1
|
Zhang ZH, Yan SS, Chen YL, Lian ZD, Fu A, Kong YC, Li L, Su SC, Ng KW, Wei ZP, Liu HC, Wang SP. Air-Stable Self-Driven UV Photodetectors on Controllable Lead-Free CsCu 2I 3 Microwire Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10398-10406. [PMID: 38380978 PMCID: PMC10910456 DOI: 10.1021/acsami.3c17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
The rapid evolution of the Internet of Things has engendered increased requirements for low-cost, self-powered UV photodetectors. Herein, high-performance self-driven UV photodetectors are fabricated by designing asymmetric metal-semiconductor-metal structures on the high-quality large-area CsCu2I3 microwire arrays. The asymmetrical depletion region doubles the photocurrent and response speed compared to the symmetric structure device, leading to a high responsivity of 233 mA/W to 355 nm radiation. Notably, at 0 V bias, the asymmetric device produces an open-circuit voltage of 356 mV and drives to a short-circuit current of 372 pA; meanwhile, the switch ratio (Iph/Idark) reaches up to 103, indicating its excellent potential for detecting weak light. Furthermore, the device maintains stable responses throughout 10000 UV-light switch cycles, with negligible degradation even after 90-day storage in air. Our work establishes that CsCu2I3 is a good candidate for self-powered UV detection and thoroughly demonstrates its potential as a passive device.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- State
Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Shan-Shan Yan
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Yu-Long Chen
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhen-Dong Lian
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Ai Fu
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - You-Chao Kong
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Lin Li
- Key
Laboratory for Photonic and Electronic Bandgap Materials, Ministry
of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Shi-Chen Su
- School
of Semiconductor Science and Technology, South China Normal University, Foshan 528000, China
| | - Kar-Wei Ng
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhi-Peng Wei
- State
Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
| | - Hong-Chao Liu
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Shuang-Peng Wang
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
2
|
Jiang S, Huang R, Li W, Huang X, Sheng H, Wu F, Lv Y, Fu Y, Zhao C, Mai W. Low-Temperature Vapor-Phase Anion-Exchange Strategy for Wide-Bandgap Double-Perovskite Cs 2AgBiCl 6 Films toward Weak Ultraviolet Light Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26279-26286. [PMID: 35616486 DOI: 10.1021/acsami.2c06008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-temperature synthesis of high-quality, high-stability, wide-bandgap perovskite films by solution methods is still challenging. Herein, large-scale wide-bandgap Cs2AgBiCl6 (CABC) double perovskite films are synthesized by a vapor-phase anion-exchange strategy. By dedicatedly designing an ultrathin TiO2 modification layer between the substrate and double perovskites, high-quality heterojunctions with matched energy band alignment are formed, contributing to a remarkably enhanced ON/OFF ratio of 2.4 × 104 (86 times) and a responsivity of 16 mA W-1 (12 times). Additionally, the ultraviolet photodetectors (UV PDs) exhibit an excellent UV detection limit of 1.18 μW cm-2 (20 nW), a broad linear dynamic range of 146 dB, and a high specific detectivity of 2.06 × 1011 Jones, as well as long-term stability. Finally, we further demonstrate a weak UV imaging system using CABC UV PDs as imaging sensors. The system is capable of imaging weak UV signals as low as 2.94 μW cm-2 (50 nW). Our results provide a feasible approach for low-temperature fabrication of wide-bandgap perovskite UV PDs and explore the promising application for weak UV detection and imaging.
Collapse
Affiliation(s)
- Shaowei Jiang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Rongqing Huang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wanjun Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xinyue Huang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Haigang Sheng
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Fei Wu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yibo Lv
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yong Fu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Chuanxi Zhao
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
3
|
Zhan X, Zhang X, Liu Z, Chen C, Kong L, Jiang S, Xi S, Liao G, Liu X. Boosting the Performance of Self-Powered CsPbCl 3-Based UV Photodetectors by a Sequential Vapor-Deposition Strategy and Heterojunction Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45744-45757. [PMID: 34545739 DOI: 10.1021/acsami.1c15013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All-inorganic CsPbCl3 perovskite in ultraviolet (UV) detection is drawing increasing interest owing to its UV-matchable optical band gap, ultrahigh UV stability, and superior inherent optoelectronic properties. Almost all of the reported CsPbCl3 photodetectors employ CsPbCl3 nano- or microstructures as sensitive components, while CsPbCl3 polycrystalline film-based self-powered photodetectors are rarely studied on account of the terrible precursor solubility. Herein, a novel sequential vapor-deposition technique is demonstrated to fabricate CsPbCl3 polycrystalline film for the first time. High-quality CsPbCl3 films with excellent optical, electronic, and morphological features are obtained. A self-powered photodetector based on the CsPbCl3 film is constructed without any charge transport layer, showing a high UV detection performance. A thin p-type PbS buffer layer is further introduced to passivate the surface defects of the CsPbCl3 layer and decrease the interfacial energy barrier by forming a type-II heterojunction, contributing to a faster hole extraction rate and a suppressed dark current level. The best-performing device achieves an ultrafast response time of 1.92 μs, an ultrahigh on/off ratio of 2.22 × 105, and a responsivity of 0.22 A/W upon 375 nm UV illumination at 0 V bias. This comprehensive performance is the best among all of the CsPbCl3 photodetectors reported to date. The as-prepared photodetectors also present an eminent UV irradiation and long-term durability in ambient air. Furthermore, a large-area and uniform 625-pixel UV image sensor is fabricated and attains a prominent imaging capability. Our work opens a new avenue for the scalable production of CsPbCl3-based optoelectronics.
Collapse
Affiliation(s)
- Xiaobin Zhan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuning Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiyong Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingxian Kong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shulan Jiang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Shuang Xi
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guanglan Liao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingyue Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| |
Collapse
|
4
|
Li K, Li S, Zhang W, Shi Z, Wu D, Chen X, Lin P, Tian Y, Li X. Highly-efficient and stable photocatalytic activity of lead-free Cs 2AgInCl 6 double perovskite for organic pollutant degradation. J Colloid Interface Sci 2021; 596:376-383. [PMID: 33848744 DOI: 10.1016/j.jcis.2021.03.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Photocatalytic applications of halide perovskites have attracted increasing attention. However, lack of stability and lead toxicity of lead halide perovskites have hindered their applications. Metal halide double perovskite (DP) Cs2AgInCl6 is a stable, environment-friendly semiconductor with direct band gap, and then the best promising alternative to lead halide perovskites. Here, the applications of Cs2AgInCl6 DP to photocatalytic degradation of organic pollutants have been developed, in which the octahedral Cs2AgInCl6 DP particles (~3.33 eV) were prepared by precipitation from acid solutions. The as-prepared samples exhibit high photocatalytic activity, which can degrade about 98.5% of water-insoluble carcinogen Sudan Red III in only 16 min, and have a good stability for 5 cycle operations. Furthermore, the Cs2AgInCl6 DP also can degrade Rhodamine B, Methyl orange and Methyl red efficiently, demonstrating a highly-efficient and stable ethanol solvent-based photocatalytic system for organic pollutants degradation. The high photocatalytic activity could be attributed to direct band gap and long carrier lifetime of Cs2AgInCl6 DP. These unique features of Cs2AgInCl6 DP indicate that it could have a good application prospect for photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Keke Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Sen Li
- College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Kexue Road 136, Zhengzhou 450001, PR China
| | - Wule Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhifeng Shi
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Di Wu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Xu Chen
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Pei Lin
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yongtao Tian
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
5
|
Zhu W, Deng M, Chen D, Zhang Z, Chai W, Chen D, Xi H, Zhang J, Zhang C, Hao Y. Dual-Phase CsPbCl 3-Cs 4PbCl 6 Perovskite Films for Self-Powered, Visible-Blind UV Photodetectors with Fast Response. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32961-32969. [PMID: 32610900 DOI: 10.1021/acsami.0c09910] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All-inorganic, Cl-based perovskites are promising for visible-blind UV photodetectors (PDs), particularly the self-powered ones. However, the devices are rarely reported until now since the low solubility of raw materials hinders significantly the thickness and electronic quality of solution-processed Cl-based perovskite films. Herein, we demonstrate a simple intermediate phase halide exchange method to prepare desired dual-phase CsPbCl3-Cs4PbCl6 films. It is achieved by spin-coating of a certain dose of CH3NH3Cl/CsCl solution onto a CsI-PbBr2-dimethyl sulfoxide (DMSO) intermediate phase film, followed by thermal annealing. The inclusion of CsCl species in the solution is crucial to a stable dual-phase CsPbCl3-Cs4PbCl6 film, while a high annealing temperature contributes to improving its quality. Therefore, the dual-phase CsPbCl3-Cs4PbCl6 film with an absorption onset of ∼420 nm, microsized grains, a few defects, and a proper work function is obtained by optimizing the annealing temperature. The final self-powered, visible-blind UV PD exhibits the superior performance, including a favored response range of 310-420 nm, a high responsivity (R) peak value of 61.8 mA W-1, an exceptional specific detectivity (D*) maximum of 1.35 × 1012 Jones, and a particularly fast response speed of 2.1/5.3 μs, together with amazing operational stability. This work represents the first demonstration of solution-processed, self-powered, visible-blind UV PDs with all-inorganic, Cl-based perovskite films.
Collapse
Affiliation(s)
- Weidong Zhu
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Minyu Deng
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Dandan Chen
- College of Science, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Zeyang Zhang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Wenming Chai
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Dazheng Chen
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - He Xi
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jincheng Zhang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Chunfu Zhang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|