1
|
Xiang C, Ling Y, Zhou Z, Zhu X, Xue F, Feng Z, Wang Y, Cheng X, Wang M, Cheng X. Efficient synergism of concentric ring structures and carbon dots for enhanced methanol electro-oxidation. RSC Adv 2024; 14:30091-30101. [PMID: 39315027 PMCID: PMC11417460 DOI: 10.1039/d4ra04685d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Developing affordable and reliable electrocatalysts with high activity and stability is crucial for enhancing the practicality of direct methanol fuel cells (DMFCs). An effective and simple strategy of combining the carbon point of N-CDs (0.4 mg mL-1) with NiO/Ni for the fabrication of NiO/Ni-N-CDsV nanocomposites with a three-dimensional concentric core-shell structure was proposed to successfully prepare the electro-oxidation catalyst of methanol. The low cost of Ni-based materials and the conductive N-CDs that improve methanol catalytic performance make the composites an excellent choice as electrode materials for direct methanol fuel cells (DMFCs). The electrocatalytic behavior of methanol oxidation was studied using cyclic voltammetry and chronoamperometry. The results indicated that the catalytic activity of NiO/Ni-N-CDsV increased by 3.02 times, and the current density was stable during the operation for 83 hours, implying strong electrocatalytic stability. Furthermore, the electrocatalytic performance for ethanol, ethylene glycol, and glycerol electro-oxidation reactions was impressive. This study provides a novel foundation for the development of high-performance, cost-effective, non-noble metal catalysts for DMFC applications, contributing to the formation of commercially competitive electro-oxidation catalysts with enhanced efficiency and stability.
Collapse
Affiliation(s)
- Cong Xiang
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Yunyun Ling
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Zitong Zhou
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Xiaoyu Zhu
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Fan Xue
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Zhijun Feng
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Yiwei Wang
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Xinyi Cheng
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Meifang Wang
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
| | - Xiaomei Cheng
- Department of Pharmacy, Wannan Medical College Wuhu 241002 China
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210023 China
| |
Collapse
|
2
|
Guo J, Yan Q, Zhang M, Fang J, Luo S, Xu J. PtRu mesoporous nanospheres as electrocatalysts with enhanced performance for oxidation of methanol. NANOSCALE ADVANCES 2024:d4na00210e. [PMID: 39170766 PMCID: PMC11334057 DOI: 10.1039/d4na00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Composition and morphology are crucial factors in the design of Pt-based catalysts with high performance, particularly in direct methanol fuel cells (DMFCs). Herein, PtRu mesoporous nanospheres (PtRu MNs) with tunable compositions were synthesized via a facile method and then deposited on a carbon support to act as electrocatalyst materials for the methanol oxidation reaction (MOR). Superior catalytic activity, better catalytic stability, and good tolerance to CO were achieved by the optimum PtRu (2 : 1) MNs/C catalyst compared with Pt MNs/C. The mass activity on PtRu (2 : 1) MNs/C reached 111.77 mA mgPt -1, which was approximately 6.45-fold higher than that of Pt MNs/C (17.33 mA mgPt -1). Meanwhile, PtRu (2 : 1) MNs/C retained much more current density (84.7%) than Pt MNs/C (17.7%) after 500 cycles. The improved catalytic performance is due to several factors, including the formation of a mesoporous nanostructure with abundant active sites and the favorable effects of the Ru species. This work provides guidance toward designing and fabricating effective Pt-based electrocatalysts for DMFC applications.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| | - Qiyu Yan
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| |
Collapse
|
3
|
Zhang Y, Jamal R, Xie S, Abdurexit A, Abdiryim T, Zhang Y, Song Y, Liu Y. Poly (3, 4-propylenedioxythiophene)/Hollow carbon sphere composites supported Pt NPs to facilitate methanol oxidation reactions. J Colloid Interface Sci 2024; 659:235-247. [PMID: 38176233 DOI: 10.1016/j.jcis.2023.12.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Direct methanol fuel cells (DMFCs) are thought of as portable, sustainable, and non-polluting energy devices. The exploration of efficient and affordable catalysts for the methanol oxidation reaction (MOR) is significant for the industrial application of DMFCs. In this study, nitrogen-doped hollow carbon spheres (HCS) derived from polydopamine were proposed for the catalyst support for platinum nanoparticles (Pt NPs) for serving as the anode catalyst for DMFCs, and a composite support material was fabricated by in-situ oxidation of 3,4-ethylenedioxythiophene (ProDOT) with HCS to get core-shell structured poly(3,4-propylenedioxythiophene) (PProDOT)-embellished hollow carbon spheres (HCS) (PProDOT/HCS) for further improving the catalytic activity for supported catalyst. The results indicated that the platinum (Pt) on the surface of HCS was well dispersed, and the Pt became smaller and more evenly distributed with the introduction of PProDOT. Simultaneously, the Schottky junction formed between PProDOT and Pt NPs contributes to enhanced charge transfer and catalytic activity of the catalyst. Notably, the core-shell structure of the ternary catalyst, its excellent charge transfer capability, and the interaction between platinum and the support contribute to its high electrocatalytic activity. Electrochemical tests demonstrated that the PProDOT/HCS/Pt catalyst exhibited a mass activity of 1169.6 mA mg-1Pt for methanol oxidation in acidic electrolytes, surpassing the activity of the HCS/Pt catalyst (472.4 mA mg-1Pt) and commercial Pt/C (281.0 mA mg-1Pt).
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Shuyue Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Abdukeyum Abdurexit
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Yaolong Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yanyan Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yajun Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| |
Collapse
|
4
|
Xie F, Gan M, Ma L. N-Doped Carbon Nanotube Shell Encapsulating the NiFe Metal Core for Enhanced Catalytic Stability in Methanol Oxidation Reaction by the Structural Cooperation Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15198-15208. [PMID: 36459487 DOI: 10.1021/acs.langmuir.2c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploitation of high-efficiency catalysts toward methanol oxidation is a pivotal step to promote the commercialization of direct methanol fuel cells. Herein, a strategy is demonstrated to prepare nitrogen-doped carbon nanotubes with NiFe metal particles (NiFe@N-CNT) as the carrier material of Pt nanoparticles. Combining SEM and TEM, NiFe metal particles are fully encapsulated in N-CNTs, and they form the metal core and carbon nanotube shell structure based on the structural cooperation mechanism. Surprisingly, the as-prepared Pt/NiFe@N-CNT catalyst shows superior catalytic activity (1023 mA mg-1Pt) compared to commercial Pt/C (392 mA mg-1Pt), Pt/Ni@N-CNT (331 mA mg-1Pt), and Pt/Fe@N-CNT (592 mA mg-1Pt). After 1000 cycles, Pt/NiFe@N-CNT maintains the optimal catalytic activity (588 mA mg-1Pt), and its mass activity loss is 42.5%, which is better than those of commercial Pt/C (64.0%), Pt/Ni@N-CNT (67.7%), and Pt/Fe@N-CNT (59.6%) catalysts, indicating that the Pt/NiFe@N-CNT catalyst achieves excellent catalytic activity and stability, which stems chiefly from the homodispersed Pt nanoparticles and the generation of the metal core-carbon nanotube shell based on the structural cooperation mechanism. This study reports the facile construction of a metal core-carbon nanotube shell structure, which intrinsically ameliorates structural collapse of carrier material, thereby improving the catalytic stability of the Pt-based catalyst and broadening the view for design of other desire catalysts in methanol oxidation.
Collapse
Affiliation(s)
- Fei Xie
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Mengyu Gan
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Li Ma
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| |
Collapse
|
5
|
One-Pot Microwave-Assisted Synthesis of Graphene-Supported PtCoM (M = Mn, Ru, Mo) Catalysts for Low-Temperature Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, one-pot microwave-assisted synthesis was used to fabricate the graphene (GR)-supported PtCoM catalysts where M = Mn, Ru, and Mo. The catalysts with the molar ratios of metals Pt:Co:Mn, Pt:Co:Ru, and Pt:Co:Mo equal to 1:3:1, 1:2:2, and 7:2:1, respectively, were prepared. Catalysts were characterized using Transmission Electron Microscopy (TEM). The electrocatalytic activity of the GR-supported PtCoMn, PtCoRu, and PtCoMo catalysts was evaluated toward methanol oxidation in an alkaline medium employing cyclic voltammetry and chrono-techniques. The most efficient electrochemical characteristics demonstrated the PtCoMn/GR catalyst with a current density value of 144.5 mA cm−2, which was up to 4.8 times higher than that at the PtCoRu(1:2:2)/GR, PtCoMo(7:2:1)/GR, and bare Pt/GR catalysts.
Collapse
|
6
|
Mauer DK, Belenov SV, Skibina LM, Guterman VE. Composite Pt/(SnO2/C) and PtSnNi/C Catalysts for Oxygen Reduction and Alcohol Electrooxidation Reactions. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ponticorvo E, Iuliano M, Funicello N, De Pasquale S, Sarno M. Magnetic resonance imaging during the templated synthesis of mesoporous TiO2 supporting Pt nanoparticles for MOR. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Ding C, Dong F, Tang Z. Construction of hollow carbon polyhedron supported Pt catalyst for methanol electrocatalytic oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Peng K, Zhang W, Bhuvanendran N, Ma Q, Xu Q, Xing L, Khotseng L, Su H. Pt-based (Zn, Cu) nanodendrites with enhanced catalytic efficiency and durability toward methanol electro-oxidation via trace Ir-doping engineering. J Colloid Interface Sci 2021; 598:126-135. [PMID: 33895534 DOI: 10.1016/j.jcis.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
Pt-based alloy nanomaterials with nanodendrites (NDs) structures are efficient electrocatalysts for methanol oxidation reaction (MOR), however their durability is greatly limited by the issue of transition metals dissolution. In this work, a facile trace Ir-doping strategy was proposed to fabricate Ir-PtZn and Ir-PtCu alloy NDs catalysts in aqueous medium, which significantly improved the electrocatalytic activity and durability for MOR. The as-prepared Ir-PtZn/Cu NDs catalysts showed distinct dendrites structures with the averaged diameter of 4.1 nm, and trace Ir doping subsequently improved the utilization of Pt atoms and promoted the oxidation efficiency of methanol. The electrochemical characterizations further demonstrated that the obtained Ir-PtZn/Cu NDs possessed enhanced mass activities of nearly 1.23 and 1.28-fold higher than those of undoped PtZn and PtCu, and approximately 2.35 and 2.67-fold higher than that of Pt/C in acid medium. More excitingly, after long-term durability test, the proposed Ir-PtZn and Ir-PtCu NDs still retained about 88.9% and 91.6% of its initial mass activities, which further highlights the key role of Ir-doping in determining catalyst performance. This work suggests that trace Ir-doping engineering could be a promising way to develop advanced electrocatalysts toward MOR for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- Kai Peng
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Weiqi Zhang
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | | | - Qiang Ma
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Lei Xing
- Institute of Green Chemistry and Chemical Technology, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535, South Africa
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
10
|
Xiao Y, Liu W, Zhang Z, Liu J. Controllable synthesis for highly dispersed ruthenium clusters confined in nitrogen doped carbon for efficient hydrogen evolution. J Colloid Interface Sci 2020; 571:205-212. [DOI: 10.1016/j.jcis.2020.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|