyl sphingomyelin forms bilayers of similar coverage and thickness to its close analogue di-palmitoyl phosphatidylcholine. Grazing incidence diffraction data show slightly closer packing and a smaller chain tilt angle from the surface normal. Electrochemical IR results at low charge density show that the difference in tilt angle is retained on deposition to form bilayers. The bilayers respond differently to increasing electric field strength: chain tilt angles increase for both molecules, but sphingomyelin chains remain tilted as field strength is further increased. This behavior is correlated with disruption of the hydrogen-bonding network of small groups of sphingomyelin molecules, which may have significance for the behavior of molecules in lipid rafts in the presence of strong fields induced by ion gradients or asymmetric distribution of charged lipids.
Collapse
Affiliation(s)
- Philip
N. Jemmett
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - David C. Milan
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, UK
| | - Richard J. Nichols
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, UK
| | - Thomas Howitt
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Alexandra L. Martin
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Thomas Arnold
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OxfordshireOX11
0DE, UK
- European
Spallation Source ERICPO Box 176, LundSE-221
00, Sweden
- ISIS
Pulsed Neutron and Muon Source, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, UK
- Department
of Chemistry, University of Bath, Claverton Down, BathBA2 7AY, UK
| | - Jonathan L. Rawle
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OxfordshireOX11
0DE, UK
| | - Christopher L. Nicklin
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OxfordshireOX11
0DE, UK
| | - Timothy R. Dafforn
- School
of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Liam R. Cox
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Sarah L. Horswell
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| |
Collapse
|
14
|
Mareček D, Oberreiter J, Nelson A, Kowarik S. Faster and lower-dose X-ray reflectivity measurements enabled by physics-informed modeling and artificial intelligence co-refinement. J Appl Crystallogr 2022. [DOI: 10.1107/s1600576722008056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An approach is presented for analysis of real-time X-ray reflectivity (XRR) process data not just as a function of the magnitude of the reciprocal-space vector q, as is commonly done, but as a function of both q and time. The real-space structures extracted from the XRR curves are restricted to be solutions of a physics-informed growth model and use state-of-the-art convolutional neural networks (CNNs) and differential evolution fitting to co-refine multiple time-dependent XRR curves R(q, t) of a thin film growth experiment. Thereby it becomes possible to correctly analyze XRR data with a fidelity corresponding to standard fits of individual XRR curves, even if they are sparsely sampled, with a sevenfold reduction of XRR data points, or if the data are noisy due to a 200-fold reduction in counting times. The approach of using a CNN analysis and of including prior information through a kinetic model is not limited to growth studies but can be easily extended to other kinetic X-ray or neutron reflectivity data to enable faster measurements with less beam damage.
Collapse
|
15
|
Elstone N, Arnold T, Skoda MWA, Lewis SE, Li P, Hazell G, Edler KJ. Structural investigation of sulfobetaines and phospholipid monolayers at the air-water interface. Phys Chem Chem Phys 2022; 24:22679-22690. [PMID: 36106535 DOI: 10.1039/d2cp02695c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixtures of sulfobetaine based lipids with phosphocholine phospholipids are of interest in order to study the interactions between zwitterionic surfactants and the phospholipids present in cell membranes. In this study we have investigated the structure of mixed monolayers of sulfobetaines and phosphocholine phospholipids. The sulfobetaine used has a single 18-carbon tail, and is referred to as SB3-18, and the phospholipid used is DMPC. Surface pressure-area isotherms of the samples were used to determine whether any phase transitions were present during the compression of the monolayers. Neutron and X-ray reflectometry were then used to investigate the structure of these monolayers perpendicular to the interface. We found that the average headgroup and tail layer thickness was reasonably consistent across all mixtures, with a variation of less than 3 Å reported in the total thickness of the monolayers at each surface pressure. However, by selective deuteration of the two components of the monolayers, it was found that the two components have different tail layer thicknesses. For the mixture with equal compositions of DMPC and SB3-18 or with a higher composition of DMPC the tail tilts were found to be constant, resulting in a greater tail layer thickness for SB3-18 due to its longer tail. For the mixture higher in SB3-18 this was not the case, the tail tilt angle for the two components was found to be different and DMPC was found to have a greater tail layer thickness than SB3-18 as a result.
Collapse
Affiliation(s)
- Naomi Elstone
- Centre for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK. .,Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Thomas Arnold
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.,ISIS Neutron Source Facility, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Maximilian W A Skoda
- ISIS Neutron Source Facility, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Simon E Lewis
- Centre for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK. .,Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Peixun Li
- ISIS Neutron Source Facility, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Gavin Hazell
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Karen J Edler
- Centre for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK. .,Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
16
|
Durant JH, Wilkins L, Cooper JFK. Optimizing experimental design in neutron reflectometry. J Appl Crystallogr 2022; 55:769-781. [PMID: 35974737 PMCID: PMC9348865 DOI: 10.1107/s1600576722003831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
Using the Fisher information (FI), the design of neutron reflectometry experiments can be optimized, leading to greater confidence in parameters of interest and better use of experimental time [Durant, Wilkins, Butler & Cooper (2021). J. Appl. Cryst. 54, 1100-1110]. In this work, the FI is utilized in optimizing the design of a wide range of reflectometry experiments. Two lipid bilayer systems are investigated to determine the optimal choice of measurement angles and liquid contrasts, in addition to the ratio of the total counting time that should be spent measuring each condition. The reduction in parameter uncertainties with the addition of underlayers to these systems is then quantified, using the FI, and validated through the use of experiment simulation and Bayesian sampling methods. For a 'one-shot' measurement of a degrading lipid monolayer, it is shown that the common practice of measuring null-reflecting water is indeed optimal, but that the optimal measurement angle is dependent on the deuteration state of the monolayer. Finally, the framework is used to demonstrate the feasibility of measuring magnetic signals as small as 0.01 μB per atom in layers only 20 Å thick, given the appropriate experimental design, and that the time to reach a given level of confidence in the small magnetic moment is quantifiable.
Collapse
Affiliation(s)
- James H. Durant
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, United Kingdom
| | - Lucas Wilkins
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | - Joshaniel F. K. Cooper
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, United Kingdom
| |
Collapse
|
17
|
Al-Shatty W, Campana M, Alexander S, Barron AR. Interaction of Surface-Modified Alumina Nanoparticles and Surfactants at an Oil/Water Interface: A Neutron Reflectometry, Scattering, and Enhanced Oil Recovery Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19505-19514. [PMID: 35442014 PMCID: PMC9096789 DOI: 10.1021/acsami.2c02228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The evaluation of the mechanism of nanoparticle (NP)/surfactant complex adsorption at the critical oil/water interface was studied. A sophisticated technique (neutron reflectometry) was used to give a unique insight on NP/oil interactions in oil recovery systems. Herein, the adsorption of two modified alumina NPs with different degrees of hydrophobicity [hydrophilic = 2-[2-(2-methoxyethoxy)ethoxy]acetic acid and hydrophobic = octanoic acid (OCT)] stabilized with two different surfactants were studied at the oil/water interface. A thin layer of deuterated (D) and hydrogenated (H) hexadecane (contrast matching silicon substrate) oil was formed on a silicon block by a spin coating freeze process. The distribution of the NPs across the oil/water interface with the CTAB surfactant is similar between the two systems. NPs coated with CTAB have more affinity toward the oil/water interface, which explains the oil recovery increase by around 5% when flooding the core with the OCT-NP/CTAB system compared to the surfactant flooding alone. These results suggest that the NP/surfactant complexes can have potential usage in EOR recovery applications.
Collapse
Affiliation(s)
- Wafaa Al-Shatty
- Energy
Safety Research Institute (ESRI), Swansea
University, Bay Campus, Swansea SA1
8EN, U.K.
- Laboratory
and Quality Control Department, Basrah Oil
Company, Bab Al Zubair, Basrah 21240, Iraq
| | - Mario Campana
- Science
and Technology Facilities Council (STFC), ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Shirin Alexander
- Energy
Safety Research Institute (ESRI), Swansea
University, Bay Campus, Swansea SA1
8EN, U.K.
| | - Andrew R. Barron
- Energy
Safety Research Institute (ESRI), Swansea
University, Bay Campus, Swansea SA1
8EN, U.K.
- Arizona
Institute for Resilient Environments and Societies (AIRES), University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry and Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Faculty of
Engineering, Universiti Teknologi Brunei, Bandar Seri Begawani BE1410 Brunei Darussalam
| |
Collapse
|
18
|
Hall SCL, Tognoloni C, Campbell RA, Richens J, O'Shea P, Terry AE, Price GJ, Dafforn TR, Edler KJ, Arnold T. The interaction of styrene maleic acid copolymers with phospholipids in Langmuir monolayers, vesicles and nanodiscs; a structural study. J Colloid Interface Sci 2022; 625:220-236. [PMID: 35716617 DOI: 10.1016/j.jcis.2022.03.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 10/31/2022]
Abstract
HYPOTHESIS Self-assembly of amphipathic styrene maleic acid copolymers with phospholipids in aqueous solution results in the formation of 'nanodiscs' containing a planar segment of phospholipid bilayer encapsulated by a polymer belt. Recently, studies have reported that lipids rapidly exchange between both nanodiscs in solution and external sources of lipids. Outstanding questions remain regarding details of polymer-lipid interactions, factors influencing lipid exchange and structural effects of such exchange processes. Here, the dynamic behaviour of nanodiscs is investigated, specifically the role of membrane charge and polymer chemistry. EXPERIMENTS Two model systems are investigated: fluorescently labelled phospholipid vesicles, and Langmuir monolayers of phospholipids. Using fluorescence spectroscopy and time-resolved neutron reflectometry, the membrane potential, monolayer structure and composition are monitored with respect to time upon polymer and nanodisc interactions. FINDINGS In the presence of external lipids, polymer chains embed throughout lipid membranes, the extent of which is governed by the net membrane charge. Nanodiscs stabilised by three different polymers will all exchange lipids and polymer with monolayers to differing extents, related to the properties of the stabilising polymer belt. These results demonstrate the dynamic nature of nanodiscs which interact with the local environment and are likely to deposit both lipids and polymer at all stages of use.
Collapse
Affiliation(s)
- Stephen C L Hall
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, UK; ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Cecilia Tognoloni
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Richard A Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Joanna Richens
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paul O'Shea
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK
| | - Ann E Terry
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Gareth J Price
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Thomas Arnold
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK; ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK; Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund, Sweden
| |
Collapse
|
19
|
Nagy B, Campana M, Khaydukov YN, Ederth T. Structure and pH-Induced Swelling of Polymer Films Prepared from Sequentially Grafted Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1725-1737. [PMID: 35081310 PMCID: PMC8830213 DOI: 10.1021/acs.langmuir.1c02784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/13/2022] [Indexed: 05/16/2023]
Abstract
We have prepared a series of ampholytic polymer films, using a self-initiated photografting and photopolymerization (SI-PGP) method to sequentially polymerize first anionic (deuterated methacrylic acid (dMAA)) and thereafter cationic (2-aminoethyl methacrylate (AEMA)) monomers to investigate the SI-PGP grafting process. Dry films were investigated by ellipsometry, X-ray, and neutron reflectometry, and their swelling was followed over a pH range from 4.5 to 10.5 with spectroscopic ellipsometry. The deuterated monomer allows us to separate the distributions of the two components by neutron reflectometry. Growth of both polymers proceeds via grafting of solution-polymerized fragments to the surface, and also the second layer is primarily grafted to the substrate and not as a continuation of the existing chains. The polymer films are stratified, with one layer of near 1:1 composition and the other layer enriched in one component and located either above or below the former layer. The ellipsometry results show swelling transitions at low and high pH but with no systematic variation in the pH values where these transitions occur. The results suggest that grafting density in SI-PGP-prepared homopolymers could be increased via repeated polymerization steps, but that this process does not necessarily increase the average chain length.
Collapse
Affiliation(s)
- Béla Nagy
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Mario Campana
- ISIS
Facility, Rutherford Appleton Laboratory,
STFC, Chilton, Didcot, Oxon OX11
0QX, U.K.
| | - Yury N. Khaydukov
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- Max
Planck Society Outstation at the Heinz Maier-Leibnitz Zentrum (MLZ), D-85748 Garching, Germany
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
20
|
Schnurbus M, Hardt M, Steinforth P, Carrascosa-Tejedor J, Winnall S, Gutfreund P, Schönhoff M, Campbell RA, Braunschweig B. Responsive Material and Interfacial Properties through Remote Control of Polyelectrolyte-Surfactant Mixtures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4656-4667. [PMID: 35029383 DOI: 10.1021/acsami.1c18934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polyelectrolyte/surfactant (P/S) mixtures find many applications but are static in nature and cannot be reversibly reconfigured through the application of external stimuli. Using a new type of photoswitchable surfactants, we use light to trigger property changes in mixtures of an anionic polyelectrolyte with a cationic photoswitch such as electrophoretic mobilities, particle size, as well as their interfacial structure and their ability to stabilize aqueous foam. For that, we show that prevailing hydrophobic intermolecular interactions can be remotely controlled between poly(sodium styrene sulfonate) (PSS) and arylazopyrazole tetraethylammonium bromide (AAP-TB). Shifting the chemical potential for P/S binding with E/Z photoisomerization of the surfactants can reversibly disintegrate even large aggregates (>4 μm) and is accompanied by a substantial change in the net charging state of PSS/AAP-TB complexes, e.g., from negative to positive excess charges upon light irradiation. In addition to the drastic changes in the bulk solution, also at air-water interfaces, the interfacial stoichiometry and structure change drastically on the molecular level with E/Z photoisomerization, which can also drive the stability of aqueous foam on a macroscopic level.
Collapse
Affiliation(s)
- Marco Schnurbus
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Michael Hardt
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Pascal Steinforth
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Javier Carrascosa-Tejedor
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Division of Pharmacy & Optometry, University of Manchester, M13 9PT Manchester, United Kingdom
| | - Samuel Winnall
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Division of Pharmacy & Optometry, University of Manchester, M13 9PT Manchester, United Kingdom
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Monika Schönhoff
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Richard A Campbell
- Division of Pharmacy & Optometry, University of Manchester, M13 9PT Manchester, United Kingdom
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center of Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
21
|
Stearic acid mediated growth of edge-on oriented bilayer poly(3-hexylthiophene) Langmuir films. J Colloid Interface Sci 2022; 606:1153-1162. [PMID: 34487934 DOI: 10.1016/j.jcis.2021.08.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022]
Abstract
The growth and structural evolution of stearic acid (SA) blended poly(3-hexylthiophene) [P3HT] Langmuir and Langmuir-Blodgett (LB) films were studied using complimentary surface and interface sensitive techniques to understand the possibility of ordering and layering of promising charge carrier mobility polymers, at the air-water interface and on the transferred solid substrate. SA-induced and subsequent compression-induced transitions in P3HT structure, from aggregated-3D to soft-2D and from in-plane mixed to unmixed layer, are evident at low and high pressures, respectively. The blending of SA molecules enhances the amphiphilic character of P3HT, which reduces the extent of the out-of-plane aggregation to form edge-on oriented (EO) bottom side-chain folded-bilayer (f-BL) islands (of size ~60 nm) within SA monolayer (ML), of commensurate thickness (~2.6 nm). Further compression, gradually rejects the less hydrophilic f-BL islands from the mixed layer to form EO P3HT BL islands (of coverage in-tune with starting composition) on top of SA ML. The formation of nearly covered P3HT(BL)/SA(ML) structured film on solid substrate is evident for the first time, which (even of limited P3HT thickness) has immense importance in the device properties, as the current in the bottom-gated organic thin-film transistors is known to travel only within few ML region near gate-dielectric.
Collapse
|
22
|
Slastanova A, Campbell RA, Islas L, Welbourn RJL, R P Webster J, Vaccaro M, Chen M, Robles E, Briscoe WH. Interfacial complexation of a neutral amphiphilic 'tardigrade' co-polymer with a cationic surfactant: Transition from synergy to competition. J Colloid Interface Sci 2022; 606:1064-1076. [PMID: 34487929 DOI: 10.1016/j.jcis.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Neutral amphiphilic PEG-g-PVAc co-polymer (a "tardigrade" polymer consisting of a hydrophilic polyethylene glycol, PEG, backbone with hydrophobic polyvinyl acetate, PVAc, grafts) can form complexes at the air-water interface with cationic dodecyltrimethylammonium bromide (DTAB) via self-assembly. Compared to anionic SDS, cationic DTAB headgroups are expected to interact strongly with the negatively charged OH- groups from the partial dissociation of the PVAc grafts. We anticipate a transition from synergistic to competitive behaviour, which is expected to be dependent on the surfactant structural characteristics and concentration. EXPERIMENTS DTAB/PEG-g-PVAc mixtures were investigated using a combination of dynamic and equilibrium surface tension measurements, neutron reflectivity (NR) at the air-water interface, and foaming tests. We varied the concentrations of both the DTAB (0.05 to 5 critical micelle concentration, cmc) and that of PEG-g-PVAc (0.2 and 2 critical aggregation concentration, cac). FINDINGS Our results show that the interfacial interactions between DTAB and PEG-g-PVAc were both synergistic and antagonistic, depending sensitively on the surfactant concentration. At DTAB concentrations below its cmc, a pronounced cooperative adsorption behaviour was likely driven by the hydrophobic interactions between the DTAB tail and the PVAc grafts and the attraction between the DTAB headgroups and the partially dissociated -O- groups in the partially hydrolysed PVAc grafts, forming a mixed layer. This synergistic adsorption behaviour transitioned to a competitive adsorption behaviour at DTAB concentrations above its cmc, leading to polymer-surfactant partition, forming a "hanging" polymer layer underlying a surfactant monolayer at the interface. We postulate that DTAB/PEG-g-PVAc complexation in the bulk contributed to partial depletion of the mixture from the interface. We therefore consider this polymer/surfactant system to be a moderately interacting system at the air-water interface. No discernible differences in the foaming behaviour were observed between the DTAB/PEG-g-PVAc systems and the pure surfactant. Our results suggest that surfactant headgroup characteristics (particularly charges) were crucial in determining the structure and composition of polymer-surfactant complexes at the air-water interface, as well as the foamability and foam stability, whilst the coexistence of the synergistic and competitive adsorption behaviour is attributed to the unique architecture of the tardigrade polymer with amphiphilicity and partial charge, facilitating different surfactant-polymer interactions at different DTAB concentrations.
Collapse
Affiliation(s)
- Anna Slastanova
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK; Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, Grenoble 38042, France
| | - Luisa Islas
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Rebecca J L Welbourn
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
| | - John R P Webster
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Mauro Vaccaro
- Procter & Gamble, Temselaan 100, 1853 Strombeek-Bever, Brussels, Belgium
| | - Meng Chen
- Procter & Gamble Beijing Innovation Centre, 35 Yu'an Rd, Shunyi District, Beijing, China
| | - Eric Robles
- Household Care Analytical, Procter & Gamble Newcastle Innovation Centre, Whitley Road, Longbenton, Newcastle NE12 9TS, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
23
|
Browning JF, Seo J, Wenzel JF, Veith GM, Doucet M, Ivanov AS, Halstenberg P, Lynn G, Dai S. A high temperature cell for investigating interfacial structure on the molecular scale in molten salt/alloy systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123903. [PMID: 34972459 DOI: 10.1063/5.0065860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
In this work, we describe the design and development of an in situ neutron reflectometry cell for high temperature investigations of structural changes occurring at the interface between inorganic salts, in their molten state up to 800 °C, and corrosion resistant alloys or other surfaces. In the cell, a molten salt is confined by an annular ring of single crystal sapphire constrained between the sample substrate and a sapphire plate using two gold O-rings, enclosing a liquid salt volume of 20 ml, along with a dynamic cell volume to accommodate expansion of the liquid with heating. As a test case for the cell, we report on an in situ neutron reflectometry measurement of the interface between a eutectic salt mixture of MgCl2-KCl (32:68 molar ratio) and a single crystal sapphire substrate at 450 °C, resulting in the formation of a 60 Å layer having a scattering length density of 1.72 × 10-6 Å-2. While the origin of this layer is uncertain, it is likely to have resulted from the salt reacting with an existing impurity layer on the sapphire substrate.
Collapse
Affiliation(s)
- James F Browning
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Joohyun Seo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - John F Wenzel
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gabriel M Veith
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Phillip Halstenberg
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gary Lynn
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
24
|
Durant JH, Wilkins L, Butler K, Cooper JFK. Determining the maximum information gain and optimizing experimental design in neutron reflectometry using the Fisher information. J Appl Crystallogr 2021; 54:1100-1110. [PMID: 34429721 PMCID: PMC8366423 DOI: 10.1107/s160057672100563x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
An approach based on the Fisher information (FI) is developed to quantify the maximum information gain and optimal experimental design in neutron reflectometry experiments. In these experiments, the FI can be calculated analytically and used to provide sub-second predictions of parameter uncertainties. This approach can be used to influence real-time decisions about measurement angle, measurement time, contrast choice and other experimental conditions based on parameters of interest. The FI provides a lower bound on parameter estimation uncertainties, and these are shown to decrease with the square root of the measurement time, providing useful information for the planning and scheduling of experimental work. As the FI is computationally inexpensive to calculate, it can be computed repeatedly during the course of an experiment, saving costly beam time by signalling that sufficient data have been obtained or saving experimental data sets by signalling that an experiment needs to continue. The approach's predictions are validated through the introduction of an experiment simulation framework that incorporates instrument-specific incident flux profiles, and through the investigation of measuring the structural properties of a phospholipid bilayer.
Collapse
Affiliation(s)
- James H. Durant
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Lucas Wilkins
- Department of Zoology, University of Oxford, Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | - Keith Butler
- SciML, Scientific Computing Division, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Joshaniel F. K. Cooper
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX, United Kingdom
| |
Collapse
|
25
|
Liu X, Counil C, Shi D, Mendoza-Ortega EE, Vela-Gonzalez AV, Maestro A, Campbell RA, Krafft MP. First quantitative assessment of the adsorption of a fluorocarbon gas on phospholipid monolayers at the air/water interface. J Colloid Interface Sci 2021; 593:1-10. [DOI: 10.1016/j.jcis.2021.02.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
|
26
|
In situ determination of the structure and composition of Langmuir monolayers at the air/water interface by neutron and X-ray reflectivity and ellipsometry. Adv Colloid Interface Sci 2021; 293:102434. [PMID: 34022749 DOI: 10.1016/j.cis.2021.102434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
This review focuses on the description of the structure and composition of a variety of Langmuir monolayers (LMs) deposited at the air/water interface by using ellipsometry, Brewster Angle microscopy and scattering techniques, mainly neutron and X-ray reflectometry. Since the first experiment done by Angels Pockels with a homemade trough in her home kitchen until today, LMs of different materials have been extensively studied providing not only relevant model systems in biology, physics and chemistry but also precursors of novel materials via their deposition on solid substrates. There is a vast amount of surface-active materials that can form LMs and, therefore, far from a revision of the state-of-the-art, we will emphasize here: (i) some fundamental aspects to understand the physics behind the molecular deposition at the air/water interface; (ii) the advantages in using in situ techniques, such as reflectometry or ellipsometry, to resolve the interfacial architecture and conformation of molecular films; and, finally, (iii) a summary of several systems that have certain interest from the experimental or conceptual point of view. Concretely, we will report here advances in polymers confined to interfaces and surfactants, from fatty acids and phospholipids monolayers to more unconventional ones such as graphene oxide.
Collapse
|
27
|
Neutron reflectometry study of the interface between two immiscible electrolyte solutions: Effects of electrolyte concentration, applied electric field, and lipid adsorption. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Bergendal E, Gutfreund P, Pilkington GA, Campbell RA, Müller-Buschbaum P, Holt SA, Rutland MW. Tuneable interfacial surfactant aggregates mimic lyotropic phases and facilitate large scale nanopatterning. NANOSCALE 2021; 13:371-379. [PMID: 33351024 DOI: 10.1039/d0nr06621d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is shown that the air-liquid interface can be made to display the same rich curvature phenomena as common lyotropic liquid crystal systems. Through mixing an insoluble, naturally occurring, branched fatty acid, with an unbranched fatty acid of the same length, systematic variation in the packing constraints at the air-water interface could be obtained. The combination of atomic force microscopy and neutron reflectometry is used to demonstrate that the water surface exhibits significant tuneable topography. By systematic variation of the two fatty acid proportions, ordered arrays of monodisperse spherical caps, cylindrical sections, and a mesh phase are all observed, as well as the expected lamellar structure. The tuneable deformability of the air-water interface permits this hitherto unexplored topological diversity, which is analogous to the phase elaboration displayed by amphiphiles in solution. It offers a wealth of novel possibilities for the tailoring of nanostructure.
Collapse
Affiliation(s)
- Erik Bergendal
- Department of Chemistry, KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Drottning Kristinas väg 51, 100 44, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
29
|
Luchini A, Vitiello G. Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies. Biomimetics (Basel) 2020; 6:biomimetics6010003. [PMID: 33396534 PMCID: PMC7838988 DOI: 10.3390/biomimetics6010003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their applications for the investigation of protein-lipid and drug-lipid interactions. Altogether, promising directions for future developments of biomimetic lipid membranes are the further implementation of natural lipid mixtures for the development of more biologically relevant lipid membranes, as well as the development of sample preparation protocols that enable the incorporation of membrane proteins in the biomimetic lipid membranes.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
- Correspondence:
| |
Collapse
|
30
|
Gkionis L, Campbell RA, Aojula H, Harris LK, Tirella A. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. Int J Pharm 2020; 590:119926. [PMID: 33010397 DOI: 10.1016/j.ijpharm.2020.119926] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
Developing more efficient manufacturing methods for nano therapeutic systems is becoming important, not only to better control their physico-chemical characteristics and therapeutic efficacy but also to ensure scale-up is cost-effective. The principle of cross-flow chemistry allows precise control over manufacturing parameters for the fabrication of uniform liposomal formulations, as well as providing reproducible manufacturing scale-up compared to conventional methods. We have herein investigated the use of microfluidics to produce PEGylated DSPC liposomes loaded with doxorubicin and compared their performance against identical formulations prepared by the thin-film method. The isoprenylated coumarin umbelliprenin was selected as a co-therapeutic. Umbelliprenin-loaded and doxorubicin:umbelliprenin co-loaded liposomes were fabricated using the optimised microfluidic set-up. The role of umbelliprenin as lipid bilayer fluidity modulation was characterized, and we investigated its role on liposomes size, size distribution, shape and stability compared to doxorubicin-loaded liposomes. Finally, the toxicity of all liposomal formulations was tested on a panel of human breast cancer cells (MCF-7, MDA-MB 231, BT-474) to identify the most potent formulation by liposomal fabrication method and loaded compound(s). We herein show that the microfluidic system is an alternative method to produce doxorubicin:umbelliprenin co-loaded liposomes, allowing fine control over liposome size (100-250 nm), shape, uniformity and doxorubicin drug loading (>80%). Umbelliprenin was shown to confer fluidity to model lipid biomembranes, which helps to explain the more homogeneous size and shape of co-loaded liposomes compared to liposomes without umbelliprenin. The toxicity of doxorubicin:umbelliprenin co-loaded liposomes was lower than that of free doxorubicin, due to the delayed release of doxorubicin from liposomes. An alternative, rapid and easy manufacturing method for the production of liposomes has been established using microfluidics to effectively produce uniform doxorubicin:umbelliprenin co-loaded liposomal formulations with proven cytotoxicity in human breast cancer cell lines in vitro.
Collapse
Affiliation(s)
- Leonidas Gkionis
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Harmesh Aojula
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Lynda K Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK; Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
31
|
Jabłonowska E, Matyszewska D, Nazaruk E, Godlewska M, Gaweł D, Bilewicz R. Lipid membranes exposed to dispersions of phytantriol and monoolein cubosomes: Langmuir monolayer and HeLa cell membrane studies. Biochim Biophys Acta Gen Subj 2020; 1865:129738. [PMID: 32956751 DOI: 10.1016/j.bbagen.2020.129738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
The interactions of liquid-crystalline nanoparticles based on lipid-like surfactants, glyceryl monooleate, monoolein (GMO) and 1,2,3-trihydroxy-3,7,11,15-tetramethylhexadecane, phytantriol (PT) with selected model lipid membranes prepared by Langmuir technique were compared. Monolayers of DPPC, DMPS and their mixture DPPC:DMPS 87:13 mol% were used as simple models of one leaflet of a cell membrane. The incorporation of cubosomes into the lipid layers spread at the air-water interface was followed by surface-pressure measurements and Brewster angle microscopy. The cubosome - membrane interactions lead to the fluidization of the model membranes but this effect depended on the composition of the model membrane and on the type of cubosomes. The interactions of PT cubosomes with lipid layers, especially DMPS-based monolayer were stronger compared with those of GMO-based nanoparticles. The kinetics of incorporation of cubosomal material into the lipid layer was influenced by the extent of hydration of the polar headgroups of the lipid: faster in the case of smaller, less hydrated polar groups of DMPS than for strongly hydrated uncharged choline of DPPC. The membrane disrupting effect of cubosomes increased at longer times of the lipid membrane exposure to the cubosome solution and at larger carrier concentrations. Langmuir monolayer observations correspond well to results of studies of HeLa cells exposed to cubosomes. The larger toxicity of PT cubosomes was confirmed by MTS. Their ability to disrupt lipid membranes was imaged by confocal microscopy. On the other hand, PT cubosomes easily penetrated cellular membranes and released cargo into various cellular compartments more effectively than GMO-based nanocarriers. Therefore, at low concentrations, they may be further investigated as a promising drug delivery tool.
Collapse
Affiliation(s)
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Damian Gaweł
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
32
|
McCluskey AR, Cooper JFK, Arnold T, Snow T. A general approach to maximise information density in neutron reflectometry analysis. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab94c4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Neutron and x-ray reflectometry are powerful techniques facilitating the study of the structure of interfacial materials. The analysis of these techniques is ill-posed in nature requiring the application of model-dependent methods. This can lead to the over- and under- analysis of experimental data when too many or too few parameters are allowed to vary in the model. In this work, we outline a robust and generic framework for the determination of the set of free parameters that are capable of maximising the information density of the model. This framework involves the determination of the Bayesian evidence for each permutation of free parameters; and is applied to a simple phospholipid monolayer. We believe this framework should become an important component in reflectometry data analysis and hope others more regularly consider the relative evidence for their analytical models.
Collapse
|
33
|
Stoev K, Sakurai K. Recent Progresses in Nanometer Scale Analysis of Buried Layers and Interfaces in Thin Films by X-rays and Neutrons. ANAL SCI 2020; 36:901-922. [PMID: 32147630 DOI: 10.2116/analsci.19r010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the early 1960s, scientists achieved the breakthroughs in the fields of solid surfaces and artificial layered structures. The advancement of surface science has been supported by the advent of ultra-high vacuum technologies, newly discovered and established scanning probe microscopy with atomic resolution, as well as some other advanced surface-sensitive spectroscopy and microscopy. On the other hand, it has been well recognized that a number of functions are related to the structures of the interfaces, which are the thin planes connecting different materials, most likely by layering thin films. Despite the scientific significance, so far, research on such buried layers and interfaces has been limited, because the probing depth of almost all existing sophisticated analytical methods is limited to the top surface. The present article describes the recent progress in the nanometer scale analysis of buried layers and interfaces, particularly by using X-rays and neutrons. The methods are essentially promising to non-destructively probe such buried structures in thin films. The latest scientific research has been reviewed, and includes applications to bio-chemical, organic, electronic, magnetic, spintronic, self-organizing and complicated systems as well as buried liquid-liquid and solid-liquid interfaces. Some emerging analytical techniques and instruments, which provide new attractive features such as imaging and real time analysis, are also discussed.
Collapse
|
34
|
Matyszewska D, Nazaruk E, Campbell RA. Interactions of anticancer drugs doxorubicin and idarubicin with lipid monolayers: New insight into the composition, structure and morphology. J Colloid Interface Sci 2020; 581:403-416. [PMID: 32771749 DOI: 10.1016/j.jcis.2020.07.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/13/2022]
Abstract
We quantify directly here for the first time the extents of interactions of two different anthracycline drugs with pure and mixed lipid monolayers with respect to the surface pressure and elucidate differences in the resulting interaction mechanisms. The work concerns interactions of doxorubicin (DOx) and idarubicin (IDA) with monolayers of the zwitterionic DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and negatively charged DMPS (1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (sodium salt)) as well as a 7:3 mixture of the two lipids. These drugs are used in current cancer treatments, while the lipid systems were chosen as phosphocholines are the major lipid component of healthy cell membranes, and phosphoserines are the major lipid component that is externalized into the outer leaflet of cancerous cell membranes. It is shown that DOx interacts with DMPS monolayers to a greater extent than with DMPC monolayers by lower limits of a factor of 5 at a surface pressure of 10 mN/m and a factor of 12 at 30 mN/m. With increasing surface pressure, the small amount of drug (~0.3 µmol/m2) bound to DMPC monolayers is excluded from the interface, yet its interaction with DMPS monolayers is enhanced until there is even more drug (~3.2 µmol/m2) than lipid (~2.6 µmol/m2) at the interface. Direct evidence is presented for all systems studied that upon surface area compression lipid is reproducibly expelled from the monolayer, which we infer to be in the form of drug-lipid aggregates, yet the nature of adsorption of material back to the monolayer upon expansion is system-dependent. At 30 mN/m, most relevant to human physiology, the interactions of DOx and IDA are starkly different. For DOx, there is a conformational change in the interfacial layer driven by aggregation, resulting in the formation of lateral domains that have extended layers of drug. For the more lipophilic IDA, there is penetration of the drug into the hydrophobic acyl chain region of the monolayer and no indication of lateral segregation. In addition to the Langmuir technique, these advances were made as a result of direct measurements of the interfacial composition, structure and morphology using two different implementations of neutron reflectometry and Brewster angle microscopy. The results provide new insight into key processes that determine the uptake of drugs such as limited drug penetration through cell membranes by passive diffusion as well as activation of drug removal mechanisms related to multidrug resistance.
Collapse
Affiliation(s)
- Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Richard A Campbell
- Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, 38042 Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
35
|
Schnurbus M, Campbell RA, Droste J, Honnigfort C, Glikman D, Gutfreund P, Hansen MR, Braunschweig B. Photo-Switchable Surfactants for Responsive Air–Water Interfaces: Azo versus Arylazopyrazole Amphiphiles. J Phys Chem B 2020; 124:6913-6923. [DOI: 10.1021/acs.jpcb.0c02848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marco Schnurbus
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Richard A. Campbell
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jörn Droste
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Christian Honnigfort
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Dana Glikman
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, Grenoble CEDEX 9 38042, France
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
36
|
Abstract
Over the last 10 years, neutron reflectometry (NR) has emerged as a powerful technique for the investigation of biologically relevant thin films. The great advantage of NR with respect to many other surface-sensitive techniques is its sub-nanometer resolution that enables structural characterizations at the molecular level. In the case of bio-relevant samples, NR is non-destructive and can be used to probe thin films at buried interfaces or enclosed in bulky sample environment equipment. Moreover, recent advances in biomolecular deutera-tion enabled new labeling strategies to highlight certain structural features and to resolve with better accuracy the location of chemically similar molecules within a thin film.
In this chapter I will describe some applications of NR to bio-relevant samples and discuss some of the data analysis approaches available for biological thin films. In particular, examples on the structural characterization of biomembranes, protein films and protein-lipid interactions will be described.
Collapse
|
37
|
López-Dı Az D, Merchán MD, Velázquez MM, Maestro A. Understanding the Role of Oxidative Debris on the Structure of Graphene Oxide Films at the Air-Water Interface: A Neutron Reflectivity Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25453-25463. [PMID: 32394699 DOI: 10.1021/acsami.0c05649] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We address here the role of oxidation impurities on the structure of graphene oxide films at the air-water interface by specular neutron reflectivity (SNR). We study films of purified graphene oxide (PGO) and nonpurified graphene oxide in the close-packed state. Nonpurified graphene oxide is constituted by graphene oxide (GO) layers with oxidation impurities adsorbed on the basal plane, while in PGO sheets, impurities are eliminated. SNR measurements show that GO films are formed by well-defined bilayers constituted by 2-3 layers of GO stacked in contact with air and a second layer of impurities submerged in the aqueous subphase. In contrast, PGO films are formed by a single layer in contact with air. We show for the first time that impurities constitute a layer submerged in the aqueous subphase, decrease the elasticity, and favor the collapse of graphene oxide films. Our results allow designing the surface properties of GO trapped at fluid interfaces.
Collapse
Affiliation(s)
- David López-Dı Az
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - M Dolores Merchán
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - M Mercedes Velázquez
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Armando Maestro
- Institut Max von Laue and Paul Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, cedex 9, France
| |
Collapse
|
38
|
Structure of DPPC Monolayers at the Air/Buffer Interface: A Neutron Reflectometry and Ellipsometry Study. COATINGS 2020. [DOI: 10.3390/coatings10060507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Langmuir monolayers of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine, known as DPPC, at the air/water interface are extensively used as model systems of biomembranes and pulmonary surfactant. The properties of these monolayers have been mainly investigated by surface pressure–area isotherms coupled with different complementary techniques such as Brewster angle microscopy, for example. Several attempts using neutron reflectometry (NR) or ellipsometry have also appeared in the literature. Here, we report structural information obtained by using NR and ellipsometry on DPPC monolayers in the liquid condensed phase. On one side, NR can resolve the thickness of the aliphatic tails and the degree of hydration of the polar headgroups. On the other side, ellipsometry gives information on the refractive index and, therefore, on the physical state of the monolayer. The thickness and surface excess obtained by multiple-angle-of-incidence ellipsometry (MAIE) is compared with the results from NR measurements yielding a good agreement. Besides, a novel approach is reported to calculate the optical anisotropy of the DPPC monolayer that depends on the orientation of the aliphatic chains. The results from both NR and ellipsometry are also discussed in the context of the existing results for DPPC monolayers at the air/water interface. The differences observed are rationalized by the presence of buffer molecules interacting with phospholipids.
Collapse
|
39
|
Bergendal E, Campbell RA, Pilkington GA, Müller-Buschbaum P, Rutland MW. 3D texturing of the air-water interface by biomimetic self-assembly. NANOSCALE HORIZONS 2020; 5:839-846. [PMID: 32364200 DOI: 10.1039/c9nh00722a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple, insoluble monolayer of fatty acid is shown to induce 3D nanotexturing of the air-water interface. This advance has been achieved through the study of monolayers of a methyl-branched long chain fatty acid, analogous to those found on the surface of hair and wool, directly at the air-water interface. Specular neutron reflectometry combined with AFM probing of deposited monolayers shows pronounced 3D surface domains, which are absent for unbranched analogues and are attributed to hydrocarbon packing constraints. The resulting surface topographies of the water far exceed the height perturbation that can be explained by the presence of capillary waves of a free liquid surface. These have hitherto been considered the only source of perturbation of the flatness of a planar water interface under gravity in the absence of topographical features from the presence of extended, globular or particulate matter. This amounts to a paradigm shift in the study of interfacial films and opens the possibility of 3D texturing of the air-water interface.
Collapse
Affiliation(s)
- Erik Bergendal
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Drottning Kristinas väg 51, 10044 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Clifton LA, Campbell RA, Sebastiani F, Campos-Terán J, Gonzalez-Martinez JF, Björklund S, Sotres J, Cárdenas M. Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques. Adv Colloid Interface Sci 2020; 277:102118. [PMID: 32044469 DOI: 10.1016/j.cis.2020.102118] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023]
Abstract
Cellular membranes are complex structures and simplified analogues in the form of model membranes or biomembranes are used as platforms to understand fundamental properties of the membrane itself as well as interactions with various biomolecules such as drugs, peptides and proteins. Model membranes at the air-liquid and solid-liquid interfaces can be studied using a range of complementary surface-sensitive techniques to give a detailed picture of both the structure and physicochemical properties of the membrane and its resulting interactions. In this review, we will present the main planar model membranes used in the field to date with a focus on monolayers at the air-liquid interface, supported lipid bilayers at the solid-liquid interface and advanced membrane models such as tethered and floating membranes. We will then briefly present the principles as well as the main type of information on molecular interactions at model membranes accessible using a Langmuir trough, quartz crystal microbalance with dissipation monitoring, ellipsometry, atomic force microscopy, Brewster angle microscopy, Infrared spectroscopy, and neutron and X-ray reflectometry. A consistent example for following biomolecular interactions at model membranes is used across many of the techniques in terms of the well-studied antimicrobial peptide Melittin. The overall objective is to establish an understanding of the information accessible from each technique, their respective advantages and limitations, and their complementarity.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, United Kingdom
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Federica Sebastiani
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - José Campos-Terán
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico; Lund Institute of advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 Lund, Sweden
| | - Juan F Gonzalez-Martinez
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Javier Sotres
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden.
| |
Collapse
|
41
|
Honnigfort C, Campbell RA, Droste J, Gutfreund P, Hansen MR, Ravoo BJ, Braunschweig B. Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chem Sci 2020; 11:2085-2092. [PMID: 32190275 PMCID: PMC7059314 DOI: 10.1039/c9sc05490a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Interfaces that can change their chemistry on demand have huge potential for applications and are prerequisites for responsive or adaptive materials. We report on the performance of a newly designed n-butyl-arylazopyrazole butyl sulfonate (butyl-AAP-C4S) surfactant that can change its structure at the air-water interface by E/Z photo-isomerization in an unprecedented way. Large and reversible changes in surface tension (Δγ = 27 mN m-1) and surface excess (ΔΓ > 2.9 μmol m-2) demonstrate superior performance of the butyl-AAP-C4S amphiphile to that of existing ionic surfactants. Neutron reflectometry and vibrational sum-frequency generation spectroscopy reveal that these large changes are caused by an unexpected monolayer-to-bilayer transition. This exceptional behavior is further shown to have dramatic consequences at larger length scales as highlighted by applications like the light-triggered collapse of aqueous foam which is tuned from high (>1 h) to low (<10 min) stabilities and light-actuated particle motion via Marangoni flows.
Collapse
Affiliation(s)
- Christian Honnigfort
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany .
- Center for Soft Nanoscience (SoN) , Westfälische Wilhelms-Universität Münster , Busso-Peus-Straße 10 , 48149 Münster , Germany
| | - Richard A Campbell
- Division of Pharmacy & Optometry , School of Health Sciences , University of Manchester , Oxford Road , Manchester M13 9PT , UK
| | - Jörn Droste
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany .
| | - Philipp Gutfreund
- Institut Laue-Langevin (ILL) , 71 Avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9 , France
| | - Michael Ryan Hansen
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany .
| | - Bart Jan Ravoo
- Center for Soft Nanoscience (SoN) , Westfälische Wilhelms-Universität Münster , Busso-Peus-Straße 10 , 48149 Münster , Germany
- Organic Chemistry Institute , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry , Westfälische Wilhelms-Universität Münster , Corrensstraße 28/30 , 48149 Münster , Germany .
- Center for Soft Nanoscience (SoN) , Westfälische Wilhelms-Universität Münster , Busso-Peus-Straße 10 , 48149 Münster , Germany
| |
Collapse
|
42
|
Gochev GG, Scoppola E, Campbell RA, Noskov BA, Miller R, Schneck E. β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 3. Neutron Reflectometry Study on the Effect of pH. J Phys Chem B 2019; 123:10877-10889. [PMID: 31725291 DOI: 10.1021/acs.jpcb.9b07733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Several characteristics of β-lactoglobulin (BLG) layers adsorbed at the air/water interface exhibit a strong pH dependence, but our knowledge on the underlying structure-property relations is still fragmental. Here, we therefore extend our recent studies by neutron reflectometry (NR) and provide a comprehensive overview through direct measurements of the surface excess Γ and the layers' molecular structure. This enables comparison with available literature data to draw general conclusions. The NR experiments were performed at various pH values and within a wide range of protein concentrations, CBLG. Adsorption kinetics measurements in air-contrast-matched-water and over a narrow Qz range enabled direct quantification of the dynamic surface excess Γ(t) and are found to be consistent with ellipsometry data. Near the isoelectric point, pI, the rates of adsorption and Γ are maximal but only at sufficiently high CBLG. NR data collected over a wider Qz range and in two aqueous isotopic contrasts revealed the structure of adsorbed BLG layers at a steady state close to equilibrium. Independent of the pH, BLG was found to form dense monolayers with average thicknesses of 1.1 nm, suggesting flattening of the BLG globules upon adsorption as compared with their bulk dimensions (≈3.5 nm). Near pI and at sufficiently high CBLG, a thick (≈5.5 nm) but looser secondary sublayer is additionally formed adjacent to the dense primary monolayer. The thickness of this sublayer can be interpreted in terms of disordered BLG dimers. The results obtained and notably the specific interfacial structuring of BLG near pI complement previous observations relating the impact of solution pH and CBLG on other interfacial characteristics such as surface pressure and surface dilational viscoelasticity modulus.
Collapse
Affiliation(s)
- Georgi G Gochev
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany.,Institute of Physical Chemistry , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Ernesto Scoppola
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| | - Richard A Campbell
- Institut Laue-Langevin , 71 Avenue des Martyrs, CS20156 , 38042 Grenoble , France.,Division of Pharmacy and Optometry , University of Manchester , M13 9PT Manchester , U.K
| | - Boris A Noskov
- Institute of Chemistry , St. Petersburg State University , 198504 Saint-Petersburg , Russia
| | - Reinhard Miller
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| |
Collapse
|
43
|
Synergy, competition, and the "hanging" polymer layer: Interactions between a neutral amphiphilic 'tardigrade' comb co-polymer with an anionic surfactant at the air-water interface. J Colloid Interface Sci 2019; 561:181-194. [PMID: 31830734 DOI: 10.1016/j.jcis.2019.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
Understanding the structure of polymer/surfactant mixtures at the air-water interface is of fundamental importance and also of relevance to a variety of practical applications. Here, the complexation between a neutral 'tardigrade' comb co-polymer (consisting of a hydrophilic polyethylene glycol backbone with hydrophobic polyvinyl acetate grafts, PEG-g-PVAc) with an anionic surfactant (sodium dodecyl sulfate, SDS) at the air-water interface has been studied. Contrast-matched neutron reflectivity (NR) complemented by surface tension measurements allowed elucidation of the interfacial composition and structure of these mixed systems, as well as providing physical insights into the polymer/surfactant interactions at the air-water interface. For both polymer concentrations studied, below and above its critical aggregation concentration, cac, (0.2 cac and 2 cac, corresponding to 0.0002 wt% or 0.013 mM and 0.002 wt% or 0.13 mM respectively), we observed a synergistic cooperative behaviour at low surfactant concentrations with a 1-2 nm mixed interfacial layer; a competitive adsorption behaviour at higher surfactant concentrations was observed where the polymer was depleted from the air-water interface, with an overall interfacial layer thickness ~1.6 nm independent of the polymer concentration. The weakly associated polymer layer "hanging" proximally to the interface, however, played a role in enhancing foam stability, thus was relevant to the detergency efficacy in such polymer/surfactant mixtures in industrial formulations.
Collapse
|
44
|
Larsson J, Sanchez-Fernandez A, Mahmoudi N, Barnsley LC, Wahlgren M, Nylander T, Ulvenlund S. Effect of the Anomeric Configuration on the Micellization of Hexadecylmaltoside Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13904-13914. [PMID: 31566987 DOI: 10.1021/acs.langmuir.9b01960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembly of the two anomeric forms of n-hexadecyl-d-maltopyranoside (denoted α-C16G2 and β-C16G2) has been studied in dilute aqueous solution by means of surface tension measurements, scattering methods (dynamic light scattering, static light scattering, and small-angle X-ray and neutron scattering), and cryo-transmission electron microscopy at different surfactant concentrations and temperatures. Surface tension measurements demonstrate differences in the surfactant adsorption at the air-water interface, where α-C16G2 shows a lower CMC than β-C16G2. Similarly, micelle morphology was found to profoundly depend on anomerism. β-C16G2 preferentially forms very elongated micelles with large persistence lengths, whereas α-C16G2 assembles into smaller micelles for which the structure varies with concentration and temperature. The differences between the two surfactant anomers in terms of self-assembly can be attributed to the interaction between neighboring headgroups. Specifically, β-C16G2 allows for a closer packing in the palisade layer, hence reducing the micelle curvature and promoting the formation of more elongated micelles. Strong intermolecular headgroup interactions may also account for the observed rigidity of the micelles.
Collapse
Affiliation(s)
| | | | - Najet Mahmoudi
- ISIS Neutron and Muon Source, Science & Technology Facilities Council , Rutherford Appleton Laboratory , Chilton OX11 0QX , U.K
| | - Lester C Barnsley
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstr. 1 , 85748 Garching , Germany
| | | | | | | |
Collapse
|
45
|
Panzuela S, Tieleman DP, Mederos L, Velasco E. Molecular Ordering in Lipid Monolayers: An Atomistic Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13782-13790. [PMID: 31553617 DOI: 10.1021/acs.langmuir.9b02635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on atomistic simulations of DPPC lipid monolayers using the CHARMM36 lipid force field (and also the Slipid force field as a control case), combined with a four-point OPC water model. The entire two-phase region where domains of the "liquid-condensed" (LC) phase coexist with domains of the "liquid-expanded" (LE) phase has been explored. The simulations are long enough that the complete phase-transition stage, with two domains coexisting in the monolayer, is reached in all cases. Also, system sizes used are larger than those in previous works. As expected, domains of the minority phase are elongated, emphasizing the importance of anisotropic van der Waals and/or electrostatic dipolar interactions in the monolayer plane. The molecular structure is quantified in terms of distribution functions for the hydrocarbon chains and the PN dipoles. In contrast to previous work, where average distributions are calculated, distributions are here extracted for each of the coexisting phases by first identifying lipid molecules that belong to either LC or LE regions. In the case of the CHARMM36 force field, the three-dimensional distributions show that the average tilt angle of the chains with respect to the normal outward direction is (39.0 ± 0.1)° in the LC phase and (48.1 ± 0.5)° in the LC phase. In the case of the PN dipoles, the distributions indicate a tilt angle of (110.8 ± 0.5)° in the LC phase and (112.5 ± 0.5)° in the LE phase. These results are quantitatively different from those in previous works, which indicated a smaller normal component of the PN dipole. Also, the distributions of the monolayer-projected chains and PN dipoles have been calculated. Chain distributions peak along a particular direction in the LC domains, while they are uniform in the LE phase. Long-range ordering associated with the projected PN dipoles is absent in both phases. These results strongly suggest that LC domains do not exhibit dipolar ordering in the plane of the monolayer, the effect of these components being averaged out at short distances. Therefore, the only relevant component of the molecular dipoles, with regard to both intra- and long-range interdomain interactions, is normal to the monolayer. Also, the local orientation of chain projections is almost constant in LC domains and points in the direction along which domains are elongated, suggesting that the line tension driving the phase transition might be anisotropic with respect to the interfacial domain boundary.
Collapse
Affiliation(s)
- S Panzuela
- Departamento de Física Teórica de la Materia Condensada , Universidad Autónoma de Madrid , E-28049 Madrid , Spain
| | - D P Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences , University of Calgary , Calgary , Alberta T2N1N4 , Canada
| | - L Mederos
- Instituto de Ciencia de Materiales de Madrid , Consejo Superior de Investigaciones Científicas , C/Sor Juana Inés de la Cruz, 3 , E-28049 Madrid , Spain
| | - E Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Ciencias de Materiales Nicolás Cabrera, and IFIMAC , Universidad Autónoma de Madrid , E-28049 Madrid , Spain
| |
Collapse
|
46
|
Ortiz-Collazos S, Picciani PH, Oliveira ON, Pimentel AS, Edler KJ. Influence of levofloxacin and clarithromycin on the structure of DPPC monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182994. [DOI: 10.1016/j.bbamem.2019.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
|
47
|
Pabois O, Lorenz CD, Harvey RD, Grillo I, Grundy MML, Wilde PJ, Gerelli Y, Dreiss CA. Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion. J Colloid Interface Sci 2019; 556:266-277. [PMID: 31450021 DOI: 10.1016/j.jcis.2019.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 08/03/2019] [Indexed: 11/19/2022]
Abstract
HYPOTHESES Understanding the mechanisms underlying lipolysis is crucial to address the ongoing obesity crisis and associated cardiometabolic disorders. Bile salts (BS), biosurfactants present in the small intestine, play key roles in lipid digestion and absorption. It is hypothesised that their contrasting functionalities - adsorption at oil/water interfaces and shuttling of lipolysis products away from these interfaces - are linked to their structural diversity. We investigate the interfacial films formed by two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), differing by the presence or absence of a hydroxyl group on their steroid skeleton. EXPERIMENTS Their adsorption behaviour at the air/water interface and interaction with a phospholipid monolayer - used to mimic a fat droplet interface - were assessed by surface pressure measurements and ellipsometry, while interfacial morphologies were characterised in the lateral and perpendicular directions by Brewster angle microscopy, X-ray and neutron reflectometry, and molecular dynamics simulations. FINDINGS Our results provide a comprehensive molecular-level understanding of the mechanisms governing BS interfacial behaviour. NaTC shows a higher affinity for the air/water and lipid/water interfaces, and may therefore favour enzyme adsorption, whereas NaTDC exhibits a higher propensity for desorption from these interfaces, and may thus more effectively displace hydrolysis products from the interface, through dynamic exchange.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble 38000, France; Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | - Richard D Harvey
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06099, Germany.
| | | | - Myriam M-L Grundy
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom.
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, United Kingdom.
| | | | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
48
|
Nelson ARJ, Prescott SW. refnx: neutron and X-ray reflectometry analysis in Python. J Appl Crystallogr 2019; 52:193-200. [PMID: 30800030 PMCID: PMC6362611 DOI: 10.1107/s1600576718017296] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
refnx is a model-based neutron and X-ray reflectometry data analysis package written in Python. It is cross platform and has been tested on Linux, macOS and Windows. Its graphical user interface is browser based, through a Jupyter notebook. Model construction is modular, being composed from a series of components that each describe a subset of the interface, parameterized in terms of physically relevant parameters (volume fraction of a polymer, lipid area per molecule etc.). The model and data are used to create an objective, which is used to calculate the residuals, log-likelihood and log-prior probabilities of the system. Objectives are combined to perform co-refinement of multiple data sets and mixed-area models. Prior knowledge of parameter values is encoded as probability distribution functions or bounds on all parameters in the system. Additional prior probability terms can be defined for sets of components, over and above those available from the parameters alone. Algebraic parameter constraints are available. The software offers a choice of fitting approaches, including least-squares (global and gradient-based optimizers) and a Bayesian approach using a Markov-chain Monte Carlo algorithm to investigate the posterior distribution of the model parameters. The Bayesian approach is useful for examining parameter covariances, model selection and variability in the resulting scattering length density profiles. The package is designed to facilitate reproducible research; its use in Jupyter notebooks, and subsequent distribution of those notebooks as supporting information, permits straightforward reproduction of analyses.
Collapse
Affiliation(s)
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
49
|
McCluskey AR, Sanchez-Fernandez A, Edler KJ, Parker SC, Jackson AJ, Campbell RA, Arnold T. Bayesian determination of the effect of a deep eutectic solvent on the structure of lipid monolayers. Phys Chem Chem Phys 2019; 21:6133-6141. [DOI: 10.1039/c9cp00203k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel reflectometry analysis method reveals the structure of lipid monolayers at the air-DES interface.
Collapse
Affiliation(s)
| | | | | | | | - Andrew J. Jackson
- European Spallation Source
- SE-211 00 Lund
- Sweden
- Department of Physical Chemistry
- Lund University
| | - Richard A. Campbell
- Division of Pharmacy and Optometry
- University of Manchester
- Manchester
- UK
- Institut Laue-Langevin
| | - Thomas Arnold
- Department of Chemistry
- University of Bath
- Bath
- UK
- Diamond Light Source
| |
Collapse
|
50
|
Niga P, Hansson-Mille PM, Swerin A, Claesson PM, Schoelkopf J, Gane PAC, Dai J, Furó I, Campbell RA, Johnson CM. Propofol adsorption at the air/water interface: a combined vibrational sum frequency spectroscopy, nuclear magnetic resonance and neutron reflectometry study. SOFT MATTER 2018; 15:38-46. [PMID: 30516226 DOI: 10.1039/c8sm01677a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Propofol is an amphiphilic small molecule that strongly influences the function of cell membranes, yet data regarding interfacial properties of propofol remain scarce. Here we consider propofol adsorption at the air/water interface as elucidated by means of vibrational sum frequency spectroscopy (VSFS), neutron reflectometry (NR), and surface tensiometry. VSFS data show that propofol adsorbed at the air/water interface interacts with water strongly in terms of hydrogen bonding and weakly in the proximity of the hydrocarbon parts of the molecule. In the concentration range studied there is almost no change in the orientation adopted at the interface. Data from NR show that propofol forms a dense monolayer with a thickness of 8.4 Å and a limiting area per molecule of 40 Å2, close to the value extracted from surface tensiometry. The possibility that islands or multilayers of propofol form at the air/water interface is therefore excluded as long as the solubility limit is not exceeded. Additionally, measurements of the 1H NMR chemical shifts demonstrate that propofol does not form dimers or multimers in bulk water up to the solubility limit.
Collapse
Affiliation(s)
- Petru Niga
- RISE Research Institutes of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden.
| | - Petra M Hansson-Mille
- RISE Research Institutes of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden.
| | - Agne Swerin
- RISE Research Institutes of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden. and KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden.
| | - Per M Claesson
- RISE Research Institutes of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden. and KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden.
| | | | - Patrick A C Gane
- Omya International AG, Baslerstrasse 42, CH-4665 Oftringen, Switzerland and Aalto University, School of Chemical Technology, Department of Bioproducts and Biosystems, FI-00076 Aalto, Helsinki, Finland
| | - Jing Dai
- KTH Royal Institute of Technology, Department of Chemistry, Division of Applied Physical Chemistry, SE-100 44 Stockholm, Sweden
| | - István Furó
- KTH Royal Institute of Technology, Department of Chemistry, Division of Applied Physical Chemistry, SE-100 44 Stockholm, Sweden
| | - Richard A Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France and Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| | - C Magnus Johnson
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden.
| |
Collapse
|