1
|
Arshad S, Raza SA, Alamgeer, Bukhari SNA, Alotaibi NF, Ahmad N, Irfan HM, Mahmood A, Asim MH. Microwave-assisted, sulfhydryl-modified β-cyclodextrin-silymarin inclusion complex: A diverse approach to improve oral drug bioavailability via enhanced mucoadhesion and permeation. Carbohydr Polym 2025; 348:122880. [PMID: 39567122 DOI: 10.1016/j.carbpol.2024.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
The current study aimed to generate a sulfhydryl-modified β-cyclodextrin-silymarin complex (sulfhydryl-modified β-CD-SMN complex) and to evaluate the enchantment in solubility, permeability, and bioavailability of a model BCS Class IV drug silymarin (SMN). For this purpose, sulfhydryl-modified β-CD was synthesized by replacing all primary and secondary -OH groups at the β-CD backbone with sulfhydryl groups via a novel microwave-assisted technique. Afterward, sulfhydryl-modified β-CD was complexed with silymarin and characterized by FTIR and 1H NMR spectroscopy. Moreover, no. of sulfhydryl groups and their oxidative stability, solubility, safety, mucoadhesion, release, diffusion, and rheological studies were performed. Furthermore, in-vivo studies were conducted to confirm enhanced pharmacokinetic properties of silymarin. Sulfhydryl-modified β-CD showed 8291 ± 418 μmol/g sulfhydryl groups that were prone to oxidation at pH ≥ 5, however, most of the sulfhydryl groups were found stable at pH 4 having a pKa value of 8.3. Modified β-CD oligomer showed improved solubility of SMN, significantly enhanced drug transport across goat intestinal mucosa, 78-fold improved mucoadhesion, improved drug dissolution and 4.4-fold enhanced dynamic viscosity. No toxic effects were reported to Caco-2 cells at 0.5% (m/v) concentration of sulfhydryl-modified β-CD for 24 h. The apparent permeability coefficient (Papp) of SMN was 6.9-fold enhanced on goat intestinal mucosa. Moreover, in-vivo studies confirmed a significantly enhanced oral bioavailability of SMN due to combination with sulfhydryl-modified β-CD. Based on these findings, the sulfhydryl-modified β-CD-silymarin inclusion complex can be a promising technique to enhance the bioavailability of BCS Class IV drugs via enhanced solubility, mucoadhesion, and permeability triple action.
Collapse
Affiliation(s)
- Shumaila Arshad
- ILM College of Pharmaceutical Sciences & Sargodha College of Medical Sciences, 40100 Sargodha, Pakistan
| | - Syed Atif Raza
- Punjab University College of Pharmacy, University of the Punjab, 54000 Lahore, Pakistan
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, 54000 Lahore, Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia.
| | - Nasser F Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Arshad Mahmood
- College of Pharmacy, Al Ain University, 112612 Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
2
|
Zhang B, Long S, Feng R, Yu MJ, Xu BC, Tao H. Thiolated dextrin nanoparticles for curcumin delivery: Stability, in vitro release, and binding mechanism. Food Chem 2025; 463:141501. [PMID: 39395353 DOI: 10.1016/j.foodchem.2024.141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
To achieve the effective loading and delivery of curcumin, novel disulfide-crosslinked nanoparticles based on modified dextrin were developed for the encapsulation of curcumin. Thiolated dextrin (Dt-SH) was obtained via sodium periodate oxidation and cysteamine grafting. The Dt-SH exhibited a rough, flake-like morphology, was classified as an amorphous material and demonstrated enhanced enzyme resistance. Subsequently, spherical nanoparticles with sizes ranging from 92.52 to 157.12 nm and zeta potentials between +23.59 and + 29.90 mV were self-assembled in an aqueous solution. Thiol modification promoted interconnection and aggregation of the nanoparticles. These nanoparticles exhibited pH-dependent size variations. Taking curcumin as a hydrophobic model, nanoparticles showed intestinal targeted release in vitro. Fluorescence spectroscopy and thermodynamic analysis indicated that curcumin bound to Dt-SH nanoparticles primarily through hydrogen bonding and van der Waals forces, with hydrophobic interactions contributing. These findings supported the potential of thiolated dextrin nanoparticles in the effective delivery of hydrophobic compounds.
Collapse
Affiliation(s)
- Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Shen Long
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Meng-Jie Yu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
3
|
Kali G, Taha AMM, Campanella E, Truszkowska M, Haddadzadegan S, Denora N, Bernkop-Schnürch A. Enhanced Mucoadhesion of Thiolated β-Cyclodextrin by S-Protection with 2-Mercaptoethanesulfonic Acid. ACS OMEGA 2024; 9:5819-5828. [PMID: 38343993 PMCID: PMC10851230 DOI: 10.1021/acsomega.3c08836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 04/19/2025]
Abstract
This study aimed at designing an S-protected thiolated β-cyclodextrin (β-CD) exhibiting enhanced mucoadhesive properties. The native β-CD was thiolated with phosphorus pentasulfide resulting in a thiolated β-CD (β-CD-SH) and subsequently S-protected with 2-mercaptoethanesulfonate (MESNA) to form β-CD-SS-MESNA. The structure of the novel excipient was confirmed by 1H NMR and Fourier-transform infrared spectroscopy. The sulfhydryl content of β-CD-SH, determined by Ellman's test, was 2281.00 ± 147 μmol/g, and it was decreased to 45.93 ± 19.40 μmol/g by S-protection. Due to thiolation and S-protection, the viscosity of the mixture of mucus with β-CD-SH and β-CD-SS-MESNA increased 1.8 and 4.1-fold, compared to native β-CD, respectively. The unprotected β-CD-SH diffused to a lesser extent into the mucus than native β-CD, while S-protected β-CD-SS-MESNA showed the highest mucodiffusion among the applied CDs. A 1.5- and 3.0-fold higher cellular uptake of β-CD-SH and β-CD-SS-MESNA, compared to the native one, was established on Caco-2 cell line by flow cytometry, respectively, causing slightly decreased cell viability. On account of the enhanced mucoadhesion, this higher cellular uptake does not affect the application potential of β-CD-SS-MESNA as an oral drug delivery system since the carrier remains in the mucus and does not reach the underlying epithelial layer. According to these results, the S-protection of β-CD-SH with MESNA promotes improved mucodiffusion, strong mucoadhesion, and prolonged mucosal residence time.
Collapse
Affiliation(s)
- Gergely Kali
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ali Magdi Mahmoud
Mahmoud Taha
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Emiliano Campanella
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Department
of Pharmacy, University of Bari Aldo Moro, Piazza Cesare Battisti, I-70121 Bari, Italy
| | - Martyna Truszkowska
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Soheil Haddadzadegan
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Nunzio Denora
- Department
of Pharmacy, University of Bari Aldo Moro, Piazza Cesare Battisti, I-70121 Bari, Italy
| | - Andreas Bernkop-Schnürch
- Center
for Chemistry and Biomedicine, Department of Pharmaceutical Technology,
Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Kali G, Haddadzadegan S, Bernkop-Schnürch A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr Polym 2024; 324:121500. [PMID: 37985088 DOI: 10.1016/j.carbpol.2023.121500] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Cyclodextrins (CD) and derivatives are functional excipients that can improve the bioavailability of numerous drugs. Because of their drug solubility improving properties they are used in many pharmaceutical products. Furthermore, the stability of small molecular drugs can be improved by the incorporation in CDs and an unpleasant taste and smell can be masked. In addition to well-established CD derivatives including hydroxypropyl-β-CD, hydroxypropyl-γ-CD, methylated- β-CD and sulfobutylated- β-CD, there are promising new derivatives in development. In particular, CD-based polyrotaxanes exhibiting cellular uptake enhancing properties, CD-polymer conjugates providing sustained drug release, enhanced cellular uptake, and mucoadhesive properties, and thiolated CDs showing mucoadhesive, in situ gelling, as well as permeation and cellular uptake enhancing properties will likely result in innovative new drug delivery systems. Relevant clinical trials showed various new applications of CDs such as the formation of CD-based nanoparticles, stabilizing properties for protein drugs or the development of ready-to-use injection systems. Advanced products are making use of various benefical properties of CDs at the same time. Within this review we provide an overview on these recent developments and take an outlook on how this class of excipients will further shape the landscape of drug delivery.
Collapse
Affiliation(s)
- Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
5
|
Khalid FM, Ijaz M, Mahmood A, Waqas MK, Hussain T, Asim MH, Ahmad N, Arshad S, Rehman MU, Nazir I. Mucoadhesive, Fluconazole-Loaded Nanogels Complexed with Sulfhydryl-β-cyclodextrin for Oral Thrush Treatment. AAPS PharmSciTech 2023; 24:194. [PMID: 37752361 DOI: 10.1208/s12249-023-02653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
The objective of this study was to generate fluconazole-loaded mucoadhesive nanogels to address the problem of hydrophobicity of fluconazole (FL). An inclusion complex was formulated with sulfhydryl-β-CD (SH-β-CD) followed by nanogels formation by a Schiff base reaction of carbopol 940 (CA-940) and gelatin (GE). For characterization, PXRD, FT-IR analysis, drug content, and phase solubility studies were performed. Similarly, nanogels were assessed for particle size, zeta potential, organoleptic, and spreadability studies. Moreover, drug contents, rheological, in vitro drug permeation, release kinetics, toxicity, and stability studies of nanogels were performed. Furthermore, mucoadhesive characteristics over the buccal mucosal membrane of the goat were evaluated. The nanogels formulated with a higher amount of CA-940 and subsequently loaded with the inclusion complexes of FL showed promising results. PXRD and FT-IR analysis confirmed the physical complexes by displaying a reduction in the intensity of peaks of FL. The average particle size of nanogels was in the range of 257 to 361 nm. The highest drug content of 88% was encapsulated within the FL-SH-β-CD complex. All formulations at 0.5-1% concentration displayed no toxicity to the Caco-2 cell lines. Nanogels loaded with FL-SH-β-CD complexes showed 18-fold improved mucoadhesion on the buccal mucous membrane of the goat when compared to simple nanogels. The in vitro permeation study exhibited significantly enhanced permeation and first-order concentration-dependent drug release was observed. On the bases of these findings, we can conclude that a mucoadhesive nanogel-based drug delivery system can be an ideal therapy for candidiasis.
Collapse
Affiliation(s)
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan.
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, 51133, Abu Dhabi, United Arab Emirates
| | | | - Talib Hussain
- Institute of Pharmaceutical Sciences, UVAS, Lahore, 54000, Pakistan
| | | | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan
| | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road, Sargodha, 40100, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Ripha International University, Islamabad, 45550, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Kaplan Ö, Truszkowska M, Kali G, Knoll P, Blanco Massani M, Braun DE, Bernkop-Schnürch A. Thiolated α-cyclodextrin: The likely smallest drug carrier providing enhanced cellular uptake and endosomal escape. Carbohydr Polym 2023; 316:121070. [PMID: 37321712 DOI: 10.1016/j.carbpol.2023.121070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to evaluate the effect of thiolated α-cyclodextrin (α-CD-SH) on the cellular uptake of its payload. For this purpose, α-CD was thiolated using phosphorous pentasulfide. Thiolated α-CD was characterized by FT-IR and 1H NMR spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Cytotoxicity of α-CD-SH was evaluated on Caco-2, HEK 293, and MC3T3 cells. Dilauryl fluorescein (DLF) and coumarin-6 (Cou) serving as surrogates for a pharmaceutical payload were incorporated in α-CD-SH, and cellular uptake was analyzed by flow cytometry and confocal microscopy. Endosomal escape was investigated by confocal microscopy and hemolysis assay. Results showed no cytotoxic effect within 3 h, while dose-dependent cytotoxicity was observed within 24 h. The cellular uptake of DLF and Cou was up to 20- and 11-fold enhanced by α-CD-SH compared to native α-CD, respectively. Furthermore, α-CD-SH provided an endosomal escape. According to these results, α-CD-SH is a promising carrier to shuttle drugs into the cytoplasm of target cells.
Collapse
Affiliation(s)
- Özlem Kaplan
- Department of Genetics and Bioengineering, Rafet Kayış Faculty of Engineering, Alanya Alaaddin Keykubat University, 07400 Antalya, Turkey; Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Blanco Massani
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Doris Elfriede Braun
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
7
|
Fan L, Wang Y, Wen S, Wang T, Xu X, Wang B, Zhang Q. Interfacial Polymerization of Highly Active Thiolated Cyclodextrin for the Fabrication of a Loose Nanofiltration Membrane with a Chlorine-Resistant Poly(thioester) Linkage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43193-43204. [PMID: 37668232 DOI: 10.1021/acsami.3c09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Cyclodextrins have been frequently used to fabricate membranes via interfacial polymerization (IP). However, the relatively low reactivity of pristine cyclodextrins often induces a lower cross-linking density and unsatisfactory separation performance. In this work, to introduce a highly active thiolated β-cyclodextrin (CD-SH) monomer into IP progress, we constructed a dense and porous poly(thioester) linkage on a commercial membrane surface with loose nanofiltration by IP of CD-SH and trimesoyl trichloride (TMC) as the monomer in an aqueous phase and organic phase separately for the first time. Furthermore, the reactivity of CD-SH has been fully demonstrated by the two-phase IP aiming at unmodified β-CD, a CD-SH/TMC freestanding membrane with a thicker interfacial layer and a smoother surface, and a PAN/CD-SH membrane with a narrow porous distribution. The composite membrane possessed superior separation performance for a high rejection (83.1-99.6%) of different anionic dyes and a low rejection (<20%) of salts, as well as a high-efficiency sieving ability of dye/dye and dye/salt mixtures. The membrane with a poly(thioester) selective layer could steadily operate in a long-term filtration test and exhibit great stability, chloride-resistance performance, and recyclability.
Collapse
Affiliation(s)
- Liyuan Fan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yan Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shaobin Wen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tianheng Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xiaoling Xu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Bingyu Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
8
|
Haddadzadegan S, Knoll P, Wibel R, Kali G, Bernkop-Schünrch A. Three generations of thiolated cyclodextrins: A direct comparison of their mucus permeating and mucoadhesive properties. Acta Biomater 2023:S1742-7061(23)00315-X. [PMID: 37271247 DOI: 10.1016/j.actbio.2023.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
AIM This study aims to compare the mucus permeating and mucoadhesive properties of three generations of thiolated cyclodextrins (CDs). METHODS Free thiol groups of thiolated γ-CDs (CD-SH) were S-protected with 2-mercaptonicotinic acid (MNA), leading to a second generation of thiolated CDs (CD-SS-MNA) and with 2 kDa polyethylene glycol (PEG) bearing a terminal thiol group leading to a third generation of thiolated CDs (CD-SS-PEG). The structure of these thiolated CDs was confirmed and characterized by FT-IR, 1H NMR and colorimetric assays. Thiolated CDs were evaluated regarding viscosity, mucus diffusion, and mucoadhesion. RESULTS The viscosity of the mixture of CD-SH, CD-SS-MNA, or CD-SS-PEG with mucus increased up to 11-, 16-, and 14.1-fold compared to unmodified CD within 3 hours, respectively. Mucus diffusion increased in the following rank order: unprotected CD-SH < CD-SS-MNA < CD-SS-PEG. The residence time of CD-SH, CD-SS-MNA, and CD-SS-PEG on porcine intestine was up to 9.6-, 12.55-, and 11.2-fold prolonged compared to native CD, respectively. CONCLUSION According to these results, S-protection of thiolated CDs can be a promising approach to improve their mucus permeating and mucoadhesive properties. STATEMENT OF SIGNIFICANCE Three generations of thiolated cyclodextrins (CDs) with different types of thiol ligands have been synthesized to improve mucus interaction. 1st generation of thiolated CDs was synthesized by converting hydroxyl groups into thiols by reaction with Thiourea. For 2nd generation, free thiol groups were S-protected by reaction with 2-mercaptonicotinic acid (MNA), resulting in high reactive disulfide bonds. For 3rd generation, terminally thiolated short PEG chains (2 kDa) were used for S-protection of thiolated CDs. Mucus penetrating properties were found to be increased as follows: 1st generation < 2nd generation < 3rd generation. Furthermore, mucoadhesive properties were improved in the following rank order: 1st generation < 3rd generation < 2nd generation. This study suggests that the S-protection of thiolated CDs can enhance mucus penetrating and mucoadhesive properties.
Collapse
Affiliation(s)
- Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schünrch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Wang X, Liu Y, Wu T, Gu B, Sun H, He H, Gong H, Zhu H. A win-win scenario for antibacterial activity and skin mildness of cationic surfactants based on the modulation of host-guest supramolecular conformation. Bioorg Chem 2023; 134:106448. [PMID: 36868128 DOI: 10.1016/j.bioorg.2023.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
The commercial cationic surfactants (CSAa) with quaternary ammonium (QA) groups have proved to be broad-spectrum bactericide against bacteria, fungi, and viruses. Nevertheless, they inevitably exhibit potent irritation on the skin. In this work, we systematically investigated the regulatory mechanism of the host-guest supramolecular conformation with β-cyclodextrin (β-CD) on the bactericidal performance and skin irritation of CSAa with different head groups and chain lengths. When the ratio of incorporated β-CD is not greater than 1:1, the bactericidal efficiency of CSAa@β-CD (n > 12) remained above 90 % due to the free QA groups and hydrophobic fraction that can act on negatively charged bacterial membranes. And once the ratio of β-CD exceeded 1:1, the β-CD attracted to the bacterial surface by hydrogen bonding might prevent CSAa@β-CD from acting on bacteria, resulting in a decrement in antibacterial performance. Even so, the antibacterial activity of CSAa with long alkyl chains (n = 16, 18) was independent from the complexation of β-CD. Accordingly, both the zein solubilization assay and the neutrophil migration assay on zebrafish skin evidenced that β-CD attenuated the interaction of surfactant with skin model proteins and the inflammatory effect on zebrafish, thereby enhancing skin mildness. In this way, we hope to create a simple but effective brainpower using the host-guest approach to guarantee both bactericidal efficiency and skin mildness without modifying the chemical structure of these commercial biocides.
Collapse
Affiliation(s)
- Xuejiao Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China.
| | - Yuting Liu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Biaofeng Gu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Hao Sun
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Huanling He
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Haiqin Gong
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China.
| |
Collapse
|
10
|
Faiz S, Arshad S, Kamal Y, Imran S, Asim MH, Mahmood A, Inam S, Irfan HM, Riaz H. Pioglitazone-loaded nanostructured lipid carriers: In-vitro and in-vivo evaluation for improved bioavailability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Nsuamani ML, Zolotovskaya S, Abdolvand A, Daeid NN, Adegoke O. Thiolated gamma-cyclodextrin-polymer-functionalized CeFe 3O 4 magnetic nanocomposite as an intrinsic nanocatalyst for the selective and ultrasensitive colorimetric detection of triacetone triperoxide. CHEMOSPHERE 2022; 307:136108. [PMID: 35995197 DOI: 10.1016/j.chemosphere.2022.136108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Explosives are powerful destructive weapons used by criminals and terrorists across the globe and their use within military installation sites poses serious environmental health problems. Existing colorimetric sensors for triacetone triperoxide (TATP) relies on detecting its hydrolysed H2O2 form. However, such detection strategy limits the practicability for on-site TATP sensing. In this work, we have developed a novel peroxidase mimic catalytic colorimetric sensor for direct recognition of TATP. Ceria (Ce)-doped Fe3O4 nanoparticles (CeFe3O4) were synthesized via the hot-injection organic synthetic route in the presence of metal precursors and organic ligands. Thereafter, the organic-capped CeFe3O4 nanoparticles were surface-functionalized with amphiphilic polymers (Amp-poly) to render the nanoparticle stable, compact and biocompatible. Thiolated γ-cyclodextrin (γ-CD) was adsorbed on the Amp-poly-CeFe3O4 nanocomposite (NC) surface to form a γ-CD-Amp-poly-CeFe3O4 NC. γ-CD served both as a receptor and as a catalytic enhancer for TATP. Hemin (H), used as a catalytic signal amplifier was adsorbed on the γ-CD-Amp-poly-CeFe3O4 NC surface to form a γ-CD-Amp-poly-CeFe3O4-H NC that served as a functional nanozyme for the enhanced catalytic colorimetric detection of TATP. Under optimum experimental reaction conditions, TATP prepared in BIS-TRIS-Trisma Ac-KAc-NAc buffer, pH 3, was selectively and ultrasensitively detected without the need for acid hydrolysis based on the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 in the presence of the γ-CD-Amp-poly-CeFe3O4-H hybrid nanozyme. The obtained limit of detection of ∼0.05 μg/mL when compared with other published probes demonstrated superior sensitivity. The developed peroxidase mimic γ-CD-Amp-poly-CeFe3O4-H catalytic colorimetric sensor was successfully applied to detect TATP in soil, river water and tap water samples.
Collapse
Affiliation(s)
- M Laura Nsuamani
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Svetlana Zolotovskaya
- Materials Science & Engineering Research Cluster, School of Science & Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Amin Abdolvand
- Materials Science & Engineering Research Cluster, School of Science & Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Niamh Nic Daeid
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Oluwasesan Adegoke
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK.
| |
Collapse
|
12
|
Per-thiolated cyclodextrins: Nanosized drug carriers providing a prolonged gastrointestinal residence time. Carbohydr Polym 2022; 300:120275. [DOI: 10.1016/j.carbpol.2022.120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
|
13
|
Grassiri B, Cesari A, Balzano F, Migone C, Kali G, Bernkop-Schnürch A, Uccello-Barretta G, Zambito Y, Piras AM. Thiolated 2-Methyl-β-Cyclodextrin as a Mucoadhesive Excipient for Poorly Soluble Drugs: Synthesis and Characterization. Polymers (Basel) 2022; 14:polym14153170. [PMID: 35956685 PMCID: PMC9370929 DOI: 10.3390/polym14153170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Thiolated cyclodextrins are structurally simple mucoadhesive macromolecules, which are able to host drugs and increase their apparent water solubility, as well as interact with the mucus layer prolonging drug residence time on the site of absorption. The aim of this study was to synthesize through green microwave-assisted process a freely soluble thiolated 2-methyl-β-cyclodextrin (MβCD-SH). Its inclusion complex properties with dexamethasone (Dex), a poor water soluble drug, and mucoadhesive characteristics were also determined. The product was deeply characterized through NMR spectroscopy (2D COSY, 2D HSQC, 1D/2D TOCSY, and 1D ROESY), showing a thiolation degree of 67%, a selective thiolation on the C6 residues and a monomeric structure. The association constant of MβCD and MβCD-SH with Dex resulted in 2514.3 ± 32.3 M−1 and 2147.0 ± 69.3 M−1, respectively, indicating that both CDs were able to host the drug. Microrheological analysis of mucin in the presence of MBCD-SH showed an increase of complex viscosity, G′ and G″, due to disulphide bond formation. The cytotoxicity screening on fibroblast BALB/3T3 clone A31 cells indicated an IC50 of 27.7 mg/mL and 30.0 mg/mL, for MβCD and MβCD-SH, respectively. Finally, MβCD-SH was able to self-assemble in water into nanometric structures, both in the presence and absence of the complexed drug.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
| | - Andrea Cesari
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (F.B.); (G.U.-B.)
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria; (G.K.); (A.B.-S.)
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria; (G.K.); (A.B.-S.)
| | - Gloria Uccello-Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy; (F.B.); (G.U.-B.)
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.G.); (C.M.); (Y.Z.)
- Correspondence: ; Tel.: +39-3392221213
| |
Collapse
|
14
|
Toomari Y, Ebrahimpour H, Pooresmaeil M, Namazi H. D-glucose functionalized β-cyclodextrin as a controlled anticancer drug carrier for in vitro evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Kali G, Knoll P, Bernkop-Schnürch A. Emerging technologies to increase gastrointestinal transit times of drug delivery systems. J Control Release 2022; 346:289-299. [PMID: 35461970 DOI: 10.1016/j.jconrel.2022.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/19/2023]
Abstract
Apart from already established technologies to increase gastrointestinal transit times, including devices rapidly increasing in size once they have reached the stomach in order to retard the passage through the pylorus, formulations that float on gastric fluids and mucoadhesive drug delivery systems adhering to the gastrointestinal mucosa, there are new technologies emerging that might be game changing. They include mucus permeating nanocarriers that are able to diffuse deeply into the mucus gel layer of the gastric and intestinal mucosa remaining there for a prolonged time period (i), charge-converting nanocarriers that shift their zeta potential from negative to positive within the mucus gel layer providing strong ionic bonds with anionic mucus glycoproteins (ii) and thiolated nanocarriers and cyclodextrins form even covalent bonds with cysteine-rich subdomains of mucus glycoproteins (iii). Within this review we will provide an overview about these emerging new technologies and will critically discuss their potential and shortcomings.
Collapse
Affiliation(s)
- Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Rizg WY, Naveen NR, Kurakula M, Safhi AY, Murshid SS, Mushtaq RY, Abualsunun WA, Alharbi M, Bakhaidar RB, Almehmady AM, Salawi A, Al Fatease A, Hosny KM. Augmentation of Antidiabetic Activity of Glibenclamide Microspheres Using S-Protected Okra Powered by QbD: Scintigraphy and In Vivo Studies. Pharmaceuticals (Basel) 2022; 15:ph15040491. [PMID: 35455488 PMCID: PMC9031896 DOI: 10.3390/ph15040491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022] Open
Abstract
Successful drug delivery by mucoadhesive systems depends on the polymer type, which usually gets adherent on hydration. The intended polymers must sustain the association with biomembranes and preserve or accommodate the drug for an extended time. The majority of hydrophilic polymers tend to make weak interactions like noncovalent bonds, which hampers the positioning of dosage forms at the required target sites, leading to inefficient therapeutic outcomes. It is possible to overcome this by functionalizing the natural polymers with thiol moiety. Further, considering that S-protected thiomers can benefit by improving thiol stability at a broad range of pH and enhancing the residence period at the required target, 2-mercapto-nicotinic acid (MA) was utilized in this present study to shield the free thiol groups on thiolated okra (TO). S-protected TO (STO) was synthesized and characterized for various parameters. Glibenclamide-loaded microspheres were formulated using STO (G-STO-M), and the process was optimized. The optimized formulation has shown complete and controlled release of the loaded drug at the end of the dissolution study. Cell viability assay indicated that the thiolated S-protected polymers gelated very well, and the formulated microspheres were safe. Further, G-STO-M showed considerable in vivo mucoadhesion strength. The glucose tolerance test confirmed the efficacy of STO formulation in minimizing the plasma glucose level. These results favor S-protection as an encouraging tool for improving the absorption of poorly aqueous soluble drugs like glibenclamide.
Collapse
Affiliation(s)
- Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India;
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence:
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (A.S.)
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
| | - Ahmad Salawi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (A.S.)
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (W.A.A.); (R.B.B.); (A.M.A.); (K.M.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
18
|
Beaupre DM, Weiss RG. Thiol- and Disulfide-Based Stimulus-Responsive Soft Materials and Self-Assembling Systems. Molecules 2021; 26:3332. [PMID: 34206043 PMCID: PMC8199128 DOI: 10.3390/molecules26113332] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Properties and applications of synthetic thiol- and disulfide-based materials, principally polymers, are reviewed. Emphasis is placed on soft and self-assembling materials in which interconversion of the thiol and disulfide groups initiates stimulus-responses and/or self-healing for biomedical and non-biomedical applications.
Collapse
Affiliation(s)
| | - Richard G. Weiss
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA;
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
19
|
Racaniello GF, Laquintana V, Summonte S, Lopedota A, Cutrignelli A, Lopalco A, Franco M, Bernkop-Schnürch A, Denora N. Spray-dried mucoadhesive microparticles based on S-protected thiolated hydroxypropyl-β-cyclodextrin for budesonide nasal delivery. Int J Pharm 2021; 603:120728. [PMID: 34029665 DOI: 10.1016/j.ijpharm.2021.120728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
Budesonide (BUD) is used as first choice therapy for the treatment of allergic rhinitis, a chronic allergic-immune condition with an increased incidence in the pediatric population. The main problem of BUD nasal formulations is related to its poor aqueous solubility (S0 = 5.03·10-5 M), sometimes compensated by the administration of high doses of the drug. The ability of thiolated hydroxypropyl-β-cyclodextrin (HP- β -CD-SH, 100 mM) to increase the water solubility of BUD (SHP- β-CD-SH = 10.9·10-3 M) more than pristine hydroxypropyl- β -cyclodextrin (HP- β-CD, SHP- β-CD = 4.3·10-3 M) has been previously demonstrated. Considering that S-protected thiomers have the advantage of increasing the stability of thiols over a wide pH range prolonging their residence time at the target site, 2-mercapto-nicotinic acid (MNA) was used in this study to protect the free thiol groups on HP- β -CD-SH generating the corresponding S-protected cyclodextrin (HP-β-CD-MNA). Besides, given the increased stability and processability of HP-β-CD-MNA, mucoadhesive microparticles (MPs) were prepared via spray-drying of aqueous solutions of the inclusion complex HP-β-CD-MNA/BUD. MPs were morphologically and dimensionally homogeneous exhibiting an average diameter of 3.24 ± 0.57 µm. Over time these MPs formed larger aggregates with an average diameter of 10-50 μm, suitable for the design of intranasal delivery systems. Differential scanning calorimetry analyses revealed the absence of crystalline BUD from spray-dried complexes. Dissolution studies shown that spray-dried MPs dissolved quickly and the complexed drug was completely solubilized within the first 20 min of the dissolution process. Cell viability assay indicated that spray-dried complexes are safe. In vitro mucoadhesion studies on freshly excised porcine nasal mucosa showed a 1.4- and 2.3-fold prolonged mucosal residence time of HP- β -CD-SH/BUD and HP-β-CD-MNA/BUD in comparison to the unmodified cyclodextrin (CD), respectively. Rheological behaviour of spray-dried MPs complexes/mucus mixtures confirmed the results of the mucoadhesion studies, as the dynamic viscosity of the spray-dried inclusion complexes HP-β-CD-SH/BUD and HP-β-CD-MNA/BUD was 1.1-fold and 2.4 fold increased in comparison to the unmodified HP-β-CD/BUD complex. According to these results, MPs comprising HP- β -CD-MNA/BUD might be a promising tool for nasal delivery of poorly water-soluble corticosteroids such as BUD.
Collapse
Affiliation(s)
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Simona Summonte
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy; Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Angela Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Massimo Franco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, 6020 Innsbruck, Austria; Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
| |
Collapse
|
20
|
Asim MH, Ijaz M, Mahmood A, Knoll P, Jalil A, Arshad S, Bernkop-Schnürch A. Thiolated cyclodextrins: Mucoadhesive and permeation enhancing excipients for ocular drug delivery. Int J Pharm 2021; 599:120451. [PMID: 33675922 DOI: 10.1016/j.ijpharm.2021.120451] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
Thiolated β-cyclodextrin (β-CD) has the potential to enhance mucoadhesive and permeation enhancing properties on ocular mucosa. Thiolated β-CD was synthesized via replacement of all primary hydroxyl groups on β-CD backbone by halogen followed by substitution with thiol groups. The structure was confirmed by FT-IR and 1H NMR spectroscopy. Thiolated CD was characterized for hemolytic effect, ocular irritation, solubility enhancement, viscoelastic behavior and mucoadhesive properties. Moreover, the permeation enhancing effect of thiolated oligomer on different ocular tissues including conjunctiva, sclera and cornea was evaluated with sodium fluorescein (Na-Flu) as a marker. Thiolated β-CD displayed 5360 ± 412 µmol/g thiol groups. The newly synthesized oligomer did not show any hemolytic effect on red blood cells at a concentration of 0.5% (m/v) for an incubation period of 3 h and minimal corneal irritation effects without any inflammation within 72 h. Thiolated β-CD exhibited a 5.3-fold improved aqueous solubility as compared to the unmodified β-CD. Thiolated oligomer (0.5% m/v) enhanced the viscosity of mucus up to 6.2-fold within 4 h and provided a 26-fold prolonged ocular residence time due to mucoadhesion. Moreover, 0.5% (m/v) thiolated β-CD enhanced the permeation of Na-Flu 9.6-, 7.1- and 5.3-fold on conjunctiva, sclera and cornea, respectively. Based on these findings, thiolated β-CD might be a promising auxiliary agent for ocular drug delivery.
Collapse
Affiliation(s)
- Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, University of Innsbruck, 6020 Innsbruck, Austria; Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, 54000 Lahore, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Shumaila Arshad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 44000 Islamabad, Pakistan
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J Control Release 2021; 330:470-482. [DOI: 10.1016/j.jconrel.2020.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
22
|
Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci 2021; 288:102342. [PMID: 33444845 DOI: 10.1016/j.cis.2020.102342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Ocular diseases may be treated via different routes of administration, such as topical, intracameral, intravitreal, oral and parenteral. Among them the topical route is most accepted by patients, although it provides in many cases the lowest bioavailability. Indeed, when a topical formulation reaches the precorneal area, i.e., the drug absorption and/or action site, it is rapidly eliminated due to eye protection mechanisms such as blinking, basal and reflex tearing, and naso-lacrimal draining. To avoid this and to reduce the frequency of dosing, various strategies have been developed to prolong drug residence time after topical administration. These strategies include the use of viscosity increasing and mucoadhesive excipients as well as combinations thereof. From the drug delivery system point of view, liquid and semisolid formulations are preferred over solid formulations such as ocular inserts and contact lenses. Furthermore, liquid and semisolid formulations can contain nano- and microcarrier systems that contribute to a prolonged residence time. Within this review an overview about the different types of excipients and formulations as well as their performance in valid animal models and clinical trials is provided.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa 56100, Italy
| | - Andreas Bernkop-Schnürch
- Institute of Pharmacy/Dep. of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Makhayeva DN, Irmukhametova GS, Khutoryanskiy VV. Polymeric Iodophors: Preparation, Properties, and Biomedical Applications. REVIEW JOURNAL OF CHEMISTRY 2020; 10:40-57. [PMID: 33362938 PMCID: PMC7749746 DOI: 10.1134/s2079978020010033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/19/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
The review summarizes the data on the main chemical and physiological properties of iodine and its capability of complexation with natural and synthetic polymers. Iodine is the best known antiseptic used to prevent and treat microbial infections. Its unique capability of complexation with certain polymers opens wide opportunities for targeted and prolonged delivery to target organs. Polymeric complexes with iodine have another color, other morphology, a higher electrical conductivity, and higher biological activity as compared with initial polymers. The formation of and ions is associated with iodine-polymer complexation. Iodine-containing biocompatible adhesive controlled-release formulations are designed as part of research into iodine-polymer complexes. The field is promising in terms of treating certain diseases because tolerance to iodine compounds does not usually develop in microbial cells.
Collapse
Affiliation(s)
- D. N. Makhayeva
- Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | | | - V. V. Khutoryanskiy
- University of Reading, Whiteknights, RG6 6AH Reading, Berkshire United Kingdom
| |
Collapse
|
24
|
|
25
|
S-Protected thiolated nanostructured lipid carriers exhibiting improved mucoadhesive properties. Int J Pharm 2020; 587:119690. [PMID: 32738459 DOI: 10.1016/j.ijpharm.2020.119690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
The purpose of the present study was to design nanostructured lipid carriers (NLCs) exhibiting improved mucoadhesive properties. First, an S-protected thiolated fatty acid conjugate was synthesized by amide bond formation between a primary amino group of l-cystine and palmitic acid N-hydroxysuccinimide. NLCs were prepared by nano-template engineering technique using Span 60, polysorbate 80, sucrose stearate and PEG 400 as surfactant mixture, stearic acid as solid lipid and miglyol as liquid lipid. NLCs were loaded with the model drug bergapten and decorated with the S-protected thiolated fatty acid conjugate. NLCs were characterized regarding particle size, poly-dispersity index (PDI), zeta potential, drug entrapment efficiency (EE), drug loading capacity (LC), drug release and mucoadhesive properties. Furthermore, cytotoxicity studies were performed on MDA-MB-231 cells via resazurin assay. S-Protected thiolated NLCs displayed a mean size of 115 nm, PDI of 0.3, zeta potential of -30 mV, 80% drug EE and 5% drug LC. Drug-loaded S-protected thiolated NLCs exhibited a sustained drug release and strongly enhanced mucoadhesive properties. Surface decoration with cystine substructures raised the cytotoxic potential of NLCs to a minor extent. Due to the immobilization of cystine substructures on the surface of NLCs, their mucoadhesive properties can be strongly improved.
Collapse
|
26
|
Jalil A, Asim MH, Shahzadi I, Khan M, Matuszczak B, Bernkop-Schnürch A. Thiolated PVP-Amphotericin B Complexes: An Innovative Approach toward Highly Mucoadhesive Gels for Mucosal Leishmaniasis Treatment. Biomacromolecules 2020; 21:3658-3667. [PMID: 32803961 DOI: 10.1021/acs.biomac.0c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to synthesize polymeric excipients that can form mucoadhesive hydrogels containing amphotericin B (AmB) for the treatment of mucosal leishmaniasis. 2-(2-Acryloylaminoethyldisulfanyl)-nicotinic acid (ACENA) was copolymerized with N-vinyl pyrrolidone to obtain thiolated polyvinylpyrrolidone (PVP) that was then complexed with AmB to improve its solubility. The resulting structure of thiolated PVP was evaluated by 1H nuclear magnetic resonance to confirm S-protected thiol groups, and the average molecular mass was determined by size exclusion chromatography. Moreover, variants of thiolated PVP-AmB were studied for the thiol content, amount of complexed AmB, cytotoxicity, mucoadhesive properties, and antileishmaniasis activity. The highest achieved degree of thiolation was 772 ± 24.64 μmol/g, and the amount of complexed AmB was 27.05 ± 0.31 μmol per g of polymer. Thiolated PVP and thiolated PVP-AmB variants (0.5% m/v) showed no cytotoxicity, whereas the equivalent concentration of free AmB reduced Caco-2 cell viability to 70% within 24 h. Thiol-functionalized PVP and PVP-AmB complexes displayed 7.66- and 7.20-fold higher adhesion to the mucosal surface in comparison to unmodified PVP and PVP-AmB, respectively. In addition, variants of thiolated PVP-AmB complexes displayed 100% antileishmaniasis activity in comparison to the 80% killing efficiency of Fungizone, which has been applied in the equivalent AmB concentration of 0.2 μg/mL. Thiol-functionalized PVP proved to be a promising novel excipient for the delivery of AmB providing enhanced solubility and improved mucoadhesive properties which are beneficial for the treatment of mucosal leishmaniasis.
Collapse
Affiliation(s)
- Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.,Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Momin Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
27
|
Asim MH, Silberhumer S, Shahzadi I, Jalil A, Matuszczak B, Bernkop-Schnürch A. S-protected thiolated hyaluronic acid: In-situ crosslinking hydrogels for 3D cell culture scaffold. Carbohydr Polym 2020; 237:116092. [PMID: 32241444 DOI: 10.1016/j.carbpol.2020.116092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to synthesize S-protected thiolated hyaluronic acid (HA) and to evaluate its potential for 3D cell culture scaffold. S-protected thiolated HA was synthesized by the covalent attachment of N-acetyl-S-((3-((2,5-dioxopyrrolidin-1-yl)oxy)-3-oxopropyl)thio)cysteine hydrazide ligand to the HA. Hydrogels were characterized for texture, swelling behavior and rheological properties. Furthermore, the potential of S-protected thiolated HA hydrogels as a scaffold for tissue engineering was evaluated by cell proliferation studies with Caco-2 and NIH 3T3 cells. It showed enhanced cohesion upon addition of N-acetyl cysteine (NAC). Dynamic viscosity of S-protected thiolated HA hydrogel was increased up to 19.5-fold by addition of NAC and 10.1-fold after mixing with mucus. Furthermore, Caco-2 and NIH 3T3 cells encapsulated into hydrogels proliferated in-vitro. As this novel S-protected thiolated HA is stable towards oxidation and forms highly cohesive gels when getting into contact with endogenous thiols due to disulfide-crosslinking, it is a promising tool for 3D cell culture scaffold.
Collapse
Affiliation(s)
- Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Stefanie Silberhumer
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
28
|
Hussain Asim M, Nazir I, Jalil A, Matuszczak B, Bernkop-Schnürch A. Tetradeca-thiolated cyclodextrins: Highly mucoadhesive and in-situ gelling oligomers with prolonged mucosal adhesion. Int J Pharm 2020; 577:119040. [DOI: 10.1016/j.ijpharm.2020.119040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 12/16/2022]
|
29
|
Asim MH, Nazir I, Jalil A, Laffleur F, Matuszczak B, Bernkop-Schnürch A. Per-6-Thiolated Cyclodextrins: A Novel Type of Permeation Enhancing Excipients for BCS Class IV Drugs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7942-7950. [PMID: 31985207 PMCID: PMC7205388 DOI: 10.1021/acsami.9b21335] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The purpose of the study was to develop a per-6-thiolated α-cyclodextrin (α-CD) by substituting all primary hydroxyl groups of α-CD with thiol groups and to assess its solubility-improving and permeation-enhancing properties for a BCS Class IV drug in vitro as well as in vivo. The primary hydroxyl groups of α-CD were replaced by iodine, followed by substitution with -SH groups. The structure of per-6-thiolated α-CD was approved by FT-IR and 1H NMR spectroscopy. The per-6-thiolated was characterized for thiol content, -SH stability, cytotoxicity, and solubility-improving properties by using the model BCS Class IV drug furosemide (FUR). The mucoadhesive properties of the thiolated oligomer were investigated via viscoelastic measurements with porcine mucus, whereas permeation-enhancing features were evaluated on the Caco-2 cell monolayer and rat gut mucosa. Furthermore, oral bioavailability studies were performed in rats. The per-6-thiolated α-CD oligomer displayed 4244 ± 402 μmol/g thiol groups. These -SH groups were stable at pH ≤ 4, exhibiting a pKa value of 8.1, but subject to oxidation at higher pH. Per-6-thiolated α-CD was not cytotoxic to Caco-2 cells in 0.5% (m/v) concentration within 24 h. It improved the solubility of FUR in the same manner as unmodified α-CD. The addition of per-6-thiolated α-CD (0.5% m/v) increased the mucus viscosity up to 5.8-fold at 37 °C within 4 h. Because of the incorporation in per-6-thiolated α-CD, the apparent permeability coefficient (Papp) of FUR was 6.87-fold improved on the Caco-2 cell monolayer and 6.55-fold on the intestinal mucosa. Moreover, in vivo studies showed a 4.9-fold improved oral bioavailability of FUR due to the incorporation in per-6-thiolated α-CD. These results indicate that per-6-thiolated α-CD would be a promising auxiliary agent for the mucosal delivery of, in particular, BCS Class IV drugs.
Collapse
Affiliation(s)
- Mulazim Hussain Asim
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- College of Pharmacy, University of Sargodha, 40100 Sargodha, Punjab, Pakistan
| | - Imran Nazir
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Jalil
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- CCB, Department of Pharmaceutical Chemistry,
Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.132, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- CCB, Department
of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80, L.04.184, 6020 Innsbruck, Austria
- E-mail: . Phone: +43 512 507 58601. Fax: +43 512 507 58699
| |
Collapse
|
30
|
Zhao R, Du S, Liu Y, Lv C, Song Y, Chen X, Zhang B, Li D, Gao S, Cui W, Plikus MV, Hou X, Wu K, Liu Z, Liu Z, Cong Y, Li Y, Yu Z. Mucoadhesive-to-penetrating controllable peptosomes-in-microspheres co-loaded with anti-miR-31 oligonucleotide and Curcumin for targeted colorectal cancer therapy. Theranostics 2020; 10:3594-3611. [PMID: 32206110 PMCID: PMC7069075 DOI: 10.7150/thno.40318] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Accumulating evidences indicate that nanomedicines greatly decrease the side effects and enhance the efficacy of colorectal cancer (CRC) treatment. In particular, the use of rectal delivery of nanomedicines, with advantages such as fast therapeutic effects and a diminishing hepatic first-pass effect, is currently emerging. Method: We established a CRC targeted delivery system, in which α-lactalbumin peptosomes (PSs) co-loaded with a microRNA (miR)-31 inhibitor (miR-31i) and curcumin (Cur) were encapsuslated in thiolated TEMPO oxidized Konjac glucomannan (sOKGM) microspheres, referred as sOKGM-PS-miR-31i/Cur. The CRC targeting capability, drug release profiles, mucoadhesive-to-penetrating properties and therapeutic efficacy of sOKGM-PS-miR-31i/Cur delivery system were evaluated in colorectal cancer cells and azoxymethane-dextran sodium (AOM-DSS) induced tumor models. Results: sOKGM-PS-miR-31i/Cur delivery system were stable in the harsh gastrointestinal environment after rectal or oral administration; and were also mucoadhesive due to disulfide bond interactions with the colonic mucus layer, resulting in an enhanced drug retention and local bioavailability in the colon. Concomitantly, the released PS-miR-31i/Cur PSs from the microsphere was mucus-penetrating, efficiently passing through the colonic mucus layer, and allowed Cur and miR-31i specifically target to colon tumor cells with the guide of CD133 targeting peptides. Consequently, rectal delivery of sOKGM-PS-miR-31i/Cur microspheres suppressed tumor growth in an azoxymethane-dextran sodium sulfate (AOM-DSS)-induced tumor model. Conclusion: sOKGM-PS-miR-31i/Cur microspheres are effective rectal delivery system with combined advantages of mucoadhesive and mucus-penetrating properties, representing a potent and viable therapeutic approach for CRC.
Collapse
Affiliation(s)
- Ran Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Guangdong Provincial Key Laboratory of Regional Immunity and School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Sujuan Du
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Guangdong Provincial Key Laboratory of Regional Immunity and School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Guangdong Provincial Key Laboratory of Regional Immunity and School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Bing Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Technology and Science, Wuhan, 430022, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 78701, USA
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Nouri A, Jelkmann M, Khoee S, Bernkop-Schnürch A. Diaminated Starch: A Competitor of Chitosan with Highly Mucoadhesive Properties due to Increased Local Cationic Charge Density. Biomacromolecules 2020; 21:999-1008. [PMID: 31940199 PMCID: PMC7205387 DOI: 10.1021/acs.biomac.9b01665] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to synthesize diaminated starch as a novel mucoadhesive polymer. Starch was tosylated and then reacted with ethylenediamine. The degree of amination was determined by 2,4,6-trinitrobenzene sulfonic acid assay. Properties of diaminated starch including solubility, cytotoxicity, swelling behavior, and mucoadhesion were compared to chitosan. Diaminated starch displayed 2083 ± 121.6 μmol of diamine substructures/g of polymer. At pH 6, diaminated starch exhibited a ζ potential of 6 mV, whereas it was close to zero in the case of unmodified starch. In addition, diaminated starch displayed water solubility over the entire pH range and minor cytotoxicity. The novel polymer showed pronounced swelling behavior in water increasing its initial weight 18- and 6-fold at pH 5 and 6, respectively. Moreover, diaminated starch exhibited 92-fold higher-mucoadhesivity properties than those of chitosan. According to these results, diaminated starch might be a promising novel excipient for the design of mucoadhesive formulations.
Collapse
Affiliation(s)
- Akram Nouri
- Polymer Laboratory, Chemistry Department, School of Science , University of Tehran , P.O. Box 14, 155-6455 Tehran , Iran
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Sepideh Khoee
- Polymer Laboratory, Chemistry Department, School of Science , University of Tehran , P.O. Box 14, 155-6455 Tehran , Iran
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| |
Collapse
|
32
|
Ghafelehbashi R, Tavakkoli Yaraki M, Heidarpoor Saremi L, Lajevardi A, Haratian M, Astinchap B, Rashidi AM, Moradian R. A pH-responsive citric-acid/α-cyclodextrin-functionalized Fe 3O 4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110597. [PMID: 32228991 DOI: 10.1016/j.msec.2019.110597] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
Developing new nanocarriers and understanding the interactions between the drug and host molecules in the nanocarrier at the molecular level is of importance for future of nanomedicine. In this work, we synthesized and characterized a series of iron oxide nanoparticles (IONPs) functionalized with different organic molecules (citric acid, α-cyclodextrin, and citric acid/α-cyclodextrin composite). It was found that incorporation of citric acid into the α-cyclodextrin had negligible effect on the adsorption efficiency (<5%) of citric acid/α-cyclodextrin functionalized IONPs, while the isotherm adsorption data were well described by the Langmuir isotherm model (qmax = 2.92 mg/g at T = 25 °C and pH = 7). In addition, the developed nanocarrier showed pH-responsive behavior for releasing the quercetin molecules as drug model, where the Korsmeyer-Peppas model could describe the release profile with Fickian diffusion (n < 0.45 for at all pH and temperatures). Then, Density functional theory was applied to calculate the absolute binding energies (ΔEb) of the complexation of quercetin with different host molecules in the developed nanocarriers. The calculated energies are as follow: 1) quercetin and citric acid: ΔEb = -16.58 kcal/mol, 2) quercetin and α-cyclodextrin: ΔEb = -46.98 kcal/mol, and 3) quercetin and citric acid/α-cyclodextrin composite: ΔEb = -40.15 kcal/mol. It was found that quercetin tends to interact with all hosts via formation of hydrogen bonds and van der Waals interactions. Finally, the cytotoxicity of the as-developed nanocarriers was evaluated using MTT assay and both normal NIH-3T3 and cancereous HeLa cells. The cell viability results showed that the quercetin could be delivered effectively to the HeLa cells due to the acidic environment inside the cells with minimum effect on the viability of NIH-3T3 cells. These results might open a new window to design of stimuli-responsive nanocarriers for drug delivery applications.
Collapse
Affiliation(s)
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
| | - Leily Heidarpoor Saremi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Aseman Lajevardi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Haratian
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Bandar Astinchap
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj, Iran.
| | - Ali Mohammad Rashidi
- Department of Materials and Textile Engineering, College of Engineering, Razi University, Kermanshah, Iran
| | - Rostam Moradian
- Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran; Nanoscience and Nanotechnology Research Center, Razi University, Kermanshah, Iran
| |
Collapse
|
33
|
Thiolated hydroxypropyl-β-cyclodextrin as mucoadhesive excipient for oral delivery of budesonide in liquid paediatric formulation. Int J Pharm 2019; 572:118820. [DOI: 10.1016/j.ijpharm.2019.118820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022]
|
34
|
Abstract
Cyclodextrins are widely used excipients, composed of glucopyranose units with a cyclic structure. One of their most important properties, is that their inner cavity is hydrophobic, while their surface is hydrophilic. This enables them for the complex formation with lipophilic molecules. They have several applications in the pharmaceutical field like solubility enhancers or the building blocks of larger drug delivery systems. On the other hand, they have numerous effects on cells or biological barriers. In this review the most important properties of cyclodextrins and cyclodextrin-based drug delivery systems are summarized with special focus on their biological activity.
Collapse
|
35
|
Parker RN, Wu WA, McKay TB, Xu Q, Kaplan DL. Design of Silk-Elastin-Like Protein Nanoparticle Systems with Mucoadhesive Properties. J Funct Biomater 2019; 10:E49. [PMID: 31726786 PMCID: PMC6963467 DOI: 10.3390/jfb10040049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Transmucosal drug delivery is a promising avenue to improve therapeutic efficacy through localized therapeutic administration. Drug delivery systems that increase retention in the mucosal layer are needed to improve efficiency of such transmucosal platforms. However, the applicability of such systems is often limited by the range of chemistries and properties that can be achieved. Here we present the design and implementation of silk-elastin-like proteins (SELPs) with mucoadhesive properties. SELP-based micellar-like nanoparticles provide a system to tailor chemical and physical properties through genetic engineering of the SELP sequence, which enables the fabrication of nanoparticles with specific chemical and physical features. Analysis of the adhesion of four different SELP-based nanoparticle systems in an artificial mucus system, as well as in in vitro cellular assays indicates that addition of mucoadhesive chemical features on the SELP systems increases retention of the particles in mucosal environments. The results indicated that SELP-based nanoparticles provide a useful approach to study and develop transmucosal protein drug delivery system with unique mucoadhesive properties. Future studies will serve to further expand the range of achievable properties, as well as the utilization of SELPs to fabricate mucoadhesive materials for in vivo testing.
Collapse
Affiliation(s)
| | | | | | | | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, OR 02155, USA; (R.N.P.); (W.A.W.); (T.B.M.); (Q.X.)
| |
Collapse
|
36
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|
37
|
Nazir I, Fürst A, Lupo N, Hupfauf A, Gust R, Bernkop-Schnürch A. Zeta potential changing self-emulsifying drug delivery systems: A promising strategy to sequentially overcome mucus and epithelial barrier. Eur J Pharm Biopharm 2019; 144:40-49. [PMID: 31505225 DOI: 10.1016/j.ejpb.2019.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
AIM The aim of the present study was to develop zeta potential changing self-emulsifying drug delivery systems (SEDDS) via a flip-flop mechanism in order to improve their mucus permeating and cellular uptake properties. METHODS Phosphorylated serine-oleylamine (p-Ser-OA) conjugates were synthesized and incorporated into SEDDS at a concentration of 1% (v/v). Cytotoxic potential of p-Ser-OA and p-Ser-OA loaded SEDDS was investigated on Caco-2 cells. Phosphate release was evaluated using isolated as well as cell-associated intestinal alkaline phosphatase (AP). In parallel, change in zeta potential and amino group concentration on the surface of SEDDS was determined. Furthermore, mucus permeation and cellular uptake studies were performed. RESULTS p-Ser-OA was synthesized by covalent attachment of serine (Ser) to oleylamine (OA) via a carbodiimide-mediated reaction followed by phosphorylation using phosphorous pentoxide (P2O5) and phosphoric acid (H3PO4). The chemical structure of p-Ser-OA was confirmed via FT-IR, 1H NMR, 13C NMR, 31P NMR and mass spectroscopic analysis. p-Ser-OA loaded SEDDS exhibited a droplet size and zeta potential of 46.42 ± 0.35 nm and -11.53 mV, respectively. A significant amount of phosphate was released after incubation with isolated as well as cell-associated AP within 6 h and zeta potential raised up to -2.04 mV. p-Ser-OA loaded SEDDS showed improved mucus permeation in comparison to p-Ser-OA loaded SEDDS treated with AP. Moreover, cellular uptake increased almost 2-fold after phosphate cleavage using AP. CONCLUSION Findings of this study show that SEDDS changing their zeta potential via a flip-flop mechanism exhibit both high mucus permeating and high cellular uptake properties.
Collapse
Affiliation(s)
- Imran Nazir
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Andrea Fürst
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Noemi Lupo
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andrea Hupfauf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
38
|
Shahzadi I, Asim MH, Dizdarević A, Wolf JD, Kurpiers M, Matuszczak B, Bernkop-Schnürch A. Arginine-based cationic surfactants: Biodegradable auxiliary agents for the formation of hydrophobic ion pairs with hydrophilic macromolecular drugs. J Colloid Interface Sci 2019; 552:287-294. [PMID: 31132631 DOI: 10.1016/j.jcis.2019.05.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 01/27/2023]
Abstract
WORKING HYPOTHESIS It was the hypothesis of this study that esters of arginine (Arg) with medium and long chain aliphatic alcohols are biodegradable and less cytotoxic than well-established cationic surfactants being used for hydrophobic ion pairing (HIP) with hydrophilic macromolecular drugs. EXPERIMENTS Arg was linked to nonan-1-ol and hexadecan-1-ol (C9 and C16) via an ester linkage. The newly formed Arg-nonyl ester (ANE) and Arg-hexadecanoyl ester (AHE) surfactants were evaluated regarding critical micelle concentration (CMC) using pyrene fluorescent method, cytotoxicity on human colorectal adenocarcinoma-derived cells (Caco-2) and biodegradability at the concentrations of 2.5 and 5 mg/mL using 2500 Nα-benzoyl-l-arginine ethyl ester hydrochloride (BAEE) units/mL of trypsin. Furthermore, in order to evaluate their potential for HIP, heparin and daptomycin were used as model polysaccharide and peptide drugs, respectively. FINDINGS Chemical structures of ANE and AHE surfactants were confirmed by FTIR, 1H NMR, and LC-MS. CMC of ANE was 7.5 mM and CMC of AHE was 2 mM. Arg-surfactants were not cytotoxic below their CMC. At CMC and above CMC, ANE was significantly (P < 0.05) more cytotoxic than AHE. ANE in both concentrations was degraded ˃98% within 48 h. The degradation of AHE at lower concentration was ˃97% and about 50% at higher concentration. Arg-surfactants were able to efficiently precipitate heparin and daptomycin from corresponding aqueous solutions. CONCLUSION Arg-surfactants being biodegradable and less toxic seems to be a promising alternative to well-established cationic surfactants for the formation of hydrophobic ion pairs (HIPs) with hydrophilic macromolecular drugs.
Collapse
Affiliation(s)
- Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; College of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Aida Dizdarević
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian Dominik Wolf
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
39
|
Asim MH, Jalil A, Shahzadi I, Khan M, Matuszczak B, Bernkop-Schnürch A. Mucoadhesive S-protected thiolated cyclodextrin-iodine complexes: a promising strategy to prolong mucosal residence time of iodine. Future Microbiol 2019; 14:411-424. [DOI: 10.2217/fmb-2018-0288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: The purpose of this study was to develop S-protected thiolated α-cyclodextrin–iodine complexes providing prolonged mucosal residence time and sustained release of the antimicrobial agent. Materials & methods: First, L-cysteine was conjugated with 2-mercaptonicotinic acid to generate cysteine-2-mercaptonicotinic acid (Cys-MNA). Subsequently, α-CD was oxidized with NaIO4 and Cys-MNA was bound to the resulting aldehyde groups via reductive amination. Finally, iodine was incorporated into complex. Result: S-protected thiolated α-CD displayed 3804 μmol/g MNA groups. The inclusion constant (KC) between iodine and S-protected thiolated α-CD was 5.37 × 104 M-1. In vitro release of iodine was around 15% per hour, whereas mucoadhesive properties showed 38-fold improvement in mucoadhesion. The complex did not show cytotoxicity at a concentration of 0.5% (m/v). In addition, complexes exhibited pronounced antimicrobial activity against Staphylococcus aureus and Escherichia coli. Conclusion: According to these results, S-protected thiolated α-CD-iodine complex might be a promising novel formulation for the mucosal use of iodine.
Collapse
Affiliation(s)
- Mulazim H Asim
- Department of Pharmaceutical Technology, Center for Chemistry & Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Aamir Jalil
- Department of Pharmaceutical Technology, Center for Chemistry & Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Iram Shahzadi
- Department of Pharmaceutical Technology, Center for Chemistry & Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Momin Khan
- Department of Microbiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Barbara Matuszczak
- Center for Chemistry & Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry & Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| |
Collapse
|
40
|
Jalil A, Asim MH, Le NMN, Laffleur F, Matuszczak B, Tribus M, Bernkop-Schnürch A. S-protected gellan gum: Decisive approach towards mucoadhesive antimicrobial vaginal films. Int J Biol Macromol 2019; 130:148-157. [PMID: 30779984 DOI: 10.1016/j.ijbiomac.2019.02.092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 01/09/2023]
Abstract
The aim of this study was to synthesize novel polymeric excipients forming mucoadhesive films for treatment of vaginal microbial infections. 2-(2-Amino ethyldisulfanyl) nicotinic acid was conjugated with gellan gum via amide bond formation. The structure of the resulting S-protected gellan gum was confirmed by 1H NMR. S-protected gellan gum variants were characterized for thiol content, cytotoxicity, rheological behaviour and film forming capability. Depending on the added amount of AMENA degree of thiolation was 81 ± 13 (S-GG 81) and 174 ± 16 (S-GG 174) μmol/g, respectively. Vaginal films were casted from S-protected gellan gum variants and studied for adherence to vaginal mucosa, drug release and antimicrobial activity. S-protected gellan gum remained biocompatible showing >87% cell viability. S-GG 81 and S-GG 174 exhibited 1.84- and 4.3-fold increased dynamic viscosity in porcine mucus in comparison to unmodified gellan gum, respectively. Compared to gellan gum films, thiol functionalized gellan gum films showed 3-fold improved adhesion on mucosal surface over a period of 3 h along with significant antimicrobial activity. Moreover, S-protected gellan gum provided a sustained release of metronidazole. According to these results, S-protected gellan gum proved to be a promising novel excipient for casting vaginal films, exhibiting strongly improved mucoadhesive and antimicrobial properties.
Collapse
Affiliation(s)
- Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Nguyet-Minh Nguyen Le
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Industrial Pharmacy, University of Medicine and Pharmacy, 70000 Ho Chi Minh City, Viet Nam
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martina Tribus
- Institute of Mineralogy and Petrography, Innrain 52, University of Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
41
|
Menezes PDP, Andrade TDA, Frank LA, de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AADS. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 2019; 559:312-328. [PMID: 30703500 DOI: 10.1016/j.ijpharm.2019.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
For many years, researchers have worked with supramolecular structures involving inclusion complexes with cyclodextrins. These studies have resulted in new commercially available drugs which have been of great benefit. More recently, studies using nanoparticles, including nanosystems containing cyclodextrins, have become a focus of academic research due to the versatility of the systems and their remarkable therapeutic potential. This review focuses on studies published between 2002 and 2018 involving nanosystems containing cyclodextrins. We consider the type of nanosystems, their importance in a health context, the physicochemical techniques used to show the quality of these systems and their potential for the development of novel pharmaceutical formulations. These have been developed in recent studies which have mainly been focusing on basic science with no clinical trials as yet being performed. This is important to note because it means that the studies do not include any toxicity tests. Despite this limitation, the characterization assays performed suggest that these new formulations may have therapeutic potential. However, more research is required to assess the efficacy and safety of these nanosystems.
Collapse
Affiliation(s)
| | | | - Luiza Abrahão Frank
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Kim S, Kim J, Gajendiran M, Yoon M, Hwang MP, Wang Y, Kang BJ, Kim K. Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels. Biomacromolecules 2018; 19:4239-4249. [DOI: 10.1021/acs.biomac.8b01013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sungjun Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Junhyung Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mani Gajendiran
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Minhyuk Yoon
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Mintai P. Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kyobum Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| |
Collapse
|